MIT/LCS/TM-46

COMBINING DIMENSIONALITY AND RATE
OF GROWTH ARGUMENTS FOR
ESTABLISHING LOWER BOUNDS ON
THE NUMBER OF MULTIPLICATIONS

Zvi M. Kedem

June 1974

This blank page was inserted to preserve pagination.

TM-4¢

Combining Dimensionality and Rate of,@ggg&%ﬁgwﬁs for Establishing .

C *
Lower Bounds on the Number of Multiplications

Zvi M. Kedem

A

e I Z

P A I T O T T [P NIEN
Fiver DO L LA sy T LI

e e e % e ¥ iy g N T o] Powl ey Gt
N ST RSL RO BEDLINNUT LoD TET

RENE N0

Sl ol EaTul S AL I e I A A

i g e d e oy~ o T LAY skt er e
S T Tl S A A SRR SR T

June 1974

PR P i PO P
Pasd Seg B Damn SR I

This research was supported by.tha Niviowal Buisise Foyslasius ficpect::

under grant number P4P3488~00 and in part

‘under grant owmber GI34671.

* A preliminary version of this report W‘t &3 ProcesBiAlie of - the ' -
Sixth Annual Symposium on the Theory of Computing (1974).

ABSTRACT

A new method for establishing lower bounds on the
number of multiplications and divisions required to compute
rational functions is described. The method is based on
combining two known methods, dimensionality and rate of
growth. The method is applied to several problems and

new lower bounds are obtained.

key words and phrases: algebraic operations, analysis

of algorithms, computational complexity, dimensionality,
lower bounds, multiplications, optimality, polynomials,

rate of growth, rational functions.

CR categories: 5.12, 5.25.

Combining Dimensionality and Rate of Growth Arguments for

Establishing Lower EBounds on the MNumber of Multiplications

1. Introduction

In this paper we describe a new method for establishing
lower bounds on the number of multiplications and divisions
required to compute rational functions. If F is a field and
8ys..4,a are algebraically independent (indeterminates) over
F then, as usual, F(al,...,an) is the field of the rational
functions of ays...,a, oOvVer F. For various F anéd H C T we

shall consider algorithms over (F(al,...,an), HU{al,...,an}),

namely algorithms computing elements of F(al,...,an) by
applving chains of rational operations to elements of
HLHal,...,an}.

The problem of establishing lower bounds on the number

of operations was tackled first using dimensionality arguments.

Mamely, describing the method informally, it was proved that
algorithms computing certain sets of rational functions had
to use at least one multiplication or division to introduce
one or several out of many of the indeterminates appearing

in the functions beina computed. Using these arguments no
lower bound greater than the number of the indeterminates
appearing in the functions can be established. These methods
were used first for polynomials by Ostrowski [4] and Pan [5]

and later by Winograd [9] and [10] for sets of rational

functions which are linear in some of the indeterminates (note
that multivariate polynomials are linear in their coefficients).
Finally, Strassen [7] used these arguments for sets of arbi-
trary rational functions. The methods were mostly based on
dimensionality arguments in linear algebra. A typical result,
due to Pan, states that at least n multiplications and
n .
i

divisions are required to compute a; x over a suitable

i=1
domain.

Another approach, due to Strassen [8],used algebraic
geometry to establish rate of growth arguments. This approach
allowed Strassen to prove amonqg other things that the
computation of the set {glazll < j < n} requires at least

i=

n log2 % multiplications and divisions.

Fur the case of the computation of bilinear forms

special methods for estahlishing lower bounds were developed
by, among others, Hopcroft and Musinski [3] and Brockett and
Dobkin [2].

our method will allow us, in certain cases, to combine
dimensionality and rate of growth arguments, so as to find
lower bounds which could not be obtained using the previous

methods. Among other results we obtain lower bounds on the

.4 . . ~ n
number of multiplications recquired to compute alx,azx‘,...,anx
a(i)

n
or the polynomial } a ;x for 0 < a(l) <...< a(n).

i=1

2. Previous results and other preliminaries

Definition 1. Let I be a field and let D & E. An

algorithm of length N over (E,D) is a sequence of instructions
A of length N, each instruction of one of the following
tvpes:

(1) A [il: input d;

A [31 w Ak]

(2) A [i]:

where i,j,k € {1,...,N}, d €D, w € {+,-,%x,:} and for
i,j,k appearing in (2) j,k < i. We shall sometimes say in
case (2) that instruction Ali]l (with a label i) refers to
instructions A[§] and Alk] .

With every A a partial function Eval (A) : (1,...,N)— E
is associated and defined inductively by

If Afi]:

input d; then Eval (A) [i] é d.

If Alil): Al§) w ALK] ; then if Eval (AXjl,

Eval (A) [k] , Eval (A) [j] w Eval (A) [k] : are defined,
then Eval (A) [i] 2 Eval (A) [j] w Eval (A) [k].

In other cases Eval (A) [i] is not defined. From here on
we shall consider only algorithms A for which Eval (A)

is total, as there will be no interest in discugsing the more

general case .

For a subsequence B of A, we define
Comp (B) # {Eval (A) (i1 | Ali1&B }. ve shall

also say that B computes {el,...,em} (respectively e) if

{el,...,em} < Comp (B) (respectively e € Comp (B).

The definitions above are based on those of Winograd [9].

Example 1. To clarify the notions which have been
introduced above we give a very simple example. Let OQ
denote, as usual, the field of rationals and let x be an

indeterminate over Q . Then the following algorithm over

(Q(x),Q U {x})) computes 1 + x + x* + x° = X;:%
. A Eval (A)
1
1 All]: = input 2; 2
2 Al2]: = AT[l] : AI[l]; 1
3 A[3]: = input x; X
4 Al4]: = A[3] x A [3]; x?
5 A[5]: = A[4) x A [4]; x*
6 Al6]l: = AI[5] - A[2]; x*-1
7 Al7): = AI[3] - AI[2]; x-1
8 A[8l: = A[6] = AI[7]; %

Let F be an infinite field and let G be an infinite
subfield of F, Let AR be indeterminates over F, TFor
some sets H such that G “H © F we shall be interested
in studying algorithms over (F(al,...,an), H U {al,...,an}).
It will be useful to have a "pool" of parameters. To this

end we shall have an infinite sequence (cilo < i < =) of

indeterminates over F which does not contain any elements

from (ai!I < i< n). Let Gc' Hc’ FC denote G(co,cl,...),
H(co,cl,...) and F(co,cl,...) respectivelv. Then any
algorithm over (F(al,...,an), H U {al,...,an}) can be
considered to be over (Fc(al,...,an), H (J{al,...,an,CO,cl...})
The purpose of introducing G and <cp,Cy,e-.- will become
clear later. To simplify the notation, we shall write * for
either x or :. TFurthermore, we shall sometimes write a for

either {al,...,an} or a,,...,a , ¢ for either {co,cl,...} or

1
CprCqre-s etc.

Our purpose is to be able to combine two distinct
methods for establishing lower bounds. To this end we first
divide the MDs (multiplications and divisions) into several
classes.

Let F CE and GC D. Then E 0 F. # 9 and
G, ND# @ . We shall characterize MDs in algorithms over

(E,D) according to whether the operands belong to Gc '

Fé ’ E—FE etc.

Definition 2 A MD Ali)l: = A[i) * Alk] in an

algorithm over (E,D) wvwhere FCE, G CD will be

(1) strongly counted (a SCMD) if

when * = x then Eval(A)[jl€ E - F, and Eval(A) (k) € E
- G, or Eval (A)[§]1 € E - G and
Eval(a) [k]€ E - B, 7

when * = : then Eval(A)[jl€ E - F and Eval (Alklc E

- G or Eval (A)[§1€ E - {0} and Eval(A) [k]l¢ E

- F
c ’

(2) weaklv counted (a YICMD) if

when * = x then Eval(A)[3j], Eval(A)[k]€EFc—GC;
when * = : then Eval(A) []] GFC-{O} and Eval (A) [k]€F -G _;

(3) not counted (a MNCMD) if

when * = x then Eval(A)[j]éEGc or Eval(A) [k] €G_;
when * = then Eval(A) [k] GGC .

We shall sometimes refer informally to
Eval (A)[j] % Eval (A)[k] instead of A [i]l: = A [j] ® A [k]

and say that o, * o, for gy, o, € E is a SCMD etc.

Example 2. Set F= R (the field of reals),

4
n=0Q,H=0 U { Y2}, Then in the following algorithm

over (F(al),H U {al}).

i A Eval (A)
1 A [1]: = input 4.2; 4.2

2 A [2]: =M 3/7 “2

3 A [3]: = EEBEE ap; ay

4 A [4): = A [1] x A [3]; 4.2ay
5 A [5]1: = A [2) x A [2]; jj.

6 A [6]: = A [11: A [3]); 4.2/al

A [4] is a NCMD, A [5] is a WCMD and A [6] is a SCMD,

Every MD is in exactly one of the three classes. As
every MD can be simulated by SCMDs and ASs (additions and
subtractions) there is no way of establishing nontrivial
lower bounds on the number of WCMDs or NCMDs appearing in
arbitrarv algorithms corputing certain rational functions.
We would obviouslv prefer to give lower bounds on the total
number of MDs, but we do not have good rethods for this.
Instead, we shall give lower bounds on the number of CMDs

(counted MDs) which comprise both SC'Ds anc¢ TCMDs.

We start by citing a well known characterization of

of algorithms without SCMDs [9].

Lemma 1. Everv element computed by an algorithm A over

(F_(a), 11U {c,al which has no SCMDs is of the form

Proof. By induction on the length of A .
Trivial
We only remark that if

1 1 * 2 2 . -
(£~ + Zgi ai) (€7 + Zgi ai) is not a SCMD,

™M

then the result of this MD is of the form (1).

In the interest of makinag the exposition as clear as
possible some of our proofs will not be completely formalized.
For example, in some proofs, instead of using a formal
induction on the length of algorithms we shall use more
informal arguments.

e quote now (using our formulation) the theorem which

established the dimensionality arguments [7].

Theorem 1 (Strassen). Let A bhe an algorithm over

(F(a ,...,an) H U {al,...,an}) computing W(g)E{wi(g)|l < i<t}

1
using m < n SCMDs,. Then there exists a (Zariski)-dense

subset S of Fn, such that for every s ¢ S there is an

n x (n-m) matrix I over G of rank n-m, such that

W'(g) £ {wi(b + g)ll <ix< t} can be computed without
scMDs over (F(by,...,b), B U {bl, oo sb 1) where
b = (bl""’bn-m) is a sequence of indeterminates over F. [J

Although Strassen did not use our classification of

MDs, his proof can be used for the above theorem.

Remark 1. Similarly to Lemma 1, it can be shown that the
elements of V¥' are of the form
n-m

f+i£1gibi,giEG,fEF. 7

To show how Theorem 1 is used we present a slightly

strengthened version of Pan's result.

Corollary 1., Let x be an indeterminate over G and let

F = G(x). Then every algorithm over (G(x ,a), G U{x,g})
n .

which computes z aixa(l) for 0 < af(l) < ... < a(n)
i=1

requires at least n SCMDs.

Proof. Assume that there exists A satisfying the assumptions
of Theorem 1 which has only n-1 SCMDs. Then there exist

Sl""’sn € G(x) and dyreeesTy € G not all of them zero,

n .
such that I (g, by + S.) xa(l)= B (x) bl + a(x) can be
i=1 ? .

computed without SCMDs. But, on the other hand, it is

impossible by Remark 1 as B(x) € G(x) - G . M

10

4

For a set ¥ and an algorithm A computing Y ve
shall denote by un(W) and uD(A) respectively the lower
bound on the number of SCMDs which can be ohtained by an
application of Strassen's theorem. Similarly, we shall
denote by u(¥) and u(A) the number of CMDs required
to compute V¥ bv an algorithm A.

In manv cases it is simpler to use Winograd's
theorem [9] which can also be obtained as a corollary

to Strassen's theorem.

Corollary 2 (Winograd). Let A be an algorithm over

(F(al,...,an), H U {al,...,an}) computing ¢ a + ¢ where
® is t *x n matrix and ¢ a t-vector of elements in F.
Furthermore, assume that there are m columns in ¢ such
that no nontrivial linear combination of them over G

ig in Gt (obviously it is in Ft). Then A has at least

U (A) =m sSCMDs. O

11

3. Main results

e shall now describe brieflv ané informally the main
idea behind our method. We start with an algorithm A over
(F(a), HUa) which computes Y(a). This algorithm has
p(A) CMDs (we want to find a lower bound on u(A)), at least
PN of them SCMDs. We transform this A into an alagorithm
B over (FC, HU ¢). This algorithm computes certain A and
¥(2) and is obtained from A bv (among other operations) a
substitution of A for a which reduces at least I SCMDs
into NCMDs. Thus, we shall have u(B) < u(A) - uD(A). e
can now use rate of growth arguments to give a lower bound,
say uG(B), on the number of CMDs in B, Thus, u(B) > UG(B)
and u(A) > uD(A) + uG(B). e shall show that for some
¥(a) there are nontrivial lower hounds on uG(B) which do not
depend on a particular B. Thus, we can establish a lower
bound on u(¥),

The following is our main theorem:

Theorem 2. Let A be an algorithm over (F(al,...,an),
HLJ{al,...,ar}\combutinq Y(a) = {wj(g)ll < j < t}. Then

there exists an al nrithm B over (F(cl,...,cn), HLJ{cl,...,cn})
computing u = (ui(cl""'ci—l)ll < i< n), v= (vi(cl""’ci—l)
|1 <i<n),A=(A]1 <i<n) and ¥(&) = {\bj@_)llf_jf_t}

such that

12

(1) uw(B) < w(A) - u (A),

(2) Comp (B) Gc(n U {a,...,an}) (the set of rational functions

in elements of H U {al""’an} over G_),

n

(3) A, =u, +c, v, + I wg(u. + Cc. v.)
j=i+1] 1

3
.,1) ¢ V3 € G(cl,...,cj_z),

(4) u., v, € F(cl,...,cl

(5) A is a permutation of 2
(6) If there were no SCDs (stronagly ccunted divisions) in
A, then v. = i, i =1,...,n,
(7) If there were no CDs (counted divisions) in A, then
Comp (B) € G [0 U {alf...yan}] (the set of polymomials in

elements of H U {al,...,an} over GE).

Before proving the theorerm we shall prove some results
which will be useful in its proof.

If A is an algorithm over (Fc(g), H U {a,c}) without
SCMPs, then bv Lemma 1 every element computed hv A is of the
form (1). e shall show that it is possible to "reorcanize"
A so as to obtain B without increasing the number of CMDs
and which comnutes all the f£'s appearirg in elements of the
form (1) and then all the other elements computed by A.

To state the result formally:

13

Lemma 2. T.et A be an algorithm over (Fc(a), nu {c,alh)

I
vs)]

without SCMDs., Then there exists an aloorithm B = 1Bq
(concatenation of two secuences of instructions Bl and B,)

over (Fc(i)' n U{c,al) such that

(1) U(A) = u(B) ,

(2) Comp (A) © Comp (B)

(3) Comp (E‘.l) e FC ’

(4y {f |f + Lg;a; € Comn(A)} < Comp (8y) -

Proof. e note first that by Lemma 1 every element in Comp
(A} has the form (1). Ve shall first construct Bl , v
induction on the lenaoth of A.

VR Bl is empty.

Let A' consist of the first ¥ instructions of A and
let B

1

There are several cases to he considered.

satisfy the lemma for it. ™e shall now define Bl'

(1) A[¥N+1]: = input d;
If 4 ¢ Fc then add this instruction (changing the
label if necessary) to Bi obtaining B]; otherwise,

set Bl = B

(2) A[N+1]: = A[3) w Alk];

then
pval (A) [§] = £ + Zala, ,
rval (A) (k] = £ + Igta, ’
and fj,fk € Corp (Bi).

14

There are several suhcases to be considered:
(a) w € {+,-}. 1In this case add the instruction

computing fjwfk to Bi obtaining By
X . j— = . = = = —
(b) w € {¥,:} and gy = .o a. = 9 coe q 0.

Then add or A{n+l] to Bi

obtaining B, .

1
j j k k
(c) w € {x,:} and {qg,...,g%, gl,...,gn} # {0},

A Y e j_. — j._

Then either 9y = ... =9 = 0 or

k k k k

= = = - = :O

97 RN an 0. 1If, say ay .o o

then fJ ¢ GC (otherwise this would be a SCMD)

and add the instruction computing £I0f" to Bi

obtaining Bl'
"ic saw that in all the three subcases we added the instruction

k

FlwE™ to Bi, but we treated them separately so the reader

could convince himself that no CMDs were added.
llow it is possible to add instructions, which are not

CMDs to Bl which compute all the elements of

Eval (A) - Eval (8,) thus defining B = B 8, . L]

Corollary 3. Let B = satisfy the conditions of Lemma

B1B
2 and let f € Comp (Bl)' 9gr9yre--r9, € Gc . Then it is

possible to construct B = Bl 81.5 82 over (Fc(g),H U{g,g})
such that
(1) gof + Zgiai € Comp (Bl.s) '

(2) wu(B') = u(B) .

15

Proof. B' is obtained from B by (informally) inserting
between Bl and 82 instructions which are not CMDs and
which compute gof + Zgiai using £ which was computed by

B, . o

1

Proof of Theorem 2. Instead of proving the theorem formally

by induction on (say) length of A we shall show how to

transform every A into an appropriate B satisfying the

theorem.

We consider the first ScMD A[i]:=A[jl*Alk]. Let
oy 2 Eval (A)[Jl, g, % Eval (A)[k]. Then at least one of
oy and Oy s denote it by o , has the form £ + Zgiai
where

(1) £ ¢ G(H) ,
(2) gyreeesg, €G,
(3) {gl,...,gn} # {0}.

If both operands have this form and satisfy condition (3)
let o = 0,- By (possibly) permuting the vector a and
using the same symbol, a, to denote the permuted vector,

we may assume that 9, # 0 . We shall consider two cases:

*
(1) 1If ol 9,

the equation f + Zgiai

1]

o = 0o ;
ol x 02 or 2 then consider

i}
1

911 and define vy 1.

* . = 1
(2) If cl o, 1.02 and c_ol then consider

the equation f + Ig;a; = g;v;C; and define v, £ g, (we

1

o]

know that o, € F - {0}) .

2

16

Solving the appropriate equation for a, and naming

n
. _ 1
the solution Al we have Al = u; + o vy + g g, 34 where

- - 1 _
ul = f/gl gi - gi/gl .

Denote by A the algorithm obtained from A by
taking all the instruction up to, and not including, the first
SCMD, This algorithm obviously has no SCMDs and therefore
using Lemma 2 and Corollary 3 we may transform A into
8181_582 where Bl and B2 satisfy the conditions of

Lemma 2 and 81.5 computes u,,V, and A1 . Thus we may
assume that A is already in the form BlBl 58, and A
is an algorithm over (F(cl,g) , F U {cl,g}) .

We construct now Al from A by (informally) sub-

stituting Ay for More formally, we drop instructions

a, .
with input a, and each instruction which refered to one of
them will refer to the instruction which computed A, . Thus
Al is an algorithm over (F(cl,az,...,an) , H U {cl,az,...,an}).
We note first that Eval (A;) is total, namely there are no

attempts in A to divide by zero. To show this it is

1l
enough to show that if w(al,az,...,an) € F(al,az,...,an) - {0}
then w(Al,az,...,an) € F(cl,az,...,an} - {0} . But this
follows immediately because:

(1) if w(al,az,...,an) is not a function of ay

then w(al,az,...,an) = w(Al,az,...,an) ’

(2) 1if w(al,az,...,an) is a nontrivial function of

a; then w(Al,az,...,an) is a nontrivial function of cq -

17

We also see that u(Al) < uw(A) - 1 . First we note
that the instruction in Al which corresponds in an obvious
way to the first SCMD in A is a NCMD. Indeed there are two

cases corresponding to the two equations above:

(1) in this case the SCMD is transformed into

cl*glcl Or g,C X0q,

(2) in this case the SCMD is transformed into 9,

which can always be computed without CMDS.

In addition we note that any operation in A which was
not a CMD is transformed into an operation in Al which is
not a CMD. Thus the number of CMDs has been reduced by at
least one. To show this we only remark that if
w(al,az,...,an) € G then w(Al,az,...,an) € G.

Finally, we summarize for the reader that A1 computes
Uyr Vys Al’ T(Al,az,...,an) and u(Al) < u(A) = 1.

Let us now consider the first SCMD in A1 . Once again
we consider 01*02 and at least one of oy and Oy s

n
denote it by o¢ , has the form f + % g;a; where

(1) f €G(H U {cl}) '
(2) Goreser9, € G(cl) ’

(3) {gzl---lgn} 7‘{0}-

If both operands satisfy these conditions, pick the second
one. Similarly to above we consider an appropriate equation

which would reduce this SCMD into an operation which is not

18

a CMD and construct an algorithm A over

2

(F(cl,cz,a3,...,an), H U {cl,cz,a3,...,an})

which computes

n
1
ul,vl,Al ul + clv1 + g giai '
n
_ 2
uz,vz,A2 = u2 + czv2 + § giai

and W(Al,Az,a3,...,an)

where U, .V, € F(cl) (actually U,V

2

93

2 € G(HU {cl})),

€ G(cl) and u(AZ) < u(Al) -1 <u(A) -2.

We proceed in this manner m < n times, until there
are no SCMDs left. Then Am computes Uyreee Uy o
VyressdVo Al,...,Am and ‘{/(Al,...,Am ’ am+l""'an)
over (F(cl,...,cm ’ am+1,...,an) , H {cl,...,cm '
am+l""'an})‘ Al""’Am can be written in terms of
An4yprec-rd, as following:
n-m

Ai = Si + z Yi

.oa . 2
j=1 '] MWt (2)

where Si E F(cl'.'.’cm) 14 Y 6 G(cl'.."cm) . Setting

now b1 & am+l""’bn-m 2 a ~we may say that Am is an

algorithm over (Fc(bl,...,bn_m) » H 2 U {bl,...,bn_m})

which computes ¥'(b) & ¥(s + Tb) where T = (Yi j) is
- [4

defined by

19

[A
3

Yi,5 from equation (2); 1 < i

<
1
=
3
A
..l.
I A
o]
wJ
Il
™

o
2
A
-
WA
o]
J
LS
H

I is an n x (n-m) matrix of rank n-m and from
here using Strassen's result it is possible to show that

m = Thus u(Am) < u(A) = uy(A) .

UD b4
Now we set

u, = 0 vi = 1 i=m+l,...,Nn
i _ . . .

gj = 0 i=m+tl,...,n j = i+l,...,n

Ai =cy i=m+l,...,n .

Thus we have the following system of equations

- n L~
A, =u, +c,v, +] g% A, i=1l,...,n
o j=i+1 1]

where U vy EF(cl,...,ci_l), g§ € G(cl""’ci—l)
and where we introduce ii instead of A, as we are
actually dealing with a permutation of A, . This system
being an upper diagonal can be very easily solved so as to
give the solution claimed by the theorem. The last

algorithm constructed was An and it was over

(F(cl,...,c l,...,an), H U {cl”“'cn’am+l""'an})

n'%n+
We substitute in it cy for a; j =m+l,...,n obtaining
the required algorithm B (we can of course assume that it

~

computed um+l""'un'vm+1""'vn’ Am+l""’An)‘ Finally

20

it also follows easily that if y(a) € F(a) - {0} then

v (A) € Fc - {0} and there are no attempts in B to divide

by zero.]

Corollary 4. Under the assumptions of the theorem there

exists B over (F_ , H U c) computing u = (ui!l <i<mn),

t<

- (Vi|1 <i<n) , A= (Aill <i<n) and

Y(a) = {¢j(é)|1 < j £ t} such that

(1) wu(B) < u(A) - uy(A)

(2) Comp (B) € GC(H’U {a,...,an}) '
m

(3) A, = u, +C, .\ V. +)
i i 1(1) i j=i+1

J
(4) ui,vi<§ F(cl(l)""'ct(i—l)) y W3 € G(c1(i)""'c1(i—l))'

j
w3 (uj + cl(j)vj) '

(5) 1:{1,...,n} > {1,...,n} is a permutation,
(6) if there were no SCDs in A then vi =1,
i=l,...,n ,

(7) if there were no CDs in A then

Comp (B) © GC[H LJ{al,...,an}] .

Proof. Follows from Theorem 2 by giving the permutation

of A explicitly. o

Corollary 5. Under the assumptions of Theorem 2 we may

assume that there exist o = (ai|l <i<n),

B = (8i|l < i <n) s.t. B computes a , B , A and Y(A) and

By = %ot Yim Stok)) Pk Bekse

where

21

GI (k) € F(Cl (1) goese 'c,l'(x (k)-l)) ’

Braak)) SFCLay e S) 1)’~

'l(k) EG(ct(l)""'c\(X(k) 2))

k < A(k) <n

and

(0},,
{6‘}

(1) if there were no SCDs in A then

Biak)) =1 e

(2) if there were no CDs in A then

Comp (B) € éé[H u {a; +...0 2}l

Proof. We use the form for A derived in Corollary 4 and discuss

" two cases

(1) {w:+l,.;.,w;} 40 .

Let

A(k) @ max{jlw,J # 0} and set

Ak

-1
wl

. (k) 2u +e gVt j-i+1 k (uj + c\(j)vj)

A (k)

+ wk u1 (k)

Byex(x)) © Vx(k)

A(k)
Yoy * A

(2) {w"”‘,...,w:} -0 .

Let A(k) ® k and set

| ,*M
‘%
uam *

" w‘ .

ﬁﬁﬁﬁ;} W

o8 bus A B (i ded. .

23

4. Applications

From now on we assume that F = G(x) , H =G U {x}
where x 1is an indeterminate over G . In this case we

shall also write sometimes explicity

Ay o CiayrCionm)) T % By Sk -1
Y om oy S om-2) Sk B eCuay S o -1

Furthermore we shall discuss only the case Y(a) = %a + ¢
where ¢ 1is a txn matrix and ¢ a t-vector of elements

in F (compare with Corollary 2). In order to be able to

deal more uniformly with this case we set a, & Sy and

write ¢a + ¢c0 = ¢a + ¢a0 (thus, say multiplications by
elements from G(ao) = G(co) won't be CMDs). Defining
now a tx(n+l) matrix & by

‘¢- ;7 J=0
i3 ; otherwise

~

8§ where a = (ao,al,...,an)

we may say that VY (a)

If we set A, = C all our results up to this point follow.

0 0
We could have been more formal and replaced everywhere F
by F(ao) etc., but it would serve no useful purpose.
For an element p of Gc[x] (the set of polynomials

in x over elements of GC) we shall denote by 0d(p) the

degree (in x) of p .

24

Definition 3. Let & = (%, .) be

l,J i=1’otclt; jso’---’n

a matrix in G[x] . Then define 5p($), the sparsness index

of 5, as following

sp(8) = 145 ¢¢ (max (e o\ (n)? =35\ (n-1)) ¢
900 L(n-1)) T2 1 (n-2)) ey)
3085 o)) ¢ 3 (o)) |®0,1,.0um} > {0,100)

is a permutation such that

30 my)) 23085 peyy) 2 e 2300 gy

Example 3. Let t=2, n=3 and

<x3 + 1 x4 X x3
s 1 x5 X * = x2
then

R x3 x3+l x4 X

' x2 1 x5 X

If the first row is rearranged in the order of descending

degrees then it becomes x4, x3, x3+l, X . Similarly for

the second row: xS, x2, x, 1 . Thus Sp(a) = a(xs)—a(x2)=3 .

Theorem 3. Let A compute ®&a over (G(x,a) , GU {x,a}) .
Without CDs (thus necessarily < Gix]) . Then

u(A) > uD($§) + rlogz Sp($)] provided that either

25

n
(1) All ¢. . are monomials of the form I
Lo k-1

aa(k)

or
k 14

(2) For every i the degrees of Qi,o""'¢i,n

are distinct.
Lemma 3. Under the assumptions of Theorem 3 the rational

functions é are polynomials in x which do not vanish

for x=0 .

Proof. Let 0 < k < n. Then A is a polynomial in x of

1 (k)

the form
%) ErCiay e rCi i -1
Mg Cry e rSiom-2) % om
If we substitute x=0 into A we obtain a nontrivial

1 (k)
. . -
polynomial in cl(k(k)) . -

Lemma 4. Let B compute p € G [x] over (Gc(x),GcLJ{x})

without CDs. Then u(B) > rlogza(p)T
Proof. Well known. o

Proof of Theorem 3. By Corollary 4 there exists B which

computes é, aé (B = (a A)), s.t. u(B) < u(A)-uy(A),

greccr
and it is enough to show that at least one of the (n+l)+t

polynomials é ’ 65 has the degree which is at least

Sp(a). W.l.0.g. we may assume that 3 (d) < a($i l)
14

i,o’ —

< vl < a(¢i’n) and Sp(¢) = max{a(Qi'n)-a(¢i’n_l),...,

26

a(@i'l)—f3(¢i’0) ' B(Qilo)} . Let 0 < k <n be such that

Sp (%) = S(Qi'k)-a(Qi’k_l) (for completeness:

~ Py .
3(¢i’_l) 2 0). We can write
n ~
q = .z AjQi,j = q, + a, where
=0

kil n E R

q, = A.¢, . , g, =) A. 0,

1 420 3143 2 4k 3 1.3

and we shall show that at least one of the polynomials (in x)
g, AO’ Al,...,An has the degree at least Sp(¢®) . There are

two cases:

(1) 3(q) > Sp(®) and the result follows.

(2) 3(q) < Sp(?) . As by Lemma 3

A

dlqy) > a(¢i,k) > B(Qi'k) - a(éi’k_l) > Sp(¢)

It follows that 3(g;) > 3(%, ,) . Thus for some j ,

14

0 <3 <k-1,

2(Ay) 2 3@y~) 2 3) -ady) 2 s

and the result follows. 0J

Corollary 5. If under the assumption of Theorem 3 A
n

computes I a,x
i=1

then u(A) > n + [log, max{a(n) - a(n-1),...,a(2) - a(l)
r a(l)}—l-

a(i) for 0 < a(l)<...<a{n)

broof. Immediate as by Corollary 1 wu_ (A) =n . O
oot D

27

Let p(x) € G(x). Then for every integer € and a
sufficiently large integer N there is a unique sequence
(njle < j < NS G such that

N .
p(x) =L w_ xJ + r(x)
e J

€ =
where "j G and r(x) rl(x)/rz(x) vhere r,,r, are
polynomials satisfying a(rl) - a(rz) < € .
Definition 4. Let a = (a(l),...,a(m)) be an increasing

sequence of integers, and let p = (pl(x),...,pm(x)) be a
sequence of elements in G(x) . Then p is a-normal if and
. . i
only if the determinant det ("a(j)) i=l,...,m , j=1,...,m
N i .

is not zero where p, = z 7> x? + r, ./r, . like above.
. 1,i772,1
j=a (1)

For a sequence o like above we define wu(a) =

min{ CMDs required to compute a sequence qu,...,qm)<: G(x)

I(ql,..-.qm) is o-normal} .

Theorem 4. Let A be an algorithm without SCDs over
(G(x,a) , G U{x,a}l) computing the sequence a;py (X),eeeys
anpn(x) where pl(x),...,pn(x) is a sequence of rational
functions having an g@-normal subsequence for some a =

(@a(l),.e.,0(m)). Then u(A) > uy(A) + ufa).

Proof. After applying Corollary 4 (we can assume that

1(k) k) we have an algorithm B computing (among others)

the sequence (A,p, | 1 < k < n) vhere

28

Akpk = [ak(x’cl""'ck(k)—l)

+ Yk(cl”"'cX(k)—Z) cx(k)] P (X) for 1 < k < n.

W.l.0.9. (pl,...,pm) was o-normal. We can expand

—i — -
where J € G(c) , ryi 0 f € G(x, ¢c) ,

2,1

- - i . '
a(rl,i) a(rZ,i) < afl) . Thus det(“u (j)) is a rational
function of ¢ ,...,c and it will suffice to show that it

is a nontrivial function. From the above it follows that

i
o= myley () Yi ey iCy gy) * By, 5 0 iy)]

_ i i

Using the well known formula concerning expansion of a

determinant the elements of which are sums of pairs we have

. n .

+ n(cl,...,cx(n))

and from here by induction on n and analyzing n it is

possible to show that indeed det (F;) # 0 . 'Thus

(A, Py | 1 <k <m) is a-normal and the result follows. [
A slightly weaker version of the following result

was stated by Shaw and Traub [6] and used by them to prove

the optimality of one of their algorithms.

29

Corollary 6. Let A compute (alxl,...,anxn) over

(G(x,a) , G U{x,a}l) under the restrictions of Theorem 4.

Then u(A) > 2n-1 .

n - J
Proof. As (alx,...,anx) ¢a where Qi,j = Gi’jx

then by Corollary 2 uD(A) n . The subsequence (xz,...,xn)

of length n-1 of (x,xz,...,xn) is (2,...,n) normal and
therefore B computes a (2,...,n)-normal sequence
A2x2,...,Anxn . We shall show that if B computes a
(2,...,n)-normal sequence, say (pl,...,pn_l) then

p(B) > n-1 and the result will follow. Assume that only

2 < n-1 CMDs appear in B . Then if vy ,...,Yy € G, (x)

are the results of these CMDs then

L
p' = _Zl gi'j Yj + Sj l=l,oo',n—l

.. . € i i
vhere gl'J € Gc and 63 Gc[x] and are linear in x
(6j were computed without CMDs). Dropping terms linear

in x we have
— 2’ ——— ——
P, = Z g. - Y- i=1,...,n-1

Now (51"'°'§n—l) is (2,...,n) - normal and therefore
linearly independent. Thus it cannot be spanned by a linear
combination of &% < n-1 elements ?l yeens 7£ . Thus

u(8) > n~1 and the result follows.)

As the next application of our method we sketch

briefly how we can prove Brodin's result [l1] that Horner's

30

rule is uniquely optimal.

Theorem 5. (Borodin) Horner's rule it the only algorithm

which uses n Ms and n-1 ASs (additions and subtractions)

to compute i?l 3 xi over (G(x,a) , G U {x,g}), and

thus is the uniquely optimal algorithm computing .%lai xi .
i=

Proof. (sketch). It is known that n SCMDs and n-1 ASs

are required. If we apply our method of substitution to

Horner's rule (which can be described informally as

n ,
l—-
_E a; x = (...(a x + a _j)x + ... % a;) x)
i=1
we note that 1(1) =n ,..., 1(n) =1, B computes
n ,
b A, (x) xt = —(02 X +c,) x+ (-c, x+ c2) x2 + ...t
i=1 i X 1 3 -
n- n _
(--cn X + cn—l) X + c, x = cy X and An =C,
Ai = ~ci+1 X + ci i=l,...,n-1 .
Let now A be an arbitrary algorithm computing
i

Zai X which has exactly n CMDs (all of them necessarily
SCMDs). Thus p(B) < u(A) - n =n-n= 0 and therefore
ZAi(x) xi ’ Al(x) resoy An(x) are necessarily linear in

%x . In addition to this using the facts that A had no
WCMDs or NCMDs and exactly n-1 ASs it is relatively

easy to show the claimed result. O

A special case of the following "decomposition”

theorem was first proved by Winograd ([l1].

31

Theorem 6. Let A over (F(a) , H Ua) compute

¥,(a) UY, where ¥,(a) < Fa) and ¥, ©F . Let

u(Wz) be (as usual) the minimum number of QDs required
to compute Wz over (F(a) , H Ua) . Then
H(A) > ug(A) + (Y, = up (¥, (@) + uly,).

Proof. Using Theorem 2 we obtain B computing A ,

¥,(a) UY Thus u(¥,) < u(B) < u(A) -up(A) and

2 .
the theorem follows. 0]

We now give an example without making the assumptions

appearing at the beginning of this section.

Example 4. Let A be an algorithm over (R(a) ,Q U {p,a})

n

computing pm z ai2 without CDs where o = 2]'/M and
n i=1

M> (m+l)2 . We shall show that u(A) > n + ['log2 m|.

Assume that u(A) < n + rlog2 m] < log, M . Then (compare

with Lemma 4) it is possible to conclude that we may
think of p as if it were an indeterminate over Q. Now,

using essentially the same method which Strassen [7] used
n

to prove that an algorithm computing z ai2 over
i=1

(R(a) ,R U a) regquires at least n MDs, we can show that

uD(A) = n., The corresponding B computes pm ZAiz which

is a polynomial in p over Oc . While proving Theorem 2

we noted that if y(a) € F(a) - {0} then ¥ (A) € F - {0} .
n

Thus z Ai2 is a nontrivial polynomial in p and o™ ZAiZ
i=1

is a polynomial in p of degree m at least. Thus

u(8) > jlog, m] and the result follows.

stuqmos (s U H

EEN S NS ssm

g
I:sg:zm?s‘x A0 0 'maiwn Rt

ﬁ&@ b. %5 %} g ! {‘fggj
;igm + gggxnﬁg.

aaoltgemnes odd palism gy@#mgz
| *@*3’5’% &éﬁ%‘% ,
i'{ﬁx%} U O, (8 asve m%ﬁwmis aeg

e ggm"i +a < (A m:ss m&t’~

pum w0 dact sbatanco 3 mx o5

wwoll .0 zeve s¥animisssbal st B o1

bewu [T} nesestid z%f:;a;;:ﬁ mﬁﬁm ;15

5
LBVD 1* 3

I=g : ‘

BT worr neo W (8 a zl‘m& &3
ﬁ@;f.xi‘vi £ *.ﬁis’ a - BRILEENG & :

W3OS IT enivorg MZM‘#% ﬁgﬁ i
T T A 1&@5&3’ | ‘
'._:az s bas o & xsmw% ad ‘ _;;
£ " el ,:a-,z |

CgudT Jdesed 28 m o wsm iaa :a sﬁ s’;aémmf&aq 5 8t

cawolio} tireex aﬁ# m iﬁ g?@i; <8 by

33

5. Conclusions

We have described a new method for establishing lower
bounds on the number of multiplications and divisions.
Although most of the applications were given in a rather
restricted setting (linear functions of indeterminates were
considered) the basic theorem was formulated in a gneeral
framework. Actually some common but unnecessary assumptions
were made (e.g. it was not necessary to assume that
ayse..0a, Were indeterminates, and weaker assumptions would
have been sufficient). As the rate of growth arguments do
not handle divisions as easily as multiplications, our
results were also deficient in this manner. It seems to
us that at least some of our results can be strengthed by
studying A and Y¥(A) more carefully. It seems that the
method, also very useful in some cases, is inherently
limited to proving lower bounds of the form 0(n). We would
like to mention also that it seems that inherently the same
method can be used to handle additions and subtractions.
Unfortunately, rate of growth arguments for additions and

subtractions are almost nonexistent.

C umwol paidelidsize 103 ﬁcssﬁrm iﬁw 5
| ssaoielvil bas ag@i&ﬁazi%ism 3
18381 & o asvip sxsw m&:@n
prow sedsnimystebual o m&:ﬁa@ﬂi
 isyseqy s od mam:m‘smm

fﬁﬂai$§ﬁﬁﬁ%ﬁ'gzﬁnaﬁaaﬁﬁﬁ 2ud oo o
} ¥eds mm ad’ m%mv‘
ﬁiﬁ& mzsmam xmﬁxw Emm m %
Cob eilsnsewmpis . WOYP %@ Mﬁ‘! ’m
omgo ,Msai:aﬁ;iq;&iaﬁ &ﬁ yjiim

63 amese 31 . 3enASH a#;'k M -;"j'

i berSpasxia ed 283 aﬁ’ﬁa&ﬁ :ﬁ@ &@‘;;“
ed3 vadi smese 31 .gzza.;”7g svam (&)

| yi3dexmdnl ak ‘aaaaajaamm ab
blucw oW Aai m&% il i{é
Csose edd qiﬁmm msﬁs EBOE
. ol Ioextiue m m&#ﬁm b
Bas afraésmm 303 wasﬁwgga 3

fg@ﬁ’ﬁ““*ﬁﬁﬁnﬁg§g,’““

‘ gga§§a:§;saa§z‘

v ”“3 i‘&ﬁﬁmﬁm@

aaau 51.,.g££jg‘}

37

REFERENCES

Borodin A. Horner's rule is uniquely optimal, "Theory of
machines and computations" ed. by Z. Kohavi and A. Paz,

Academic Press, New York (1971), 45-58.

Brockett R.W. and Dobkkin, D., On the optimal evaluation

of a set of bilinear forms, Proc. of Fifth Annual

Symposium on Theory of Computing, (1973), 88-95.

Hopcroft J. and Musinski J., Duality applied to the
complexity of matrix multiplication and other

bilinear forms, SIAM J. Comp. 2 (Sept. 1973), 159-173.

Ostrowski A.#4., On two problems in abstract algebra
connected with Horner's rule, "Studies in Mathematics

and Mechanics", Academic Press, New York (1954), 40-48.

Pan V.Ya., Methods of computing values of polynomials,

Russian Math. Surveys 21 (1966), 105-136.

Shaw M. and Traub J.F. On the number of multiplications
for the evaluation of a polynomial and some of its

derivatives, J. ACM 21 (Jan. 1974), 1l61-167.

Strassen V. Evaluation of rational functions, "Complexity
of Computer computations" ed. by R.E. Miller and

J.W. Thatcher, Plenum Press, New York (1972), 1-10.

10.

11.

38

Strassen V. Die Berechnungskomplexitat von
elementarsymmetrischen Hnktionen und von Inter-

polationskoeffizienten, Nu. Math. 20 (1973), 238-251.

Winograd S. On the number of multiplications required
to compute certain functions, Proc. Nat. Acad. Sci.

U.S.A. 58 (1967), 1840-1842.

Winograd S. On the number of multiplications necessary
to compute certain functions, Comm. Pure Appl. Math.

23 (1970), 165-179.

Winograd S., On the parallel evaluation or certain
arithmetic expressions, RC 4808, IBM Thomas J. Watson

Research Center (April 15, 1974), 1-35.

BIBLIOGRAPHIC DATA |I1- Report No. 2.

3. Recipient’s Accession No.

SHEET NSF-OCA-GJ34671 - TM -46
4. Titlc and Subtitle 5- Report Date : Tggyed
Combining Dimensionality and Rate of Growth Arguments for June 1974
6.

Establishing Lower Bounds on the Number of Multiplications

7. Author(s)
Zvi M. Kedem

No.

8. Performing Organization Rept.

MAC TM- 46

9. Performing Organization Name and Address
PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :
545 Technology Square, Cambridge, Massachusetts 02139

10. Project/Task/Work Unit No.

11. Contract /Grant No.

GJ34671
12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered: Interim

Associate Program Director
Office of Computing Activities
National Science Foundation
Washington, D. C. 20550

Scientific Report

14,

15. Supplementary Notes

A preliminary version of this report appeared in the Proceedings of the Sixth

Annual Symposium on the Theory of Computing, 1974.

16. Abstracts

A new method for establishing lower bounds on the number of multiplications

and divisions required to compute rational functions is described.
based on combining two known methods, dimensionality and rate of growth.

method is applied to several problems and mew lower bounds are obtained.

The method is

The

17. Key Words and Document Analysis. 17a. Descriptors
Algebraic operations
Analysis of algorithms
Computational complexity
Dimensionality
Lower bounds
Multiplications
Optimality
Polynomials
Rate of growth
Rational functions

17b. Identifiers /Open-Ended Terms

17¢c. COSATI Fie ld/Group

18. Availability Statement 19. Security Class (This 21. No. of Pages
. Report)
Approved for Public Release; UNCLASSIF IED 41
Distribution Unlimited 20. Security Class (This 22. Price
' Page
UNCLASSIFIED

FORM NTI5-35 (REV, 3-72)

THIS FORM MAY BE REPRODUCED

USCOMM-DC 14952-FP72

