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ABSTRACT

A Turing machine multiplies binary integers on-Iline if it
receives its inputs low-order digits first and produces the
Jth digit of the product before reading in the (j+1)st digits
of the two inputs. We present a general method for converting
any off-line multiplication algorithm which forms the product
of two n-digit binary numbers in time F(n) into an on-line method
which uses time only O(F(n) log n), assuming that 7 is monotone
and satisfies n < F(n) < F(2n)/2 < kF(n) for some constant k. Applying
this technique to the fast multiplication algorithm of Schdnhage
and Strassen gives an upper bound of 0(n (log n)2 loglog n) for
on-line multiplication of integers. A refinement of the technique
yields an optimal method for on-line multiplication by certain
sparse integers. Other applications are to the on-line computa-
tion of products of polynomials, recognition of palindromes, and
multiplication by a constant.
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1., Introduction

The problem of finding the product of two integers expressed, say,
in binary notation is basic to the study of computation, yet the number of
computational steps required is still not well understood. The classical
algorithm taught in school  uses a number of steps that grows as
n? to multiply n-digit numbers. More sophisticated algorithms have
considerably reduced this rate of growth; the best algorithm known, due
to Schonhage and Strassen [8], requires only O(n log n loglog n) computa-
tional steps. This bound can be achieved even on a multitape Turing
machine, the model we investigate in this paper. However, no interesting
lower bounds are known. It is ﬁot even known if the number of steps must
grow faster than linearly in the length of the input.

The on-line restriction constrains the manner in which a computation
is carried out. Informally, a function is computed on-line if the input
symbols are read sequentially, the output is produced sequentially, and
the machine produces the jth output symbol before reading the j+lSt input
symbol(s). This is in contrast to off-line algorithms in which the machine
has access to all input symbols before any output need be produced. The
on-line model is a natural paradigm for interactive computing and process
control where the future inputs depend in an unpredictable way on the
current outputs. Our interest in the on-line restriction stems partially
from such practical considerations and partially from the mathematical
tractability of on-line computation which enables some nontrivial lower

bounds to be obtained.



The particular on~line problem of integer multiplication is motivated
by a deep result due to Cook and Aanderaa [l] and strengthened by Paterson,
M. Fischer and Meyer [7] which says that for any of a broad class of machine
models, a machine 4ﬂ to perform on-line integer multiplication of n-digit
numbers requires more than ¢n log n/(loglog #n) steps for all sufficiently
large n, where ¢ > 0 is a constant depending only on 47. In the case of
a one—dimensiohal multitape Turing machine, the bound becomes en log n.
Unfortunately, the methods in [1] and [7] do not apply if the computation
is done off-line.

It is not immediately obvious that on-line multiplication is even
possible, for the usual multiplication algorithms do not obey the on-line
restriction. The reader can easily convince himself that on-line multipli-
cation can in fact be done, but the best on-line algorithm previously known
requires time O(nz), leaving a considerable gap between the upper and lower
bounds. The results given here significantly reduce this gap.

Our main result is given as an off-line to on-line conversion method.
That is, given a Turing machine OFF which computes integer multiplication
off-line, we describe a Turing machine ONLINE which computes integer multi-
plication on-line using OFF as a subroutine. We will hénceforth assume
that all Turing machines mentioned have one-dimensional tapes.

Theorem 1. Let OFF be a multitape Turing machine which performs off-
line integer multiplication. Let F(n) bound the time required by OFF to
multiply n~digit integers. Assume ¥ is monotone and n < F(n) < F(2n)/2
< kF(n) for some constant k¥ = 1. Then there is a multitape Turing machine
ONLINE which performs integer multiplication, obeys the on-line restriction,

and produces the nth output digit in O(F(n) log n) computational steps.



We remark that the constant coefficient implicit in the "0"-notation
can be made arbitrarily small using linear speedup for Turing machines [4]
with a consequent increase in the sizes of the tape alphabets and finite
control.

The following corollary is immediate using the method of Schonhage and
Strassen referred to earlier.

Corollary 2. There is a multitape Turing machine which performs on-
line integer multiplication and produces the nth output digit in
0(n (log n)? loglog n) steps.

There are two senses in which Theorem 1 can be said to be optimal.
First of all, the ¢n log n lower bound of [7] for on-line multiplication
by multitape Turing machines holds even if the machine is augmented with
a special multiply instruction which performs off-line integer multipli-
cation in real time. A real time computation produces one output digit at
each step and hence multiplies n~digit integers within time 2n. The proof
of Theorem 1 extends to these machines, resulting in a time O(n log »n)
method. Thus, Theorem 1 is the best possible result for a general off-
line to on-line multiplication conversion method on these augmented Turing
machines and strongly suggests the same for ordinary multitape Turing machines
as well,

Another indication of the optimality of our basic conversion method
is shown in Section 3 where we obtain a time O(n log n) on-line algorithm
for multiplying an arbitrary integer x by a particular number Kn’ where
n is the length of x. Time en log n is required for this problem as well [7].

The definition of on-line computation is given in [1] and [5], and we
repeat it here, defining also the concept of half-line computation which

simplifies the description of the conversion method. Informally, a machine



computes a two argument function half-line if one entire argument is
available off-line and the other is read subject to the on-line restriction.
Definition. Let 47 be a machine which computes a function f on sequences,
* * * . .
where f: T X I -+ A, I and A are sets. 47 is said to compute f on-line if

for all input sequences a = q e, b = bobl"'bn (ai’ bj € I) and

0%1

corresponding outputs f(a,b) = CeC1e %, (Oj € b)), 4% produces % before

reading either of %4y OF bk+l’ 0 <k <n-1. We assume here also that the

(b

410

inputs are read in sequence, so for all k, a, (bk) is read before G

47 computes f half-line (with respect to the first argument) if 47

produces cy, before reading « 0 <k £n-1. a will be referred to as the

k+1?

on-line argument and b as the off-line argument of the half-line product.

2. The Off-Line to On-Line Conversion

2.1. Informal Description.

We first give a general description of an on-line multiplication algorithm
ONLINE, independent of the particular machine model on which it is to be pro-
grammed, and omitting many of the bookkeeping and data management details.
Section 2.2 gives the construction in detail.

The definition of ONLINE is in terms of two auxiliary procedures ON and
HALF, each of which uses a given off-line multiplication procedure OFF.

ON(n) assumes that the first n/2 digits of the product of two n-digit
integer inputs have already been computed by prior calls to ON. It produces

the next n/2 digits on-line as the corresponding inputs are being read. It



then computes and stores the #n high-order digits of the product in preparation
for a subsequent call to ON(2n).

HALF(n) forms the product of two m-digit integer inputs, producing the
n low-order digits of the product half-line as the on-line argument is being
read. It then computes and stores the additional »n high-order digits.

Let a, b be two n-digit binary* integers, where n is a power of 2, and write

a=a -271/2 +a.,, b =D _zn/2

1 0’ 1 + bo where as a bl, bO are n/2-digit.

O’
/2

e, are n/2-digit and

Suppose ab = ¢ and ¢ = ¢ 2+ e 2 0 °1

2 1 + 00’ where ¢

¢y is n-digit.

1. q is the n/2 low-order digits of ao-bo. Let dl denote the n/2

high-order digits of this product.

2. ¢ is the n/2 low-order digits of dl + ao-bl + al-bo. Let d2

denote the (roughly) n/2 high-order digits of this expression.

3. = d2 + a,-b. .

) 11
These definitions are illustrated in Figure 1.

All that need be done is to perform the four n/2-digit multipli-
cations ai-bj and the indicated additions in such a way as not to violate

the on-line or half-line restrictions. Both procedures are of the same

general form, differing only in input-output arrangements.
To ON(n):

1. Compute dl + ao'bl + a; bo as a, and bl are being read by running

1
two HALF(n/2) procedures in parallel, performing additions as the

output digits are produced. ays bl are the on-line arguments and

aO, bO the off-line arguments of these two half-line products.

2. After al and bl have been read, compute dz + al'bl by one use of

OFF and additions, and store the result.

*
We assume base 2 numbers for convenience, Everything generalizes

trivially to an arbitrary base.



Suppose now that a and b are to be multiplied half-line. Let a be the

on-line and b the off-line argument. Assume the length of b is < n.

To HALF(n):
Ifn=1,
1. Read a and print the digit ab.
else

2. Compute ao'bo half-line by HALF(n/2) as a, is being read.

0

3. After aO has been read, compute ao-bl off-line by using OFF,

and store these digits.

4. Compute al'bo half-line by HALF(n/2) as the digits of a, are

1
read, forming the digits of dl + ao'b1 + al‘bo as the outputs

are produced.

5. Compute d2 + al'bl off-line by using OFF and additions.

The top-level procedure ONLINE multiplies two numbers on-line without
needing to know their lengths in advance. It operates by calling ONV(n) with

7 equal to successive powers of 2.

To ONLINE:
1. Read the first digit from each input and compute the first product
digit.
2. n <« 2.
3. ON(n).

4., n <~ 2n.

5. Go to 3.

Let F(n) denote the number of steps required by OFF to multiply n-digit
numbers, and assume F satisfies the conditions of Theorem 1. Let N(n) and
H(n) denote the number of steps required by ON(n) and HALF(n) respectively,

for n a power of 2. Then the following relations hold:



N({n)

iIn

IA

H(n)

The terms cln, c

2H(n/2) + F(n/2) + NG (1)
czn if n = 1; (2)
2H(n/2) + 2F(n/2) + eyn ifn =2 2.

n, where ¢, and ¢, are constants, bound the times required

27 1 2

for additions and overhead. In the next section we suggest a Turing machine

implementation in which these overheads are indeed bounded by on).

The relation (2) solves as:

H(n)

IA

since n < F(n) <

is zero when the

log n

2 Zi-F(n/Zi) + czn(l + log n) = 0(F(n) log n) (3)
=1

F(2n)/2 for all n a power of 2. (We assume the summation

upper limit log n = 0.) From (1) and (3), we immediately

get V(n) = 0(F(n) log n).

Let T(n) be

for arbitrary 7=,

T(n) <

for constants 03

the time when the n'® output digit is produced by ONLINE
and let » = [log n]. Then
r

) N(Zi) + c
=1

’ r =
3n < 03 rF(27) + c3n O(F(n) log n)

and 03’ by the assumptions on F.

2.2 Detailed Description.

The descriptions of the procedures ONLINE, ON, HALF and OFF in Section

2.1 leave somewhat vague both the order in which the computations are to be

performed and the handling of the arguments to the functions. In this

section, we define the routines more precisely to make clear that they are

correct and that

the on-line restriction is not violated. The implementation

of these procedures on a multitape Turing machine to achieve the time bounds

of Section 2.1 is straightforward.



The main procedure, ONVLINE, takes two on-line arguments 4 and B and
produces the product AB on-line. The inputs and outputs may be thought of
as Streams, that is, they are read and written sequentially, low-order
digits first. READ(X) reads and returns the next digit of the on-line
argument X € {4, B}; PRINT(8) causes g to be produced as the next digit of

output, s € {0, 1}.

The other procedures take three kinds of arguments. An on-line
argument just names an input stream. An off-line argument is
a binary string. A procedural argument is another procedure which may be
passed to a subprocedure or executed directly by the called procedure. 1In
the descriptions that follow, A and B denote on-line arguments, P denotes
a procedural argument, and lower case letters are used for off-line arguments
and variables.

We first present the procedures and then_prove them correct. The
assertions of Lemma 3 describe exactly what OV and HALF are supposed to do,
and Lemma 4 describes the effect of ONLINE.

OFF(x, y) is the assumed off-line multiplication procedure with running
time F(n) of Theorem 1. SPLIT(x, n) is a function which returns a pair of

n

n —
natural numbers (xl, xo) such that xl-Z + Ly = & and g < 2. CAT(xl, L n)

is the inverse of SPLIT and returns xl'Zn + T (When o is a length »n
number, this just performs concatenation of binary strings.) Since our
numbers are represented in binary notation, it should be clear that SPLIT

and CAT both run in time proportional to the length of x.
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2. Compute in parallel, starting with (i) and switching alternately
between (i) and (ii) every time a READ instruction is about to be
executed:

(1) (p, al) < HALF(n/2, d, bo, A, (M . t <« x));

(i1) (g, bl) <~ HALF(n/2, 0, a., B, (Ax . (e, 8) <« SPLIT(c+ x + ¢, 1);

O’
PRINT(3)));

3. d2 “<ec+p+q;

< d2 + OFF(al, b

5. Return (02, as bl).

Step 2 of this algorithm requires a little explanation. Statements
2(i) and 2(ii) each have side-effects: 2(i) affects the value of the
variable t, and 2(ii) affects the value of the variable ¢ and causes
printing. Also, both statements cause input to be read, 2(i) from stream
A and 2(ii) from stream B. To insure that the on-line restriction is not
violated and that the correct results are produced (since 2(ii) depends on
2(i)), the statements must be executed in parallel, subject to the synchro-
nization constraint that the jth execution of the procedural argument of
2(i) precedes the jth execution of the procedural argument of 2(ii) which

st READ from either input stream. The method of

in turn precedes the (j+1)
execution proposed in Step 2 guarantees this sequencing, for each of 2(i)

and 2(ii) causes precisely one evaluation of its procedural argument

between successive calls on READ. (Cf. Lemma 3, part B.4.)



To HALF(n,
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d, b, A4, P):

If n = 1, then

1.

2.

else

10.

11.

12.

a < READ(4);

(¢, 8) « SPLIT(d + ab, 1);
Call P(s);

Return (e, a);

(d,, d.) < SPLIT(d, n/2);

1’70

(b, by) < SPLIT(b, n/2);

l!

(p, ay) « HALF(n/2, dy, by, A, P);

O’

(dz’, dl') +~ SPLIT(p + dl + OFF(aO, bl), nf2);

(g, al) < HALF(n/2, d,', bo, A, P);
e, «q+ dz’ + OFF(al, bl);
a <--CAT(al, s nf2);

Return (02, a) .

Lemma 3. Let »n be a power of 2.

A. Assume n > 2 and let d, a

(cz, aps bl)

0

ON(n, d, 2y

¢, as output. Then:

A.l.

A.2.

A.3.

A.4.

A.5,

ON reads n/2 digits from 4; these digits are a.

ON reads n/2 digits from B; these digits are bl.

m=nf2.

ON obeys the on-line restriction.

n/2
02 2 + cl

_ i ) . L2
=d+ a, bl + ay bo + a; bl 2 .

and bo be numbers of length < n/2.

Suppose

b., 4, B), and ON produces the m-digit number
0 g
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B. Let d and » be numbers of length < n. Suppose (zl, a) =
HALF(n, d, b, A, P), and HALF calls P r times with the successive digits

of z

o s arguments. Then:

B.1l. HALF reads n digits from A; these digits are a.
B.2. »r=m.

B.3. HALF produces no output (except as a possible result of calls
on P).

B.4. For every j, 1 < j < mn, HALF calls P for the jth time before
. . .8t L. . . .th
reading the J+1 digit of 4 and after reading the J .

7
B.5. 2, 27+ 2y = d+ ab.

Proof. The proof is by induction on 7.

For n 1, part A is vacuously true. Part B follows by inspection of
the case # = 1 in the definition of HALF.

Now, let n be a power of 2, and suppose the statement of Lemma 3 is
true for every n' < n which is also a power of 2. Statements A.l - A3
follow from the definition of ON and from B.l1 - B.3 for n' = n/2. A.4
follows from B.3 and B.4 for n' = n/2 and from the remarks following the
definition of OV about the sequencing in Step 2. A.5 follows by direct
calculation from B.5 for n' = n/2 and the following:

Claim: Let Py be the sequence of n/2 digits with which the procedural argu-
ment of Step 2(i) of ON is successively called, regarded as a binary integer,
low-order digit first. Let 4 be the corresponding sequence for 2(ii). Let
ey be the sequence of digits printed by Step 2 of ON, and let ¢ be the value

of the variable by the same name at the completion of Step 2. Then

c'Zn/2 +teq = Py + ‘s We leave the proof of this claim to the reader.
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B.1 and B.2 follow easily by induction, and B.3 follows by inspection,
since HALF contains no PRINT statements. B.4 just says READs alternate with
calls on P. This is again obvious since the only READ occurs in Step 1 of
HALF and the only call on P is in Step 3. Finally, B.5 follows by induction

using B.5 for n' = n/2 and direct calculation. [

We now define the main on-~line multiplication procedure, ONLINE.
To ONLINE(A, B):

1. a, < READ(4); bo < READ(B); PRINT(aO'bO);

3. (cz, ajs bl) <~ ON(n, d, 4> bo, A, B);

4. (n, d, a bo) <« (2n, e CAT(al, 2> n/2), CAT(bl, bo, n/2));

0’ 2?

5. Go to 3.

Lemma 4. When Step 3 is about to be executed for the jth time, let
¢ be the m-digit number which has been printed so far. Then:

1. n = ZJ.

2. m=mn/2.

3. Exactly n/2 digits have been read from each of 4 and B. These

digits are a, and bO respectively.

0
4. The on-line restriction has not yet been violated.
n/2

/ +

CO.

5. a0°b0 = d-2
Proof. The proof is by induction on J. By inspection of the program
ONLINE, the lemma holds for J = 1. The fact that it holds for j > 1 follows

readily by direct calculation using the truth of the lemma for 7 - 1 and

Lemma 3, part A. [J
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A few remarks are in order concerning the Turing machine implementation
of these procedures. We may assume that the Turing machine has one work tape
for each variable named in any of the programs. The recursive procedure
calls are handled in the usual way using one additional tape as a pushdown
store. At procedure entry, the old values of any local variables are saved
on the pushdown store and the local variables are initialized; at procedure
exit, the old values of the variables are restored.

The only possible difficulty is with the implementation of Step 2 of
ON. However, OV itself is not recursive, so we simply make two independent
copies of the Turing machine which implements HALF and run them in parallel

as required.

3. Sparse Numbers

Call a natural number k-sparse if its binary representation contains
at most kX one-bits. The purpose of this section is to show that the time
bound of Corollary 2 for on-line multiplication can be improved if either
of the two multiplicands is sufficiently sparse. 1In particular, when one
of the numbers is (log n)-sparse, the time reduces to just O0(n log #).
Paterson, M. Fischer and Meyer [7] show that any Turing machine 47 for
on-line multiplication of a length # number by the particular (log #n)-

sparse constant

requires time c¢n log n, where ¢ depends only on 47. Thus, both bounds are
optimal to within constant factors.

Let ones(b) denote the number of ones 1in the binary representation
of b. We begin by describing an off-line procedure, OFFSPARSE(a, b), which

forms the product of two length » numbers g and b by repeatedly shifting
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and adding b into an accumulator. More precisely, let (an—l"'a0)2 be a

binary representation of a, and let 7 = { 7 | a. = 1 }. Then g = z 21,
zel

so ab = Z b'2$. The last summation has |I| = ones(a) terms, each of

zel
length at most 2n, so it can be computed on a Turing machine in time at
most cen(ones{a) + 1) for some constant ¢ > 0.

OFFSPARSE(a, b) always computes the correct answer but is fast
(relative to other multiplication algorithms) only when q is sparse.
Similarly, OFFSPARSE(b, a) is fast only when b is sparse. Both of these
methods take time 0(n2) in the worst case. By running them in parallel with
any other (fast) multiplication procedure, wé obtain a method whose running
time is proportional to the minimum of the times for any of the three
procedures, yielding:

Lemma 5. Let OFF be a multitape Turing machine which performs off-line
integer multiplication of length n numbers within time F(n), where F satisfies
the conditions of Theorem 1. Let G(n) = F(n)/n. Then there is another
multitape Turing machine OFFSP which performs off-line multiplication of two
length » numbers g and » in time at most

cln(min{ones(a), ones(b), Gn)} + 1),

where 1 > 0 is a constant.

Theorem 6. Let OFF, F(n) and G(n) be as in Lemma 5. Then there is a
multitape Turing machine ONLINESP which performs integer multiplication,
obeys the on-line restriction, and produces the nth output digit (n = 2) in

c(n min{ones(a(n)), ones(b(n)), (log n)G(n)} + n log n)
computational steps, where a(n) and b(n) are the low-order n digits of the

arguments, and ¢ > 0 is a constant.
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Proof. The new on-line procedure is nearly identical to the one
described in Section 2. The only difference lies in the operation of the
off-line subprocedure.

Let OFFSP be the off-line multiplication procedure of Lemma 5. Let
ONSP, HALFSP, and ONLINESP be procedures defined exactly as ON, HALF, and
ONLINE are in Section 2, except that OFFSP is used as the off-line
multiplication subprocedure instead of OFF. Let NS(n, p, q), HS(n, p, q),
and FS(n, p, q) be the maximum number of steps required by ONSP(n), HALFSP(n),
and OFFSP respectively when multiplying n-digit integers a and b, with
p 2 ones(a), q = ones(b), and n equal to a power of 2. (Note that
FS(n, p, qQ < cln(min{p, g, Gm)} + 1) by Lemma 5.) For definiteness,
assume a is the on-line argument for the half-line computation. For
arbitrary »n, let TS(n, p, q) be the time when the nth output digit is
produced by ONLINESP, assuming that the first n digits of the two inputs
have p and ¢ ones respectively.

Split the n-digit integers a and b as a = al'2n/2 + a, and b = bl-2n/2 + bo,

n/2
Ay bo < 2

the recursive definitions of ONSP(n), HALFSP(n) and ONLINESP, and

, and let p; = ones(ai) and q; = ones(bi) for 7 =1, 2. By

maximizing over all such n-digit integers a and b, the following

relations hold.

NS(n, p, q) < max{HS(n/2, Py qO) + HS(n/2, qq> po) (4)
+ FS(n/2, Py» ql) + eyn
| P+ Py =Py qq+aqy = ks

HS(n, p, q) < max{HS(n/2, Pg» qO) + FS(n/2, Pgs ql) (5)

+ HS(n/2, Py» qo) + FS(n/2, Pys ql) + g

| g+ Py =Ps ag *+ay = als
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[log n ;
TS(n, p, q) < ) NS(27, p, q) + 0(n). (6)
=1

Lemma 7. There is a constant 04 such that

AHS(n, p, q) < c.n min{p, g, (log n)*G(n)} + ¢,n log n

1 4
for all n > 2 with n equal to a power of 2 and all p, g = O.
Proof. Proof is by induction on J, where n = 27, The base J = 1 is

immediate by choosing ¢, large enough.

4

The induction step follows from Lemma 5 and relations (4) and (5) by

a straightforward calculation. Choose Cy L 1 + Cyq- Assume the bound of

Lemma 7 holds for HS(n/2, p, q) where p, g 2 0 are arbitrary. Then
H5S(n, p, q) < max{cl(n/Z)min{pO, s (log n/2)-G(n/2)} + cA(n/Z) log n/2

+ cl(n/Z)(min{pO, 91> Gm/2)} + 1)

+ cl(n/Z)min{pl, 90 (log n/2)-G(n/2)} +’c4(n/2) log n/2

+ cl(n/2)(min{pl, qq» G(n/2)} + 1)

+cqn | py+pg =Py qy +ay = ql
Note that by distributivity of + over min, it follows that for all integers

_/z/ . : i <
Po» P1» 9o 971> 2o 2o 2(m1n{p0, 9> zo} + mln{po, qq> zl} + mln{pl, A9 oo}
+ min{pl, qqs zl}) < min{po +pys qg tqps Byt zl}. Therefore,
HS(n, p, q) < cqn min{p, g, (log(n/2) + 1)-G(n/2)}

+ ¢,n log n + (cl + e, - ¢, )n.

4 3 4

Since F(n) = 2F(n/2), then G(n) =2 G(n/2), so the induction step is proved. [J

It is now easy to verify that there are constants ¢ and ¢’ such that
NS, py q) < ¢'"(n min{p, g, (log n)-G(n)} + n log n)

for all n» =2 2 and n equal to a power of 2; and
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TS(n, py, q) < c¢(n min{p, g, (log n)*G(n)} + n log n)
for all n > 2. By the discussion of Section 2.2, it is clear that this
on-line procedure can be implemented on a Turing machine whose running time

satisfies conditions (4) - (6). This completes the proof of Theorem 6. [J

Corollary 8. There is a multitape Turing machine which performs
on-line integer multiplication within time
e(n min{ones(a(n)), ones(b(n)), (log n)2 loglog n} + n log n)
where a(n) and b(n) are the first low-order »n bits of the two inputs.
An interesting open question is whether or not the n log n overhead

term can be eliminated from Theorem 6.

4. OQOther Applications

4.1. Generalized Linear Products.

The off-line to on-line conversion can be applied to other computations
which can be loosely described as convolutional in nature. The generalized

linear products defined in [3] are one such class. Let g = (ao, Apseees am)

and b = (bys by» ..., b ) be two vectors. The linear product with respect

O’ l’

), where
0

. . ® .
to ® and ®, written g ® b, is a vector ¢ = (co, Crs wees Oy

e = EE) a ® b

i+i=k J

k=0, ..., mn. For this to be meaningful, a;s bj e D, ¢ € E for some

sets U and F, and ® and ® are functions,
® : Dx D-»>F,

® : F x E > F, & associative.
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The only property needed by the on-line conversion is that the product

of two length »n vectors 4 and B be obtainable by additions (®) from the

® ® ® ® _
four products AOBO’ AOBl, AlBO, and AlBl’ where AO = (aO""’an/Z—l)’

= = . B, = e sb .
Al (an/z""’an—l)’ BO (bO’ ’bn/Z—l)’ and 1 (bn/Z’ i n—l)
Generalized linear products clearly have this property, and in fact the
on-line conversion is even simpler than for integer multiplication since

there are no carries.

The result thus obtained is that a generalized linear product of two
length n vectors can be computed on-line with at most O(OP(n) log n) uses of
the basic operations ® and ®, where OP(#) bounds the number of basic opera-
tions needed to compute off-line the linear product of two length n vectors,
providing that OP is monotone and satisfies n < OP(n) < OP(2n)/2 < k OP(n)

for some constant X.

Polynomial multiplication is an example of a linear product.

Since polynomials of degree n with complex coefficients can be multiplied
off-line using the Fast Fourier Transform [2] with only O(n log n) complex
additions and multiplications, the corresponding on-line problem can be
done with at most 0(n (log 7)2) such scalar operations.

In case D and F are finite, the basic operations ® and @ can be computed
in a constant amount of time on a Turing machine, and Theorem 1 then applies.
A straightforward application is to the problem of on-line multiplication of
polynomials with coefficients from some finite field.

Another application yields an O(n log #) method for on-line recognition

of palindromes [3]. The on-line conversion is applied to a subroutine for

performing the linear product off-line in time O(n) which in turn uses
as a subroutine the pattern matching algorithm of Morris and Pratt [6].

Details can be found in [3].
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4.2. Multiplication by a Constant.

One further problem we consider is that of on-line multiplication by a
constant. Viewed as a function of two arguments, this is an example of a
half-line computation. All the digits of the constant multiplier are
available off-line. The digits of the multiplicand are read subject to
the on-line restriction. The product can clearly be computed in time pro-
portional to n, the length of the on-line input, where the constant of
proportionality may depend on the length of the off-line input. Our
methods give a constant of proportionality smaller than would be obtained
using classical methods.

Let y be a k-bit constant (the off-line argument), and let x be an
n-bit multiplicand (the on-line argument). We divide the bits of x into
k-bit blocks and consider each block to represent a single digit of the
base b = 2k representation of x. y can be regarded as a single digit in
base b, and we form the product xy in the straightforward way by multiplying
the single digit y by the successive base b digits of x, and adding in the
carries.

The above method is on-line with respect to base b digits, for the
ith block of k bits (the ith digit base b) is produced before any bits of
the 7l+lSt block are read. To make the method on-line with respect to the
binary numbers, we need to specify how to compute the values u + v and
y+u on-line, where u and v are arbitrary k-bit numbers. The former may be
computed by the ordinary method for addition and requires time O(k). To
do the latter on a Turing machine, even when we are allowed to do arbitrary
preprocessing on y and Xk, we know of no way better than to use the on-line
algorithm of Corollary 2, which requires time 0(k (log k)2 loglog k). This

has the property that when n < k, the time drops to O(n (log n)? loglog n).
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x contains [n/k] blocks of at most Xk bits each, so we have proved:

Theorem 9. There exists a*Tw

_'fhine‘, and a constant ¢ such that
for each k 2 4 and every n, 1f = is a nﬁabpr of length n and y is a number

of 1engsh k,; uhanjr _'W uy“mﬁ-lini»ﬂtﬁﬂmhﬁﬁ z‘”«d;d fiifte 1o

AV : Vol

» sigrnd Z e

'L‘he mthom ave: sm had M ?a&ﬁfcu%&? mer %or ‘séveral

vy cipeth, L atwth emdolunie

T wfsél
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Figure 1. Recursively computed multiplication.
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