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ABSTRACT

A lower bound of cNlogN is proved for the mean time complexity of
an on-line multitape Turing machine performing the multiplication
of N-digit binary integers. For a more general class of machines
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~r‘Much of this work was carried out at the University of Warwick with

partial support from the Science Research Council of the U.K. It was
also supported in part by the National Science Foundation under research
grant GJ-34671 to MIT Project MAC, and in part by the Artificial
Intelligence Laboratory, an MIT research program sponsored by the
Advanced Research Projects Agency, Department of Defense, under Office
of Naval Research contract number N00014-70-A-0362-0003.



2w

1. INTRODUCTION

A challenging problem in the field of computational complexity is
to prove lower bounds on the computing time for naturally defined
algorithms executed by realistically powerful machinery. For a serial
machine whose task is to map an input string to an output string,
a trivial lower bound for many mappings is the number of steps required
to read the input string. There are a number of combinatorial techniques,
involving for example crossing sequences [cf.6, §10,4], which are
adequate to derive nontrivial lower bounds but only for rudimentary
machines such as single~tape Turing machines. The powerful diagonali-
zation techniques are of use only for an input/output mapping sufficiently
structured to encode machine computations.

In this paper we expound and develop further the 'overlap' argument
introduced by Cook and Aanderaa [3], which establishes a nonlinear
lower bound on the time required by a very general class of machines to
perform multiplication of binary integers. (A similar argument has been
used again recently by Aanderaa [1].) Our contribution relative to [3] is
firstly that the main line of proof is somewhat shortened and simplified,

secondly that the lower bound in [3] is increased by a factor loglogn and
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is shown to hold for the average rather than just the worst case, and
thirdly a new observation is made which yields an even stronger result
for the case of multitape Turing machines. 1In some cases we show our
new results to be optimal to within a constant factor by exhibiting
suitable multiplication algorithms.

Our main results are lower bounds for '"on-line' multiplication.
A mapping from an input string to an output string is said to be carried

th
out on-line if for all n the nth output symbol is printed after the n

and before the (n+1)St input symbol is read*. For on-line multiplication
the multiplicands are given in binary, least significant digit first,

and each input symbol encodes the two corresponding input digits. We

may as well assume that, for N-digit arguments, only the least
significant N digits of the product are to be produced.(The remaining
digits may be obtained, if desired, by concatenating N zeros to the
arguments.) On-line multiplication is of course possible, though a

naive implementation may take time at least proportional to n between

2
the (n-l)St and th digits, with therefore a time of order N for an

N-digit product. We show here that the minimum average computation time

o

For technical convenience, we use this strong form of the definition which
prohibits an output from being produced too soon. It is not a serious
restriction for two reasons: For binary multiglication, the 1 digit of
the product cannot be determined until the itD digits of the two inputs
have been read except when both numbers are even; hence a machine can take
advantage of the weaker definition for at most a quarter of all possible
inputs, changing our mean~time bounds by only a constant factor. Secondly
any BAM may be modified without time loss to obey the strong definition by
adding a two-headed linear tape to serve as an output buffer. This does
not affect any of our lower bounds. (Cf. [5].)



for on-line multiplication is bounded below and above by functions of
the form N(logN)k, where for the lower bounds k is approximately 1 and
for the upper bounds k is approximately 1 or 2 depending on the class
considered. The exact results are given in Sections 6,7 and 8. For

further background and motivation the reader is referred to [3].

2, MACHINE MODELS

In the class of machines to which our proofs apply, we wish to include
not only the familiar multitape Turing machine but also Turing machines
with tapes of higher dimension and some suitably tame "random access
machines'". We shall have to exclude iterative arrays and other machines
with unlimited parellelism since these are able to do multiplication in
"real-time" [2]. Our definitions follow [3] fairly closely, with minor
differences in order to simplify the mnotation and proof or to take fuller
advantage of the power of the proof technique. The reader is assumed to
have experience with the basic definitions and techniques of automata
theory [6]. |

A bounded activity machine (BAM) has a deterministic finite-state

control which operates with a one-way read-only input tape, a one-way

write-only output tape and a storage structure. The storage structure is

a countable set of locations each of which can hold a binary value. The
store is accessed and modified by a finite, fixed number of work heads

whose moves are specified by a finite set of shifts @1,...,®p. For each
i, mi is a map from the set of locations into itself, and a head at some

location x may be moved in one step to the 1ocation,@i(x).



A complete step of the BAM is described as follows. Depending on the

state of the finite control, the input tape may be advanced one symbol

and precisely one work head must be "moved" by one of the shifts.

Then, depending on the control state, the new input symbol (if any), and

the value stored in the storage location to which the head is moved, a

new value may be stored, an output symbol may be given, and a new control

state is entered. Thus, for each given symbol from the input tape or a storage
location, there is a unique step at which it is read, and the definition
prevents it from being reread later. Moreover, only one work tape symbol

is read per step, so we may speak of "the work symbol read at step s'.

Various restrictions in this definition, such as binary storage,
one head move per step, and the lack of dependence of the new step on the
old storage values, are introduced to simplify bhe exposition and cause a time
penalty of at most a constant factor compared with more versatile machines.
We shall say that a computation is real~time if it is on-line and each
input symbol is read a fixed number of steps after the previous input.
Note that we shall not require the store to be initially "empty" except
for the special class of '"uniform" machines defined below.
It is easy to design a BAM which can multiply in real time. A
suitable storage structure is based on an infinite binary tree, traversed

by a single head which takes left or right branches depending on the input



digits. The correct output is either already stored in the location of
the tree at the start or else is encoded in the structure itself in an
obvious way. For example the structure may have a transformation { such
that for all x, either y(x) = x or else V(¥ (x)) = x and {(x) ¥ x.
Which alternative holds can be determined for any location by a sequence
of a few steps.

Two classes introduced by Cook and Aanderaa ([3]) to evade such an

oracular construction are the polynomial-limited and uniform machines

defined below. We also add two further classes.

(i) Polynomial~limited.

A storage structure is polynomial-limited if there are constants

c,d such that for all locations x and for all t, the number of locations
d
accessible from x in t steps is no greater than ct . A BAM with such a

structure is a polynomial-limited machine.

(ii) Uniform.
A storage structure is uniform if for each pair of locations
x,y, there is a permutation f such that £(x) =y and for each

shift 0, of the structure, focDi = wiof. A BAM with a uniform

structure which is initially "empty" (i.e. each location has the same

initial value) is a uniform machine. The reader is referred to [3] for

further discussion of these and other classes.
With a suitable form of definition, Turing machines, even with

multiple heads and multidimensional tapes, satisfy both restrictiomns.
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Our main result holds for machines satisfying either restriction. The

BAM described above which multiplies in real-time satisfies neither.
(iii) One-dimensional multihead multitape Turing machines.

We can obtain a stronger result than for classes (i) and (ii) if we

restrict the tapes to be linear, i.e. one - dimensiomal.
(iv) Oblivious machines.

For this class we turn our attention from the storage structure,
which may be arbitrary, to the form of the finite state control or
"program''. The (single) storage location accessed at each step defines

the storage sequence for any computation, and this depends in general

on the input. A machine is oblivious if for input sequences of a given
length the storage sequence is fixed, i.e. independent of the input
symbols. Naturally, the control state and the values inscribed in the
store can, and in general do, depend on the input symbols; it is just
the movement of heads which is invariant, Our interest in oblivious
machines is two-fold. Firstly the restriction permits a very simple
proof of an improved lower bound, and secondly it
happens that almost all the algorithms proposed or used for multiplication
are oblivious or can be made oblivious at the cost of only a constant
factor in time.

In section 7 we shall retrospectively consider other classes of

machines to which the proof techniques applies.



3. RETRORSE FUNCTIONS

Informally, a function from an input string to the output is
retrorse*if the output values in any. segment depend very heavily on the
input values of the immediately preceding segment, and so the function
evaluator needs to '"turn back" to the previous input segment. On-line
multiplication will be shown to be very retrorse.

i
We define KN = zif N2 » so the binary expansion of Ky has a "1" in

position i iff i is a power of two, where the positions are numbered

starting with 0 at the right (lower-order) end. The usefulness of KN

is that multiplication of N-digit numbers by KN is extremely retrorse,
and the main proof is simpler than for two-input multiplication. Our
first theorem provides a lower bound on the average time for on-line
multiplication of an N-digit integer by KN and hence also on the worst-
case time for on-line multiplication. 1In the second theorem we show
that the same bound holds for the average time for general on-line
multiplication.

Figure 1 represents the multiplication of KN by an N-digit number X
with result Z. Tt is drawn in the conventional way with least significance
to the right. R and M are non-negative integers, and we shall always take
R to be a power of two, 2. W represents the subfield of Z consisting of bits

XM+R-1"'XM+1XM’ and Y represents the subfield of Z consisting of bits

Z ..z Z .. i i i d -bit int
M+2R-1 MARH1 MR We will at times think of W and Y as R-bit integers

* We choose not to follow Cook and Aanderaa in their choice of "complex"
to describe these functions.



in the range O to 221, 1o say that W assumes a value i means that we
imagine placing the binary representation of i into the W subfield of X.
This in turn causes Z to change, for Z always means the product KN'X,
and that in turn affects the value of Y. We investigate the dependence
in this way of Y uponW.

The way in which Y varies with W of course depends on the remaining
bits of X, other than those in W, which we denote by XN\\W. As a number,
X\\W is the value of the binary string obtained by setting the W-field
of X to zero.

For some particular fixed value of XN\W, let W range through all

possible values 0, 1,..., 2R—1, so Xi = XNW + i-2M, 0<ix=< 2R-1.

Let Z Z and Y , Y ,... be the corresponding values of Z and Y,

0> "1°°°° 0’ "1
that is, Z, = K *X,, and Y, is the Y-field of Z,.
1 N i i i

If i < j, then

= = Temd)e Mo
z, - Zi = (Xj Xi) KN = (j=1i)*2 *K_.

j N
, 2R = . -
Since KN = K2R + 277+K for some integer K, we have
N M+2R
Zj - Zi E (j-i)e2 KZR (mod 2 ).

Now suppose Yi = Yj' Then

M M+2R
a*2" (mod 2 )

N
1
N

it

R
for some integer a, |a|] < 2, and hence

. . - 2R
(j~-1) KZR = a (mod 277,
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Since R = 2

r r-1 0
202801y > Ko = 22422 4. 422 R

By the right hand inequality, (j—i)'KZR > 2R > a, and hence for the
congruence to hold, we must have

2R N 2R R

1=i)*K = 2 2 - .
(j=-1i) IR a+ 2

From the left-hand inequality for K2R’

1 R
T
j-i >3 27,

Hence, for any i, there is at most one j > i such that Yi = Yj’ and we

have proved:

Lemma 1. TFor fixed values of M, R, N and X\W, each value of Y can

arise from at most two values of W.

4. OVERIAP

This concept is the basis for a very elegant counting argument
introduced in [3]. It has recently been put to use again by Aanderaa [1].
The motivation for its definition comes from the computation of very
retrorse functions. The obvious way in which information about a previous
input segment can be obtained is by revisiting locations which were visited
when that segment was being read. Overlap is defined in terms only of the
storage sequence defined previously. If two successive accesses to the same

location { occur at steps s1 and s, (s1 < 52)’ then the pair (sl, sz)



is called an overlap pair, £ is called the overlap location of Sy and

and referenced at step s, is called

the value stored in 4 at step s 2

1

the overlap value of s The total overlap (O = [ {(sl,sz) I (sl,sz) is

9

an overlap pair}[. Clearly the total time T = (, since each step s is

the second component of one or zero overlap pairs depending on whether

the location accessed at step s has been accessed before or not.

1’ C2 be disjoint contiguous time intervals during a computation.
We define overlaR(Cl, CZ) to be the number of overlap pairs (Sl’ 82) for

Let C

which s1 € C. and s2 € C2.

1
Without loss of results we assume N = 2n. For any i = 0,...,n, which

we call the level, define Ri = 21, and if 8 = § ...SIS is any

N-158-2 0

string of length N, we partition S into contiguous blocks Si 2n—i_1,
H

...S,

LAY S . = S . - .
3 (3+DR, -1 JeR;s

i,1° Si,O of length Ri’ where Si

’

0< 3= 2" 1. If X is the input string, the time interval C, . starts

s

as the rightmost digit of Xi ., 1is read and continues until the rightmost
s

digit of Xi 541 is about to be read (or until the computation ends if
2
there is no such j+1).

Let t, , be the length of time of Ci 3° Clearly the total time of the

1,3 >

computation T = %}ti . for each level i, We define w, ; = overlap
- 3 .

3

(Ci,j’ Ci,j+1) for all sujitable i,j, and also

W =E(,o
i 5 1i,2j
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for any 1i.

Lemma 2. Total overlap Q = X wi
i

Proof. Let (s 2) be an overlap pair and let i be the least level

1’8

such that s_,s, € C, ., for some j. C, , is the concatenation of the two
1 2 1,J 1’J

int . .
intervals Ci-1,2j and Ci-1,2j+1 at the next lower level By our choice of

i, s, € C, and s, € C
1 i-

1,23 2 1-1,2541° so (sl,sz) contributas to

and hence to w

w . . . " T
i-1,2j i-1 Suppose it contribues to w, hen

i', 23",

i' < i-1, for s, and 5, belong to the same interval for each level above

i-1, i' = i-1 since if (s,,s,) contributes to w_,, ,.,, then both

1°72 i', 2]
sy and s, are in the same block Ci'+1,j' at level i'+l. Hence i' = i-1,
and it is clear that j' = j. We conclude that each overlap pair contri-

butes exactly once to exactly omne w, and hence exactly once to § wi. 0

5. COMPUTATIONS WITH SMALL OVERIAP

We consider an on-line computation of some machine M from input X
to output Z. As before, M and R are fixed numbers, W is the length R
subword of X, XM+R-1"'XM’ and Y is the length R subword of Z,
ZM+2R-1"'ZM+R' Throughout this section, X\\W, M and R remain fixed, and

we explore how the value of Y changes as the value of W is varied. Unlike

the previous sections, Z now represents the output of M on input X.



-13-

Giving a particular value to W completely determines the computation

of M Let 5o be the step which advances the input head onto the first

symbol of W, let s, be the step which moves the input head off of the
last symbol of W, and let S, be the step which reads the next input symbol

after producing Y. Define interval Cw to be the steps from 8, to sl-l,

CY the steps from s. to sz-l, and let tw and ty be the lengths of time

1

associated with Cw and Cy, respectively. T is the total time of the
computation, and we let w = overlap(Cw,CY). This notation is illustrated
in Figure 2.

A A A
v’ tw, T and Y. TLet Q(W, t, T) be the total

A A
number of different Y values yielded by those W such that w =< W, tY < t,

As W varies, so do w, t

A A A
and T < %. If M is computing a retrorse function, Q(w, t, T) must be
large, and we will use this fact to deduce the constraints on

A A A
W, t, and T that eventually lead to our lower bound on T.

Our upper bounds on Q depend on the kind of machine, but all are
obtained using the same general method. For a given value of W, we observe
the computation during the interval CY and we record in a suitable
way information about W that affects the computation in CY’ such as the

state of the control and the positions of the heads at step sy (the
beginning of CY), the steps during CY at which overlap with Cw occurs

(W-overlap steps), and the overlap value for each W-overlap step. For

each class of machines, enough information will be recorded to ensure the

validity of:



-14-

Condition 1. TLet w and w' be two values for W and y and y' be the
corresponding values of Y. 1If the information recorded for w and w' is
the same, theny = y',

It follows immediately from Condition 1 that the number of different
possible information records obtained from values of W for which
w, tY’ and T are bounded respectively by &, ﬁ, and % is an upper bound
on Q(&, g,'%),

Lemma 3. There exists a constant C depending only on ‘M such that,

for'% > 1 and S < é S'%:
A

A A A
@ @, & 1 = 1%

A
AA A AW
(b) Qw, t, T) < TC'Z if M is a one-dimensional multihead multitape

if M is polynomial-limited or uniform;

E> >

Turing machine;
A A A W
(¢) Q(w, t, T) < C+*2 if M is oblivious.

Proof.

(a) Case 1: M is polynomial-limited. The information record consists

of the state of the control, the position of each head at time Sl’ a subset

A
8 = (tl""’t&} of the integers from O through t-1, and a binary sequence v
of length w, ©6 is chosen to include the times, relative to s of all the
W-overlap steps. The ith bit of v equals the symbol referenced at time

s1 + t_,which will be the overlap value if s1 + ti is a W-overlap step.
1

This insures that Condition 1 is satisfied.

A A

wiflt c

The total number of such records is clearly at most c*2 -(A)'H s
w

where H is the number of possible positions for each head at step Sy

d

d A
Since M is polynomial-limited, H < ST < Td, ielding the bound
P ty yielding
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of part (a).

(a) Case 2: M is uniform. This case is exactly like Case 1 except
that we do not record the actual head position at time 81s for the number
of possible positions is too large. Rather, we record for each head h the
step of CY (if any) at which h first visits a square [ visited prior to
step 5o together with the time of the first visit to 4 (which uniquely
specifies ). Call such a location £ filled. (In the case of more
than one head, a small amount of additional information must be recorded
to account for the possible interactions among the heads before revisiting
a filled location. This argument is presented in more detail in [3].)

If the head h never visits a filled location during CY’ then
because of uniformity the symbols read and written by the head can be
uniquely determined from the overlap steps and values, without knowing
the position of h at time s.. On the other hand, if h does visit a

1

filled location 4, then the step of C, at which 4 is visited together

Y
with ¢ itself uniquely determine the position of the head at step 815
again by the uniformity condition. £ can be specified by the time of

A2
its first visit, so there are at most tY-T < T different starting

positions of a single head h which must be distinguished.

(b) M 1is a one-dimensional multihead multitape Turing machine.

It is a special case of a polynomial-limited machine, so we may record the

state and starting head positions as in (a), Case 1. However, the positions at
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which overlap will occur may be specified much more succinctly, for

the squares visited during C_ by each head form an interval. Thus, only

W
the endpoints need be named. Since at most 2T locations on a linear tape

2
can be reached in T steps by a given head, there are at most2T  possible
intervals per head. As before, a binary sequence of length & is sufficient

in which to record the overlap values. Thus, the total number of such

A2 W
records is at most cqu(ZT )C-2 , where H is as in (a), Case 1.

(c) "™ is oblivious. The positions of the heads at each step are
independent of W, so only the state of the control at step s; and the

values of the overlap locations need to be recorded, giving the bound
A

c.2.0

We finish our preparations for the main proof with a combinatorial
lemma. By way of motivation, let ™ be a machine that multiplies on-line

A A A
and let W, t, and T be bounds on W, and T respectively such that

tY,

3R/4 3R/4

A A A
Q(w, t, T) < 2 . By Lemma 1, all but 2.2 values of W, a vanishing

R . .
fraction of the 2= values, cause one of the three bounds to be exceeded.

This . gives an implicit lower bound on w in terms of tY and T which
says in effect that if T is small, then the total overlap ( is large,

which implies that T is large. Hence, T must be large on the average.

Lemma 4. Let C, R, a be positive constants such that log a > 2(C + 3).

3R/4

If0<w<tand W+ t/a + log T < R/(2 log a), then TC-zw-(z) < 2

(A1l logarithms in this paper are taken to base 2.)
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Proof. For any p=q > O,
q
P} < & o [pe)?
q q! q
by Stirling's formula. Assume the hypothesis, so w < R/(2 log a),

t < aR/(2 log a), and log T < R/(2 log a).

¥, (t) < ¢C. (2t)
[0V} w

which is monotonic increasing in w, t and T since w < t. So

C (2t CR/(2 log a), [ aR/log a
T (w) < 2 (R/(Zloga))

2CR/(2 log a), R/(2 log a)

< (2ae)

23R/4. O

6. MAIN RESULTS AND PROOFS

Theorem 1. There is a constant C such that for any BAM M which for all

N multiplies N-digit numbers by K_ on-line, the mean time T(N) over all

N
numbers of length N satisfies the following bounds for all sufficiently

large N.
(i) If M is polynomial-limited or uniform,
T(N) > CN log N/log log N;
(ii) If M is a one-dimensional multihead multitape Turing machine
or is oblivious,

T(N) > CN log N.



-18-

Proof. Suppose first that M is polynomial limited or uniform. We
may assume that log log N> 2(C + 3) where C is as in Lemma 3, and define
a = log N. We consider again the situation depicted in Figures 1 and 2,
where X\VW is fixed and W is allowed to vary. Applying Lemmas 1, 3(a) and 4,
we deduce that the number of distinct W's for which
3R/4

W+ t/a + log T < R/(2 log a) is less than 2¢2 . Hence certainly,

mean (W + t/a + log T) > R/(3 log a) for R = 16.
W

Since this inequality holds for all values of X\W,

mean (w + t/a + log T) > R/(3 log a)
X
where the mean is taken over all N-digit numbers. If we assume that

2
mean T < N then
X

mean log T < log mean T < 2log N
X X

since the geometric mean is less than or equal to the arithmetic mean.
Now use the identity: mean(A + B) = mean(A) + mean(B). Therefore

mean (W + t/a) > R/(3 log a) - 2 log N
X
> R/(4 log a)

provided that R > 24+(logN)-(log logN).

= = i_ 3 t t
Now we suppose W Xi,2j and Y Zi,2j+l for some i,j, so tha

w=uw, .., t=

i,23 and R = Ri = 2%, Taking the intervals in pairs by
b

45,2541

summing over j, the previous inequality gives

mean W, + mean X t, . /a = Zmean (w, .. + t. .. / a
x 1 X j i,2j+1 X ( i,2j i,23+1 )
> Ri/(4 log a) = ©N/(8 log a).

J
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If we assume that mean T < N log N/(16 loglog N), then since X t, T,

<
X i,23+1

we have mean W, > N/(8 log a) - N/(16 loglog N)
X

= N/(16 loglog N).
Since this inequality holds for all i such that i < log N and

2t = Ri > 24+ (log N)+(loglog N), we conclude that

mean T > mean Q = Z mean w,
X X i x 1
> [1ogN;1og(24(1ogN)(loglogN))]'N/(16 loglogN)
2 NelogN/(17 loglog N)

provided N is sufficiently large. Thus, we have proved case (i).

The proof for case (ii) is somewhat simpler. We can easily show that
w
if W+ 2C*log T < R/2 then TC’2 < 23R/4. From this we deduce in a similar

way to case (i) that

mean (W + 2Celog T) > R/3,
X

If mean T < N2 and Ri > 48+C*log N then mean w,

> R./4 and mean w, > N/8,
X X ' *

2] .
SO

mean T > mean Q = 2 mean w, > Ns(log N)/9.
X x 1 x 1
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This proves case(ii). Of course a proof solely for oblivious machines

would be very easy since wij’ tij’ T, etc, are independent of X. |

We can immediately extend this proof, removing the dependence on KN.
We show that nearly all numbers as multipliers yield a function nearly

as retrorse as multiplication by K In the situation of Figure 1 and

N

Lemma 1, let us replace KN by an arbitrary N-digit number K

e
W
.

N
Lemma 5. For any h, 0 < h < 2R, if for some i, Yi = Yi+h’ then
* R+1 .
KZR must have one of at most 2 possible values.
Proof. As in the proof of Lemma 1, if Yi = Yi+h’ then
* o 2R
h-KZR = a (mod 2 )

for some a, Ial < 2R_

2R
Let d = ged(h, 2 ). Then dja, so a = kd, where Ikd' < ZR.

B} R
Also, d|287! by definition of d and the fact that h < 2. Hence,
R

2R
- Tt 2.0, -1, 0, 1, - 1}

R
2
k € {- 5—4-1,

so there are (2'2R/d) - 1 such k's.

ala
w

By elementary number theory, there are exactly d values of KZR

* 2R . .
7R < 277 which satisfy

% - 2R
hK2R = kd (mod 277).

in the range 0 < K

Hence, there are at most

R
de( g_g_ - 1) < 2R+
d

values of KZR for which Yi = Yi+h' [J

1
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From this lemma, it follows at once that at least half of all possible

values of K;R have the property that for all h, 0 < h < ZR-% and for all i,

*
Hence, for these values of K

IR at most 4 different W's yield

Yi 7 Yi+h'
the same Y. Therefore the proof of Theorem 1 can be followed very closely

except that "mean" is replaced throughout by "mean mean". Thus we have

X * X
Ry

shown:

Theorem 2. There is a constant c such that for any BAM T which
performs on-line multiplication, the mean time, T(N), for pairs of
N-digit numbers satisfies the following bounds for all sufficiently

large N.

(i) If M is polynomial-limited or uniform,

T(N) > ¢ N log N/log log N;

(ii) If M is a multitape Turing machine or is oblivious,

T(N) > c N log N.

We know of no direct implication between Theorems 1 and 2.

7. EXTENSIONS

In this section we shall outline some of the ways in which the
classes already considered can be extended while remaining susceptible
to the same proof methods.

A simple ''random~access' machine could be modelled by a BAM with
a storage structure based upon some sort of binary tree, so that

location are '"addressed'" by binary sequences and accessed in time



-22-

proportional to the address length. Such a structure is of course
exponentially, rather than polynomially, limited. However we recall
that the latter property is used in the proof only to allow head positions
to be specified just before a new input symbol is to be read. The proof
goes through just as before therefore, provided that the tree structure
is used in such a way that the heads are returned to the root before
each input is read, for example if all the "random-accessing" is
accomplished by a subroutine.

An alternative approach to a random-access store is the structure
based on the free group on two generators, a,b, with the four
shifts being left multiplication by a, a-l, b, b-l. This can be
operated as a quite serviceable random-access store and is of course
uniform.

A point of merely technical interest is that the same bounds may

be easily proved when the polynomial limited class is extended by

€
n

replacing "ctd " in the definition by ”c2t for any € < 1,
Unfortunately we know of no natural class of machines which takes
advantage of this extension.

Finally we show that without impairing the proof for any of the four
classes of machines we may add 'oracles'", and indeed more, in the
following way. The BAMs are extended by allowing an infinite number of
states in the control subject only to the restriction that just a finite

number of them may read the input tape. An '"oracle", which may even be

non-recursive, could be invoked with such a machine to read a sequence
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of storage locations and put the result of applying’its oracular function
in some other sequence of locations. This would take just the number of
steps required to access the locations. The proofs are unaffected by
this relaxation. A simple example which emphasizes the importance to

our proof of the on-line restriction is a multitape Turing machine with
an oracle to perform (off-line) multiplication in linear time.

The cN.logN lower bound applies even to this machine.

8. UPPER BOUNDS

An important technique for establishing upper bounds for on-line
multiplication is given by M. Fischer and Stockmeyer [4]. Their
construction shows that, for a wide range of machine classes including
multitape Turing machines, oracle Turing méchines, and oblivious machines,
given any off-line (i.e. unrestricted) multiplication machine with time
complexity T(N), where T satisfies T(2N) = 2T(N), an on-line machine can be
produced with time complexity no greater than c-T(N).log N.

A slight extension of their methods shows that on-line multiplication
of N-digit integers, where one of the numbers has at most logN "1"-digits,
can.be performed in time O(N.logN). In particular, there is a Turing machine
for on-line multiplication by KN with complexity O(N-logN), matching the
bound of Theorem 1 (ii).

General on-line multiplication algorithms may be obtained by applying
the Fischer-Stockmeyer result to the off-line algorithm of Schonhage-

Strassen [7], which on a Turing machine has complexity O(N.logN.loglogN).
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With the facility of constructing and rapidly accessing a multiplication
table for logN digit numbers such as is provided by a random-access
machine, the Schonhage-Strassen off-line multiplication algorithm can be

performed in time O(N-logN).

In Figure 3 we set out some of the upper bounds derived from the
above results for three classes of machines. Constant factors are
omitted and underlining denotes that a lower bound of the same order has
been demonstrated in previous sections. The first class is multitape
Turing machines with one-dimensional tapes; the second is BAMs with an
infinite number of states under the restriction on input states given in
Section 7; the third class is either version of "random-access" machine
described in Section 7. With the uniform structure based on the free
group on two generators, it is easy to simulate Turing machines and stores
with "random-access', BAMs with the binary tree structure and the
restriction on head positions given in Section 7 are also sufficiently
powerful to allow a fast implementation of the required algorithms,

though the programming techniques needed are less straightforward.

9. COXCLUSION

In this paper we have described a powerful counting argument based
on the notion of "overlap" and have investigated the extent and limitations

of its applicability. Overlap arguments are applicable only under the



on-line restriction, but in many cases they can lesd to complexity bounds

which are optimal within a comstant facter.

An important cbjective for future research is to cbtain nantriyial

lower bounds withcmt the severe mcrictiﬁa to oep~line ca-puution.

LB ISY % ﬁbj -}5 !%k‘

Such resul , even fm: obiiﬂm .Mnn or Mzmcuits, would
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