

This blank page was inserted to preserve pagination.

MAC TECHNICAL MEMORANDUM 41

STRING-MATCHING AND OTHER PRODUCTS

Michael J. Fischer

Michael S. Paterson

January 1974

This research was supported in part by the National
Science Foundation under research grant GJ-34671; in
part by the Artificial Intelligence Laboratory
supported by the Advanced Research Projects Agency
of the Department of Defense which was monitored by
ONR Contract No. N00014-70-A-0362-0003, and in part
by the Science Research Council of the U. K.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

STRING-MATCHING AND OTHER PRODUCTS+

Michael J. Fischer
Massachusetts Institute of Technology, Cambridge, Massachusetts

and

Michael S. Paterson
University of Warwick, Coventry, England

ABSTRACT

The string-matching problem considered here is to find all occurrences of a
given pattern as a substring of another longer string. When the pattern is
simply a given string of symbols, there is an algorithm due to Morris, Knuth
and Pratt which has a running time proportional to the total length of the
pattern and long string together. This time may be achieved even on a
Turing machine. The more difficult case where either string may have

"don't care" symbols which are deemed to match with all symbols is also
considered. By exploiting the formal similarity of string-matching with
integer multiplication, a new algorithm has been obtained with a running
time which is only slightly worse than linear.

Much of this work was carried out at the University of Warwick with
partial support from the Science Research Council of the U.K. It was also
supported in part by the National Science Foundation under research grant
GJ-34671 to MIT Project MAC, and in part by the Artificial Intelligence
Laboratory, an MIT research program sponsored by the Advanced Research
Projects Agency, Department of Defense, under Office of Naval Research
contract number N00014-70-A-0362-0003.

I~

1. Introduction.

We consider several problems concerned with the matching of stringe
of symbols. A typical practical problem is that we are given a (long)
symbol string X = X X X ---Xm, the "text", and another (short) string

0712

Y=Y.Y ...Y , the "pattern", over the same finite alphabet Z. The
- 01 n
task is to find all occurrences of the pattern as a consecutive substring

in the text, that is, to find all i, n £ i € m, such that:
Y = [X. ...X.]
- i-n i

The obvious naive algorithm tries each i1 in turn and compares Yj with
Xi~n+j for j = 0,1,... as far as necessary, and is represented by the
following informal program.
FOR 1 = n STEP 1 UNTIL m
FOR j = O STEP 1 UNTIL n
IF Y, #X;_ . 60T0 L
REPEAT
PRINT (i)
L: REPEAT

For example with the following strings the desired outputs would be
4, 7, 12.

]
"
o]
o
st}
o
o
[+8)
o
o
[
(ol
[}
o
o

4
An upper bound on the computation time for this algorithm is O(m.n) and

the matching of a™, with ap shows that this bound is realistic.
2. Morris—Knuth-Pratt algorithm.

A considerable improvement on the naive procedure described above
is afforded by an algorithﬁ due to J. H. Morris, D. E. Knuth and
V. R. Pratt 4], which has a running time which is O(m + n). The
essential idea is that if we have successfully matched a segment of the
string X with an initial segment of Y before reaching an inequality, then
it is unnecessary and wasteful to read those symbols of X again since
they are the same as the Y-segment. A better procedure is to carry out
the first comparisons for the next relative position of the pattern Y,
by comparing Y with a segment of itself, and of course the comparisons
can be pre—computed once and for all at the beginning. The pre-comput-
ation required is very quick and has the same general form as the main

computation itself.,

We shall describe a "theoreticians' version' of the Morris-Knuth-
Pratt algorithm to simplify the presentation and analysis. For a symbol

string 2 = Z "'Zn’ define the function P for i = 0,...,n by:

0]

P(1) = maxl{t l /A\ Zi—r = Zt-r and -1l<t<i}
O<r<t

Provided we consider to be identically true, P(i) is always

O0<r<-1
well-defined. It is not difficult to verify that:
P(k)(i) = kth largest t such that /«\ Z. = 7 and -1<t<i
1-r t-r
0<r<t

if this is defined.
(k) , . v . . . 0),., _ .
(P (i) denotes the composition of P with itself k times, so P (i) = 1
+
and P(k l)(i) = P(P(k)(i)).) The usefulness of P results from the following

recursive definition.

RIS

P(itl) = ‘rp(k) (i)‘ + 1 for ()S:i_}(;\i I

where k is the least positive integer such that

Tsgmererrgrl o le i

{ e®worniha

Lrie there-is nosech k .. . s

mn example is illustrated beTow. '

2 5.6 8

. * 1 N . T =3 - P . N
S R LS 50 B B eSS NN DS § W RSt S S A .
A B

& b7 A w Abovemrnd-l 8t &

poeioiai s i e Sy e T
sy PETS LA s o Soar
: c B eeny
LIRSS SRS BRI SNNS ¥ DA L EIC R
Pl .
. N

TR

P(5) = 2,

N SEF S JE TR

il o 2/", 3

o
i

o

P&L){"l mle 00 k2

crags g T

Provided that the string Z and the values of P(j) for jsi are rcadily

accessible, the value of P(i+l) may be computed in time less than

c. (P(1) - P(i+1)+2)
for some constant ¢, independent of i and n. This is because
P(j+1)-1 < P(j) < j for all j
and hence the k of the recursive definition satisfies:
P(i) - P(i+l) + 2 2k =21
Therefore the total running time is bounded by:
c.(P(O) - P(n)) + 2¢c(mtl) = 0(n).

To solve our original problem we concatenate Y, a new symbol @, and
X in that order and compute the values of P for the string Y @ X in time
O(m+n). Because of the @, P can never take a value greater than
n = |ZJ -1. The values of 1 for which P(1) = n, mark the positions where

Y matches a substring of X, or more precisely:

Pn+2+i) =n = /\ X, =Y
1-r n-r
O<r<n
Y ¥
Ioje X ¥ e X
TR x [1 =

Pre~processing phase Qutput phase

3. A Turing machine implementation.

The linear time bound obtained in Section 2 for the Morris-Knuth-
Pratt algorithm seems to depend not only on the use of a random access
machine, but also on the assignment of unit cost té a memory access,
for just the P array alone contains O(n log n) bits when represented
as a sequence of binary integers. This makes a linear time Turing

machine implementation somewhat surprising.

The central economy results from representing the P array by a

table A of differences. Define P(-1) = -1 and let
A(L) =1 + P(i) - P(i+l), -1 < i < n.
Then
i-1
P(1) =1 - Z A
N
n-1
and Y A(3) = n - P(n) < ntl,
21

so the A array can be represented in linear space, even using unary
notation.

We may expand the recursive definition of P in Section 2 as
follows:

Algorithm X,

Stage (0): Set P(0) + -1. Go to stage (1,1).

Stage (i+l, k):

1. Zi+l’ set P(i+l) <« P(k)(i) + 1 and go to stage (i+2, 1).

If 2050 (43417 =
2. 1If P(k)(i) = -1, set P(i+l) <« -1 and go to stage (i+2, 1).
3. Otherwise, go to stage (i+l, k+1).

Algorithm X may be rewritten without explicit reference to P by using
the A array and three new variables p, s and d. Inductively, at the beginning

of stage (i+l, k), the variables will satisfy:

b = p) 4y (3.1)
s = P 5y - p(KFD) (4 (3.2)
d = p1) - pP® (y) (3.3)

Algorithm Y maintains these conditions and computes the A array. (The

column vector notation denotes simultaneous assignment.)

Algorithm Y,

Stage (0): . -1
A(-1) < 1 s|l«] 0]; go to stage (1, 1).
d 0
Stage (i+1, k):
P ptl
1. If Zp+l = Zi+1’ then begin A(i) <« d; s|<|s+A(p)|
d 0

go to stage (i+2, 1).

p p
2. If p = -1, then begin A(i) <« d+1; sl < 1s{;
d 0
go to stage (i+2, 1); end.
3. Otherwise, begin
[Y]
P P ~— s
p-1
s |+ {s - z Aj ; go to stage (it+l, k+l); end.
j=p-s
d d + s
(") L J

It may be readily verified that conditions (3.1)-(3.3) hold after stage (0),
are preserved by the remaining stages, and the A's are computed correctly.

The Turing machine to implement Algorithm Y has four tapes, each one-
way infinite to the right. The input tape Z has two heads A and B. Tape Y
has two heads C and D and holds the A's and d. p is represented by the
positions of heads A and C. Tape S is used as a counter and holds s. Tape
T is a scratch tape. The tapes with two heads may be replaced without time
loss by several tapes with only one head per tape {31.

At the start of stage (i+l, k), head A is scanning Zp and head B is
scanning Zi' Tape Y contains the binary word

0128120018 | p2 (=D gy d

head C is on the "0" immediately preceeding the block 1A(p) (the p+2nd o

from the left), and head D is on the rightmost non-blank square. Finally,

the counter S contains the number s.

Below are the Turing machine tapes of the example of Section 2 at the

beginning of stage (6,2).

Tape Z: [$ a b a a b a b a a

Tape Y: [0 1 0 1 0 0 1 0 0 0 1 1

Tape S: I$ 1

We now examine the operations that might be required in stage (i+1, k).

. 1" _ "
The first test, Zp+l Zi+l ,» 18 accomplished in three Turing machine steps,
for heads A and B are only one square away from the symbols ZP+l and Zi+l’
respectively. Similarly, the test '"p = -1" becomes a test to see if head A

is scanning the left endmarker, "S$".

The updating in case (1) is accomplished by shifting D right and
printing a "0", shifting heads A and B right one square, and moving C
right to the next "0". As C is advanced, S is incremented once for each
"1" that C passes over,

The updating in case (2) is even easier. A and C are left alome, B
moves right one square, and D moves right two squares, printing a ''1"

followed by a "0".

10

To accomplish case (3), head C is moved left over s zeros. For each "0"
passed over by C, head A moves one square to the left and head D moves one
square to the right and prints a "1". For each "1" passed over by C, S
is decremented. Since the counter S is modified by this process, its contents
are first copied into the temporary counter T which is then used to control
the iteration.

We total up separately the time spent in each of the three cases.
For each i, case (2) is executed during at most one of the stages (i+l, k).
Each such execution takes a constant amount of time, so the total over all
stages is clearly 0(n).

When case (3) is executed at stage (i+l, k), it takes time cs for some con-

P(k+1)

stant ¢, where s = P(k)(i) - (i) is the value of S at the start of the stage,for

p-1
Z Aj < s. Let ki be the largest value of k for which a stage (itl, k)
j=p-s

is executed. Then stages (i+l, 1),..., (itl, ki_l) all execute case (3)
and stage (i+l, ki) executes case (1) or (2). Hence, the total time spent
in case (3) from the start of stage (i+l, 1) to the start of stage (i+2, 1)

k.-1
i

is Jee®@@ - p®V () = e - p& (1)) < (@) - PEHD) + D).
k=1

Summing over all i, the total time in case (3) is O(n).

11

Finally, the time spent in case (1) is bounded by the number of times
C is shifted right. But this is at most the eventual length ZY of tape
Y plus the number of times C is shifted left. The latter occurs only in

case (3) and hence is bounded by 0(n). Since

n
L =n+ 24+ X A, <2n+ 3 =0(n),
Y imeq J

the total time spent in case (1) is also 0(n).
It follows that the total time of the Turing machine is 0(n).
4. '"Don't care" symbols.

An interesting extension of this simple string-matching problem

which has practical applications results from the introduction of a

12

"don't care" symbol, ¢, into the alphabet. ¢ has the property of

"matching" with any symbol. We shall write "=" for this matching, so

¢ =x for all x € ¢ U {4}
The Morris-Knuth-Pratt algorithm breaks down in this situation,

basically because is not a transitive relation, that is:

X =y /\yEz—-f*xZ—:z

The above implication is valid only if y # ¢. Transitivity was assumed
implicitly in deriving the recursive relation used to compute P. The
naive algorithm given initially works just as before, with "z in place
of "=". The ostensible aim of this paper is to produce a more efficient
algorithm for string-matching with "don't care" symbols. This is

achieved only for the case when I 1is a finite alphabet.
5. Generalised linear products.

Both of the string-matching problems described so far can be regarded
as special cases of a very general "linear product”. Given two vectors
of elements, X = XO,...,Xm and Y = YO""’Yn’ the linear product with
respect to ® and ®, written §_YL, is a vector Z = Zo""’zm+n where:

Zk = ivi%k Xi ® Yj for k = 0,..., TN

For this to be meaningful, Xi’ Yj € D, Zk € E, for some sets D,E, and
® ® are functions,

® : DxD->E

®: ExE~+E, ® associative
If ® is A, and ® is = or =, the middle m—n+l truth values of the linear
product give the information required in matching the text X against the

reversal of Y, that is Yn...YO, since

i3

(_)_(_X)k = true <> [Xk_n...Xk] = [Yn...YO]
for n € k £ m. The reason for introducing general linear products

here lies in the following two cases.

(1) Boolean product where ® 1s v and ® is A

and (ii) polynomial product where ® is + and @ is x,

The polynomial product is of course the ordinary multiplication of
polynomials., The four products with which we are principally concerned

are illustrated in Figuré 1.
6. Algorithms for linear products.

For the simple string products the Morris-Knuth-Pratt ulgorithm
can be extended to yield the complete linear product. If we append a
string of n ¢'s to the end of the text X, then the same algorithm
correctly computes the last n truth-values of the linear product. Ve
are thus computing the values of P for the string XF @ §_¢n. For the
first n elements of the product, we know of no better method than to

reverse both strings and use the same procedure.

For strings over a finite alphabet with "don't cares", we follow
an indirect course, showing first that the computation time for string
product is of the same order as that for Boolean product. If ¢, 1 are
two distinct symbols of I, and X contains only ¢'s and ¢'s while Y
contains only t's and ¢'s, then the string product of X and Y is
precisely the negation of the Boolean product of the strings X and i,

where
Continued on Page 15

14

LINEAR PRODUCT Z = XY ; zZ, = @ X. oY,
- === k i+j=k 71 i

Examples: with the convention that 1,0 represent true,false respectively.

E - R AR

(1)) b a a b a

>

(2) a b ¢ ¢ a rZ
’ a ¢ b Il

(3) 1 001 01 01 l'
Vv

) 10010101
1 1

Figure 1.

15

=93
i

. true =1 - X, = ¢
1 —_— 1

Y. = true =1 > Y. = 1
1 —_— i

since

v N\ omEvatiea Vg ag

i+j=k * Citj=k T i+j=k J

Thus Boolean product is no harder than ¢—-string product. On the other

hand, let Hp be the predicate on I U {¢} defined by:

1 if x = p

[}

Hp (%)

]

0 if x # p (or x = ¢)

and extend %} to strings in the obvious way. Then

z=x@¥=ﬁ\/ B[] B
— — — g =" |V T
ok 43
o, t€L
Informally, this equation states that X and XB match in a given
relative position if and only if there is no pair of distinct symbols
0,T € I which clash. Hence the ¢-string product takes the same time

as the Boolean product to within a constant factor, independent of m

and n.

There is a considerable similarity between the Boolean product and
the polynomial product over the integers, as is shown in the example above.
When 1 and O are identified with true and false respectively, the Boolean
product can be obtained by performing the polynomial product and then by
replacing any non-zero element by 1. This idea of embedding a Boolean
algebra in a ring for computational purposes has been exploited to achieve
a fast Boolean matrix multiplication and transitive closure algorithm

(11.

16

One very convenient way to compute the polynomial product i: to
embed the product in a single large integer multiplication, for which
there are a variety of well-known efficient algorithms. For the
X and Y .,Yn,

o2tk 0° "
where m 2 n, the maximum possible coefficient in the product is n + 1.

polynomial product of the {0,1}-strings X

T .
If we choose r so that 2° > n + 1, compute the integers

m . n .
X2 = Xx.2"" and YQT) =1 v,.2"
. 1 .
1=0 3=0

and then multiply X(Zr) by Y(Zr), the result will be the product
polynomial Z, evaluated at 2°. Successive blocks of length r in the
binary representation of Z(2r) will give the coefficients of Z, and
by replacing non-zero coefficients by 1 we obtain the elements of the

Boolean product. This is illustrated below.

r > loga(n+l) , m > n

<«—7T—>
0...0X 10...0X . . . 0...0X
e 1 m
«—7T—>
0...0Y {0...0Y « . |0...0Y
0 1 n
T
Z Z Z
0 1 m+n

where Z = §_¥_ . is polymomial product.

. . r T .
The operations required to construct X(2°) and ¥Y(2"), and to pick

out the coefficients of Z are very easy and efficient on a binary
computer. On most computers there is fast special-purpose hardware for

multiplication of integers up to a certain size, and efficient routines

17

for multiplying larger integers. These may be used to yield a rcod
practical program for the Boolean product of strings of moderate length,

which however has a running time that is still proportional to mn.

For truly large integers, the Schthage—Strassen algorithm [5]
multiplies M-digit numbers by N-digit numbers in a time which is
O(M-.log N - log log N) for M = N, using a multi-tape Turing machine. Foxr
our application, M = mr = O(m log n) and N = nr = O(n log n).
Hence,
Result. For a finite alphabet, the "don't care' product of strings
of lengths m and n, (m = n), can be computed with a multitape

Turing machine in time O(m.(log n)z-log log n).
7. Large alphabets and numbers of comparisons.

The algorithm for ¢-product described so far has the disadvantage-
that the running time increases rapidly with the size of the alphabet .
It is approximately proportional to [Z|2. By coding the symbols of I

into a binary alphabet we can use just two Boolean products for strings

of length m.log[Z| and n.logIZ . Provided lZ[is bounded by a power of

n, this introduces a factor of just loglZ| into the running time.

It is interesting to observe that the Morris-Knuth-Pratt algorithm
works for an infinite alphabet, provided we take the predicate "=" as a
basic operation. Our algorithm for ¢-product is not of this form and
we may ask whether there is any algorithm, with access to the strings

T

only through the predicate "=", which has a computation time better than
the obvious O(m.n). Under such a strict limitation the answer is 'no",
and this is easily seen by considering the product of the two strings

+ +
X = o ! and Y = o" L All =-tests have the result true, but suppose

18

that during the execution of some algorithm there is some test

”Xi = Yj ?" which is never made. The computation and output yould be
igdistinguishable from that for the pair of strings ¢l o ¢" 7 and

¢J T ¢n-3’ where 0, T € L and 0 # T, and therefore the algorithm
cannot correctly compute the string product. Hence any ¢-product

algorithm of this class must sometimes make at least (m+l) (n+l) tests.

The above restriction is perhaps a little severe, even if we
consider the case of infinite I, so let us allow in addition an explicit
test for the '"don't care" symbol, that is "Xi = ¢ 7" or "Yj = ¢ ?". The
lower bound on the number of tests is now radically different, for we
can show that O(mtn) are sufficient. Unfortunately we still know of
no algorithm with a total running time less than that of the naive

algorithm for the ¢—product over an infinite alphabet.
8. Algorithm for ¢-product using O(mtn) tests.
We have to evaluate the (m+n+l) conjunctions

Zk = b2k Xi = Yj for k = 0,..., mtn
Firstly we determine all occurrences of ¢ in X and Y, and replace by
true any equivalence involving ¢. Possibly some of the Zk's may thus
be determined. So far as we know the remaining symbols in X and Y may
be completely distinct. At each stage of the algorithm we shall
maintain an equivalence relation on these symbols, such that we have
determined that all symbols in the same equivalence class are identical.
We can always choose "Xi = Yj'?" for our next comparison, where X. and
Yj are in distinct equivalence classes, and Zi+j has yet to be

determined. If Xi = Yj, then the equivalence classes of Xi and Yj can

19

be united, whereas if Xi Fd Yj then Zi+j can be determined as false. If
during the course of the algorithm the former case occurs (mtn+l) times
then only one equivalence class remains, and if the latter case occurs
(mtn+1) times then all the Zk's have been determined. Either way, no
further comparisons are required. Hence at most 2(min+l) equality

tests and min+2 ¢-tests are needed, giving a total which is O(mn).
9. On-line palindromes.

A computation is performed on-line if the ith output symbol is produced
before the i+lst input symbol is read. Let Zi =1 4if XO...Xi is a palindrome
(i.e. if X,...X, = X,...X), and Z, = 0 otherwise. Then

0 i i 0 i

Z2=X 1,1 X

s0 Z can be computed in time 0(n), even on a Turing machine, as outlined in

Sections 3 and 6 using the Morris-Knuth-Pratt algorithm.

Fischer and Stockmeyer [2] present a general procedure for converting
any off-line multiplication algorithm which runs in time T(n) to an on-line
method taking time O0(T(n) log n) when T satisfies T(2n) =2T(n). Their
construction applies to any generalised linear product, so in particular, the
time O(n) method above for computing Z can be converted to an on-line Turing

machine program that runs in time O(n log n).

20

10. Conclusions and open problems.

We have considered string-matching problems with and without a
"don't care' symbol. 1In both cases a naive procedure, based divectly
on the problem definition, takes time proportional to m x n where m, n
are the lengths of the two strings to be matched. The Morris-Kruth-
Pratt algorithm provides a practical and elegant way to compute the
former problem in O(m+n) time, but there seems to be no obvious
extension of their algorithm to the "don't care" case. This is partially
explained by our lower bound result which shows that O(mn) is the best
possible bound unless more information is allowed than the mere results
of comparisons between pairs of symbols. With a further basic test
which explicitly detects the "don't care" symbol, this lower bound
collapses and there is at least the possibility of a faster algorithm.
Provided that the symbol alphabet is finite, we have demonstrated an
algorithm with a running time which is O(m-log n-log log n). The method
is indirect and not of practical value except for very large m and n,
however it shows the feasibility of algorithms which are faster than the

naive procedure for "don't care' matching.

We have not treated at all the superficially similar problem, where
a "don't care" symbol can "match" an arbitrary string of symbols. A

good algorithm for this would have obvious practical applications.

We have only begun to compare and contrast the computational
complexity of generalised linear products for various ® and © . There
are several more, interesting, structures for which the linear product
is a natural operation. A study of algorithms for linear products,
based on the axiomatic properties of ® and &, may provide valuable

insight into why some products are easier than others.

21

References.

(1]

(2]

(31

[4]

(5]

M.J. Fischer and A.R. Meyer. 'Boolean matrix multiplication and
transitive closure", 12th IEEE Symposium on Switching and Automata

Theory (1971), 129-131.

M.J. Fischer and L.J. Stockmeyer. 'Fast on-line integer multipli-

cation'", 5th ACM Symp. on Theory of Computing (1973), 67-72.

P.C. Fischer, A.R. Meyer and A.L. Rosenberg. '"Real-time simulation
of multihead tape units", Jour. Assoc. Comp. Mach. 19, 4 (October
1972), 590-607.

J.H. Morris and V.R. Pratt. "A linear pattern-matching algorithm',

TR-40, Computer Center, Univ. of Calif. Berkeley (June 1970).

A. Schonhage and V. Strassen. 'Schnelle Multiplikation grosser

Zahlen', Computing 7 (1971), 281-292.

BIBLIOGRAPHIC DATA I Report No.g: (37-34671 + 2 3. Recipient's Accession No.

SHEET N00014-70-A-0362-0003 MAC TM-41
4. Title and Subtitle 5. Report Date . Tgsued
String-Matching and Other Products January 1974
6.
7. Author(s) 8. gerforming Organization Rept.
Michael J. Fischer and Michael S. Paterson * MAC TM-41
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
PROJECT MAC; MASSACUSETTS INSTITUTE OF TECHNOLOGY: 1. Contract/Grant Nog: GJ3467
545 Technology Square, Cambridge, Massachusetts 02139 +
N00014-70-A-0362-0003
12. Sponsoring Organization Name and Address 13. Type of Repm{ &tPerjod
. . . : nteri
Office of Naval Research Associate Program Director gzx::tific Re o?t
Department of the Navy Office of Computing Activitiels P
Information Systems Program National Science Foundation |14
Arlington, Va 22217 Washington, D. C. 20550
15. Supplementary Notes
Much of this work was carried out at the University of Warwick with partial
support from the Science Research Council of the U. K.
16. Abstracts
The string-matching problem considered here is to find all occurrences of a
given pattern as a substring of another longer string. When the pattern is simply a
given string of symbols, there is an algorithm due to Morris, Knuth and Pratt which
has a running time proportional to the total length of the pattern and long string
together. This time may be achieved even on a Turing machine, The more difficult
case where either string may have 'don't care" symbols which are deemed to match with
all symbols is also considered. By exploiting the formal similarity of string-
matching with integer multiplication, a new algorithm has been obtained with a
running time which is only slightly worse than linear.
17. Key Words and Document Analysis. 17a. Descriptors
17b. Identifiers /Open-Ended Terms
17¢c. COSATI Field/Group
18. Availability Statement 19. Security Class (This 21. No. of Pages
- . . . Report) 22
Unlimited Distribution UNCLASSIFIED
20. Security Class (This 22, Price |
. . . . Page
Write Project MAC Publications %NCLAS&FIED .
FORM NTI15-35 {REV. 3-72) LSCOMM-DC 14932-P72

THIS FORM MAY BE REPRODUCED

