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Symmetry Codes and Their Invariant Subcodes

Abstract

We define and study the invariant subcodes of the symmetry
codes in order to be able to determine the algebraic properties of
these codes. An infinite family of self-orthogonal rate 1/2 codes
over GF(3), called symmetry codes, were constructed in [3]. A
(29 + 2, q + 1) symmetry code , denoted by C(q), exists whenever q
is an odd prime power = -1, (mod 3). The group of monomial transfor-
mations leaving a symmetry code invariant is denoted by G(q). 1In this
paper we construct two subcodes of C(q) denoted by Rc(q) and Ru(q).
Every vector in Ro(q) is invariant under a monomial transformation Tt
in G(q) of odd order s where s divides (q + 1). Also R“(q) is invariant
under T but not vector-wise. The dimensions of Rc(q) and Ru(q) are de-

termined and relations between these subcodes are given. An isomorphism
2q+2

is constructed between Ro(q) and a subspace of W = V3 8 It is

shown that the image of Rc(q) is a self-orthogonal subspace of W. The
isomorphic images of Rc(17) (under an order 3 monomial) and R0(29)
(under an order 5 monomial) are both demonstrated to be equivalent to

the (12, 6) Golay code.
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Symmetry Codes and Their Invariant Subcodes

by
Dr. Vera Pless
Project MAC

I. Introduction.

This paper defines and studies the invariant subcodes of the
symmetry codes which were originally defined in [3]. The purpose of
this study is the illucidation of properties of these subcodes in such
a manner that these properties can be applied in determining character-
istics of the symmetry code itself. For example, maximum length vec-
tors in C(17) and C(29) can be determined from known maximum length
vectors in the Golay code G(5). The minimum weights are known for the
first five symmetry codes. Estimates of the minimum weights of the
larger symmetry codes have been obtained by locating a vector of weight
21 in Ro(41) (under an order 7 monomial) and a vector of weight 27 in
RU(SB) (under an order 3 monomial). An (n, k) error correcting code
over GF(3) is a k~dimensional subspace of V3n = V. The weight of a
vector x, deﬁoted by w(x), is the number of non-zero components it has.
Symmetry codes are an infinite family of (29 + 2, q + 1) codes over
GF(3) where q is an odd prime power = -1 (mod 3). Each code is given
in terms of a basis [I, Sq] where I is the q x q identity matrix and
Sq is the matrix described below.

We consider the elements of GF(q) to be ordered in some fixed way,
and with this ordering we label the first q + 1 coordinates with the
elements of GF(q)U {*} with « taken as the first coordinate. We label

the second g + 1 coordinates by the same sequence of elements of



GF(q)U{w} with dashes on them to distinguish them from the first q + 1
coordinate labels. When q = p is a prime, for convenience we use the
ordering «,0,1, ... , p-1 (and hence also «', 0', 1' | ... , (p-1)' for

the right side). By definition, Sq is the (@ + 1) x (¢ + 1) matrix

(Si' j,), i, j in GF(q) U {=}, such that sm,’ o 0 and for i' , j' # ',

s, =x (-1}, s,v .1 =1, and s, ., =y (j-i) where yx (0) = 0, X
',oo' ®, 1 1, ]

(a quadratic residue) = 1,x (a non-residue) = -1. We refer to the code

generated by [I, Sq] as C(q).
As a concrete example we write the basis for C(5) below.

@0 1 2 3 4 o' 0' 1' 2' 3' 4

10 0 0 0 0 o 1 1 1 1 1

00 0 0 0 1 1 1 -1 -1 1 0

C(5) is a (12, 6) code and it is equivalent to the Golay code [2].

In [4] it was shown that each symmetry code is self orthogonal. The
transformations on V which preserve the weights of all vectors are the
monomial transformations. A monomial transformation can be viewed as a
permutation of the coordinate indices of the vectors in V (the same per-
mutation for each vector) coupled with multiplying some (or none) of the
coordinates by minus one. The set of monomial transformations which
send all the vectors in C(q) onto vectors in C(q) form a group denoted by

G(q). 1In [4] it was shown that G(q) contains PGLz(q).



In section II of this paper we construct two subcodes of C(q)
denoted by Ro(q) and Ru(q). Every vector in Ro(q) is invariant under a
monomial transformation T in G(q).of odd order s where s divides q + 1.
Alan Ru(q) is invariant underst but not vector-wise invariant. The
dimensions of Ro(q) and Ru(q) are determined and relations between these

subcodes are given. In section III an isomorphism is constructed between
2qt+2

3 s It is shown that the image of

Rc(q) and a subspace of W =1V
RU(q) is a self-orthogonal subspace of W. 1In section IV the isomorphic

images of Ro(17) (o(t) = 3) and Rc(29) (o () = 5), are both demonstrated

to be equivalent to the (12, 6) Golay code.

II. In this section we construct two subcodes of C(q), Rc(q) and Ru(q)
with the following properties. Every vector in Rg(q) is invariant under
a monomial transformationT in G(q) where the order of 5 1is an odd number
s dividing q + 1. Further, Ru(q) is also invariant under but not vector-
wise invariant. The dimensions of Rc and RH are determined, and relations
between them are given.

In {4] it was shown that the mapping sending a monomial transformation
T in G(q) onto the permutation 7 it induces on the coordinate indices is a
homomorphism of a subgroup of G(gq) onto PGLz(q) whose kernel has order 2.
For the rest of this paper T denotes a monomial transformation in G(q) of
odd order s where s divides (q + 1) such that7 is in PGLz(q) and the order

of T equals the order of 7T .

Lemma 1. If s is an odd number dividing (q + 1), then there exists a

transformation T in G(q) or order s. Further ¥ is in PGLZ(q).



Proof: By [l] it is known that PGLz(q) contains a cyclic subgroup of
order (ﬂ;§~l). Hence this subgroup contains an element T of order s
when s is any odd number dividing (q + 1). The monomial T in G(q) which
maps into T by the homomorphism described above is either of order s or
2s. If it is of order s we are finished. If 7 is of order 2s then T2
is of order s, ?2 is also of order s (since s is odd), ?’Zis in PGLq(q)
and the lemma is demonstrated.

The subcodes Rc(q) and Ru(q) are the ranges of two linear transforma-
tions ¢ and p defined for x in C(q) as follows.

X0 = x4+ XT+ ... + XTS-l

Xy = X - XT
Even though ¢ and y are linear transformations, they are not monomial

transformations; they are useful in obtaining information about 7. Let

Kc(q) denote the kernel of ¢ and K (q) the kernel of U
1

Theorem 1. Rc(q), R“(q), Kc(q), Ku(q) are subcodes of C(q) such that
1) Rc(q) is contained in K“(q) and Ru(q) is contained in Kc(q), and
2) T leaves Ru(q) invariant and T leaves every vector in Rc(q)

invariant.

Proof: It is clear that Ro(q), RH(q), Kc(q) are subcodes since they

are vector subspaces contained in C(q). If xo is in Ro(q) then (xg)u =

(x + %174+ ... + XTS-l)“ = (x+ XT+ ... xTS-l) - (xT + XTZ + ...+ XTS-

+ x) = 0 so that Rc(q) is contained in Ku(q). Similarly Ru(q) is

contained in Ko(q). If xo is in Ro(q), then (x0)7 = (X 4+ X7 + ... + xTS—l)T =

s-1

2 .
XT + XT + ... XT + x = X0 and we see that T leaves every vector in

, . 2 .
Rc(q) invariant. Since (xp)T = XT - XT , T leaves R (q) invariant and
p

the theorem is proved.



Remark : When s is divisible by 3, R;(q) is contained in Kc(q).

s
Proof: If y is in Rc(q), y=X0=%X+ XT + o.. + XT . Hence yo =

(x+ %7+ ... st_l)c =8y = 0 (mod 3).

Lemma 2. T is a product of disjoint cycles of length s. Further, if
(il, eee, 1 ) is such an s-cycde for the left coordinate indiees of V, then
s

(il', e is') is sueh an s-alycle for the right coordinate indices of V.

Proof: By their construction [4] the transformations in PGLz(q) act on
the left coordinate indices (and simultaneously on the right coordinate
indices) as transformations on the projective line. Since s is an odd
number which divides q + 1, T is either completely a product of disjoint
cycles of length s or a product of disjoint cycles of length s with ks
fixed points. But a projective transformation with three fixed points
is the identity. Hence T can have at most two fixed points on each side
of coordinate indices. Since s divides q + 1, the number of left coordi-
nate indices (and the number of right coordinate indices), this is only
possible for k = 1 and s = 2. The lemma follows from the fact that s is an
odd number,

We let J be a set of left coordinate indices with the property that

J contains exactly one index from each of these s cycles. Note that

lg] = @D

S

In order to determine the dimension of Rc(q) and R (q) we introduce
v
the following terminology. We let the vectors in the basis [I, Sq] be
th

denoted by (ei, c(ei)) where e, is the iEE row of I and c(ei) is the i—

row of S



+ 1)

Theorem 2. dim Rc(q) = (S_E_- (@t D - 1)

s

and dim R (q) =
u

Proof: Consider the set of (g~§—l) vectors {(ej + ejT + ...+ est s

s=1 .
c(ej) + C(ej)T + ..+ C(ej)T )} for jeJ. Since the order of T equals

the order of T, e # t-ej tt,1=1i=s - 1, so that (ej + e, + o0+

ej Ts-l) # 0 for each j ¢ J. Hence by the definition of J, these vectors

are linearly independent. Clearly they-span Rc(q), and it thus follows
k
Similarly { (ejT - eka+1

kt1
c(ej)T )} for jeJ, k = 0, ... , 8§ = 2 is a basis of Rp(q). Hence dim

@+ (s = 1)
S

q+ 1

that dim R (q) = 3] = ), (C(ej)Tk -

Rp(q) =
Remark: When T has even order (# 2) which divides (ﬂ¥§—l), all the results
of this paper hold when the order of T equals the order of 7. When

the order of T equals twice the order of T, then it is possible that

Theorem 2 does not hold since the basis vectors described above can be

zero.

Corollary 1. Rc(q) = K“(q) and RH(Q) = Kc(q).

Proof: By Theorem 1, Ru(q) is contained in Ko(q) and Rg(q) is contained

in Ku(q). In general, dim Ru(q) + dim Ku(q) =q+ 1 = dim Kc(q) + dim RO(q).

By Theorem 2, dim Rc(q) = (ﬂ¥£—l) (a+ l)és - 1).

and dim R (q) = Hence
K
dim Ru(q) = dim Kc(q) and dim Rc(q) = dim K“(q) and the corollary is demon-

strated.

-l(mod 3), every symmetry

il

Note that since 3 divides (q + 1) for every q

code has a monomial transformation of order 3 leaving it invariant.

II1T. The isomorphic image of Ro'

In this section we construct a linear transformation ¢ from V onto

2q+2
W = V3 s where s is again an odd number dividing q + 1 with the following



properties. The dimension of w(Ro) equals the dimension of Ro’ the
weight of @ (x) for x in Rc is the weight of x divided by s, and ¢(R )
o4

is a self-orthogonal subspace of W.

In order to do this we let J be as in section II, and let J' be the
elements in J with dashes on them. Note that J UJ' contains 2(gtl)
: S

elements. We consider the elements in J to have the same ordering they
had in GF(q)LJ[m}. With this ordering we label the left half of the
coordinate indices in W with the elements from J, and the right half with

the elements from J'. We denote the unit vectors in W by ;j’ j in J

and Zj', j' in J'.

Lemma 3. If xT = x, then the components of x on a cycle of T are either
all zero or all noun-zero. Further, if xT = x and yT = y, then on the
cycles of T on which the components of both x and y are non-zero, the com-
ponents of x equal plus or minus the components of y. |
Proof: Let (il,...,is) be the coordinate indices of a cycle of T. Let

xi. be the ij--t--kl component of x. If xT = x, then all the components of X
othhis cycle are determined by xil and T. 1f yt = y also, then the
components of x on this cycle equal the components of y-on this cycle of Xil =
yil. 1f xi1= -yil the components of x on this cycle are the negatives

of the components of y. Since these are the only possibilities, the lemma

is proved.

2q+2
5
Theorem 3. There is a linear transformation ¢ from V onto W = V,

such that 1) dim ®(R_(q)) = dim R_(q) = 9t 1) | g

2) wipx)) = KL



Proof: We let e  and ei', 1€GF (q) U{w]} denote the unit vectors in V.

We define ® on these unit vectors as follows.

If jeJ, gle) = 'e'j. If idJ, @(e;) = 0.
If j'ed', (p(ej') = 'éj'. If i'¢J',  ¢(e;') = 0.
Define ¢ on the rest of V linearly. Clearly ¢ is a linear transformation

from V onto W.
s-1 s-1
Recall that {(e, + e.T+ ... + e.T , c(e.) + c{e )T+ ... + c(e)T )1,
J J J J J ]

jeJ is a basis of Rc(q). Since ¢ maps these vectors onto linearly inde-
pendent vectors, dim CP(RO(q)) = dim Rc(q) = Sﬂgll by Theorem 2,

Theorem 1 tells us that xT7 = x for all x in Ro(q). By Lemma 3 we
know that the components of x on a cycle of T are either all zero or all
non-zero. Since ¢ projects on precisely one component from each

w(p (o) = L

s -cycle of ?,

It was proven in [4] that C(q) is a self-orthogonal subspace of V so
that Rc(q) is certainly a self~orthogonal subspace of V. Even though ¢
does not preserve the property of self-orthogonality, we can prove that

@(Ro(q)) is a self-orthogonal subspace of W.

Theorem 4. @(Rc(q)) is a self-orthogonal subspace of W.
Proof: Let x énd y be vectors in W such that x = (al,...,a2 2 ) and
]
y = (Bl,...,Bz +2 ). Then the inner product of x and y, denoted by (x,y), is
s

2q+2

S

:E: aiBi (med 3). As is usual, x and y are orthogonal to each other
i=1



if (x,y) = 0. In order to prove Theorem 4 we need to show that (x,y) = 0
for all x,y in @(Rc(q)) (x can also equal y). 1In order to prove this,

we introduce the inner product of x and y over the integers, denoted by

2q+2

1 w

[x,y], where [x,y] equals ) aiBi by definition. We define [x,y] in
1

T

a similar fashion for x and y in V.
The proof of Theorem 4 is divided into two cases. The first case is
3 does not divide s. If x and y are in Rc(q), then x = x, + x. 7+ ... +

1 1
x5l and y =y, + + + 5=t ¢ and in C(q). B
1 and y =y, + y;7 ces YT or some x, and y, in C(q). v

Lemma 3, all the elements in Ro(q) which are not zero on a particular cycle
of T have the same or opposite components on that cycle. Hence [x,y] = rs
where r is the number of s-cycles of T (in both the left and right coordi-
nates) in which both x and y have non-zero components. Since (x,y) =0, 3
divides rs, but by assumption 3 does not divide s so that 3 divides r. By
the definition of ¢, [@(x), @(y)] = r so that (@(x), 9(y)) = 0 for all x,y

in Ro(q). Hence Q(Rc(q)) is self-orthogonal in this situation. We now

3
consider the case that s = 3j, i.e., T 21, We let x and y be in R (q),
c

and we have x = X1 + xlT + e + x1T3J_1, y =y + YlT t ... y1T3J-1 for
X1s ¥y in C(q). Then
3j-1 3j-1 3i-1
N i i N 39—
[x,y] = Z; [Xl’ yiT 1+ ii [XlT,lel] + ... + ZJ [XlT J l,lel]
i=0 i=0 ’ i=0
3j-1 3j-1 3j-1
Y i i i i+l N i +33-1
= ZJ [x1¢ ,ylwl] + /. [XlT »Yq T 1+ ...+ /. [XlTl, ,Tl J 1
i=0 i=0 i=0



-10-

since Ti is a monomial transformation over GF(3). Hence [x,y] = 3j[x1,
3j5-1 i, .
j . d =0,..,3j~1
yl] + 33[x1,y17] + ...+ 3j[x1,le ] Since xl and y, 7 (i j-1)

are all in C(q) which is self-orthogonal, each [x_, lel] is divisible

1
by 3 so that [x,y] = 9r for some r. Each cycle of T is a 3j-cycle, and
by the definition of ¥, ¥ projects onto one coordinate from each 3j-cycle

so that [p(x), ¢(y)] = 3r. Hence ((x), @(y)) = 0, and Q(Rc(q)) is a

self-orthogonal subspace of W for this case also.

IV. Invariant subcodes of C(17) and C(29) are isomorphic to the Golay code.

In this section we apply these ideas to C(17) and C(29). The T for
C(17) has order 3 and the T for C(29) has order 5. We describe these two
monomial transformations explicitly, and exhibit bases for Ro(17) and
P(R_(17)).

In order to exhibit these monomial transformations we introduce the
following c;nvention. We let QYIT times a column index mean that we
multiply the column by %x(i) where X(i) = 1 for i a quadratic residue, and
¥(1) = -1 for i a non-residue. This convention is used in order to avoid
confusion with negatives in GF(17).

We can represent T as a monomial transformation on the columns of

V as follows.

) =0, T8) == (1) = XD (£5), 14w, 16

') =0, T(16) == r(1') = XAFD) (22, 11 4, 16,

The generators of the subgroup of G(17) which is isomorphic to PGL2(17)

are given in (4, p. 131]. It is easy to verify that 1 is a product of two



-11-

of these generators so that T is in G(17). A straightforward check shows
that 7 has order 3. If we rearrange the columns of V to correspond to

the cycles of ?, the following is a basis of Rc(17)'

016 1815 2117 3410 5149 61213 o' 0 16 1'8' 15 2' 11

11 1 ] -1 -1 -1 1 -1
111 ) 11 101

1-11 11 1011111

11 -1 1 1 1 [-1-1-1]1 -1 -1 -1 1 1 1
1-1-1 21 -1 -1 | -1-1-1 01 11 a1 ]
1-1-10-1-1-111 11 41 11 -1]e1 1 1l

o34t 10t 514t 9t 6f 12t 13!
L1 b1 vt 1]
-1 -1 1 !-1 1 1, 1-%y -1

From this we get the following basis for @(R0(17)) by choosing
J = {»,1,2,3,5,6}.

© 1 2 3 5 6 «' 1'2' 3" 5'6'
1 -1 1 1 -1 -1
1 11 -1-1 1

1 1 11 11
1 1-11 -1 -1
1 -1 -11 11
1 -1 1 -1 1 -1

It is known [4] that the minimum weight of C(17) is 18, so that the
minimum weight of @(Ro(l7)) is 6. It follows from the theorem in [2]
that @(RO(17)) is equivalent to the Golay (12, 6) code over GF(3).

A monomial transformation T of order 5 in G(29) is given by the

following.

@) = 0, T(26) = w; T() = x(#5) (£2), i 4=, 2,

T(@') = 0", T(24') ="' 7v(@{') = x(i'+5)(f%§§), it # et 240,

As in the previous case it can be verified that 7 is a product of
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