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Abstract

A method for establishing Jower bounds on the number of multiplications
and divisions has been developed by Pan, Winograd and Strassen., A similar
method is developed for establishing lower bounds on the number of additions
and subtractions. The results obtained partially overlap those of Belaga,

Winograd and Kirkpatrick.
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Section 1

In this report we present a method for establishing lower bounds on
the number of additions and subtractions required to compute rational
functions over a field., The algorithms considered will be "straight
line," and for the purpose of establishing lower bounds, there will be no
loss of generality.

For a field F, a subset H of F and Aysecesd, indeterminates over F, an
algorithm over (F(al,...,an), H U {al,...,an]) consists of a sequence of
instructions which compute elements in F(al,...,an) (the set of rational
functions in aysee.,a OVer F) by applying chains of algebraic operations
(from the set {+, =, X, : }) to elements of H U [al,...,an}.

For example, if F = R(x) (the set of real rational functions in x)
and H =R U {x,xz} then the following is an algorithm computing alx2 +a2x
over (R(x,al,az), R U {x,xz,al,az}):

1. ax < (az)x(x)

2. a, + anx - (al) + (azx)

1

2 3 2
3. a;x + a,x (a1 + a2x) X X
We have not defined the notion of an algorithm formally; for more

formal definitions see for example [W67], [W70a], [K74]1.

Section 2

Our method for establishing lower bounds will be similar to those
used by Pan [P66], Winograd [W67], [W70a] and Strassen [S72] for multiplica-
tions and divisions. Our results overlap partially results which were
obtained before by Belaga [B61], Winograd [W70b] and Kirkpatrick [K72], but

we feel that our method is useful, as it can be easily applied and permits



certain extensions which other methods do not. The fact that similar
approaches may be used for both multiplications and divisions, and additions
and subtractions, seems to indicate that a general principle exists for
extablishing lower bounds on the number of operations in computations over

algebraic structures.

Section 3
We shall start with an almost trivial example which will help to
explain the motivation behind the method. We shall take a particular
algorithm, computing a particular function and describe a sequence of
reductions of this algorithm. Let F = H = R and let the following be an
algorithm over (F(al,az,aB), F U {al,az,aB}) computing a + a, + ag:
1. a, + a, « (al) + (a

1 2

2, a1 + a2 -+ a3

This algorithm uses 2 AS's (additions or subtractions) to compute

9)
- (a1 -+ a2) + (a3)

the sum of three algebraically independent elements., We shall show that
if a1s89585 instead of being algebraically independent satisfy certain

equa“ions, then this algorithm reduces to another one, which has no AS's

We first note that without AS's only monomials, namely elements of

the form
3

£l

190 e o) €7 (1)
1

1

can be computed. This statement can be proved very easily by (say)

irduction on the length of algorithms without AS's.



Thus, the first AS's in the algorithm must be of the form

o(l,i) 4 £

1 T i a?(z’i) (2)

1

a

H
=W
— W

and indeed (al) + (az) is of this form. If we write the equation
ay +a, = fﬁ‘az and assume that a, and a, satisfy it (J2 was chosen
completely arbitrarily), then the algorithm computes

a, +a, + a =\Y§1 a

1 2 + a3 by

3 2
1. J2'a, - J2"yx(a,)

! -
2. Q2 a, + ag (\571 a2) + ag

This algorithm has only one AS, and this being a first one in an
algorithm is of the form (2).

If we write the equation

,\‘;’2-‘a2 + ag = 2a2

and assume that a, and aq satisfy it (2 was chosen arbitrarily), then the
algorithm computes

a1+a2

1.J,—21a2*—(ﬁ1)x(a2)

2.2a, = (2) x (ay)

+ ag = ri\az + ag = 2a2 by

without any AS's.

Let's summarize: If ays@y,ag satisfy the equations

-1
aja, 531 -1

:;13512-1 =2 - 57?

then aq + a, -+ ay is equal to a monomial and thus can be computed without

]

any AS's.



We shall use similar procedures to show that every algorithm computing

certain rational functions has to have a minimum number of AS's.

Section 4
Let's assume now that we have four (pairwise disjoint) sets of inde-

terminates over F: {al,...,an}, {bl,...,bn}, {cl,...,cn}, {dl,...,dn}.

We shall actually analyze algorithms computing elements of F(al,...,an),

but we shall do it by reducing them to algorithms computing functions of

’

other indeterminates. CyseeesC dl""’dn will (intuitively) play the

n
role of parameters, so that we shall (informally) assume that we "do not
count" AS's "involving' only elements of H U {cl,...,cn, dl,...,dn}.
This will be formalized in the next definition.

In the sequel we shall frequently use a to denote both {al,...,an}
and Apseessa s similarly for b, ¢ and d.

Let's also remark that an algorithm over (F(a), H U a) is also over
(F(a,b,c,d), F(c,d) U {a,b}) and all the algorithms in the sequel may always
be considered to be over F(a,b,c,d), F(c,d) U {a,b}). Furthermore,

F(a,b,c,d) will also be considered as a linear space over F(c,d) so we

shall be able to say when 61, 62 € F(a,b,c,d) are linearly independent.

Section 5
Definition: An AS § < 61 t+ 62 in an algorithm over (E,D) where
E < F(a,b,c,d), DC F(e,d) U {a,b)

will be essential, or an EAS, if and only if 61 and 62 are linearly independent.



Section 6
Example: 1In the following algorithm

1. ¢, + a, © (Cl) + (a

1 1 1)

2. ¢y + ¢y3y L (cz)x(c1 + al)

3. (1 + c2)(c1 + al) = (¢, + al) + (czc1 + CZal)

1

1. 1is an EAS but 3, 1is not (as ¢y + a; and c2c1 + cza1 are linearly

dependent over F(c,d)).

Section 7

Remark: To justify the term "essential" we remark that if 6 « 61 t 62
in an algorithm over (F(a,b,c,d), F(c,d) U {a,b}) is not essential, then
it can be replaced by a multiplication. Indeed we have

f161 + f262 = 0, fl,f2 € F(cl""’cn’dl"’dn) and w.1l.0.8. fl 4 0, Then

5y 18, = (DX(6y)

where f = -f2f1_1 + 1. f, being an element of F(c,d) does not have to be

computed,

Section 8
Lemma: Any algorithm over (F(a,b,c,d), F(c,d) U {a,b}) which has no

EAS's computes only elements of the form

n . n .
el ai"‘(l))KH biB(l)), £ € F(c,d) (3)

1 1

Proof: By induction on length of algorithms,



Section 9

Theorem: Let C be an algorithm over (F(a), H U a) which computes
§(a) C F(a) using m < n EAS's, Then there exists an algorithm 8
over (F(g,bl,...,bn_m), H U {E,bl,...,bn_m}) without any EAS's which
computes § (A) where

Ne-m P
A —c n pYED
i, j
j=1

¢ s i tri i f k n-m.
and (Y(l,J))izl’.'.’n; i=1,...,n-m is a matrix of integers of rank n-m

Proof: Let

§ « f HaB(l’J) -i— £ HaB(Z’J)
17 2]

be the first EAS in (., We can replace this instruction by a sequence

B(laj)'B(zsj) £ f-l £.la 8(2,3)
1%

computing Haj » 807, using multiplications and

divisions only, then an EAS of the form

B(1,3)-B(2,3) + -1
Haj - f2f1 (4)

and then multiplication of (4) by flﬂajﬁ(z’J). Thus we may assume that

thiz first EAS is of the form

1

oL gl e (5)

J

Mla
If we assume that Arsecesdy satisfy

Ta @13 _ 4
i 1

then (5) reduces to d1 T f1 which is not an EAS.



Thus we obtain a new algorithm in which the first EAS can be assumed
to be

Haj"’(z’j) + 62, ¢ F(d,) (6)

(f2 € F(dl) as it may depend on the result of (5)). If al,...,arl satisfy

Ha.a(?".]) — d2
J

2
then (6) reduces to d, + £ which is not EAS,
We repeat this procedure until there are no EAS left, Thus we

obtain m” < m equations.

o k, i *
fla, (o) =g k=1,...,m D

such that if aysenesdy satisfy them, then the algorithm has no EAS's.

1

The system (7) is a consistent system of mx < n equations in n variables.
The rank of the solution space of the homogenous system
k.
ma, @003 g
]
is at least n-m” 2 n-m.
Therefore, for suitable ml,...,mn € F(dl""’dn) and

(Y(l’J))i=1,...,n; 5=1,...,n-m over Z of rank n-m (7) is solved by

PV )
Ay =@, T bl
Thus we obtain an algorithm over F(dl""’dm*’bl""’bn—m)’
. v(1,3) y(n,3).
FU {dl,...,dm*,bl,...,bn_ng)computlng ¢(w1Hbj ,...,@ngj )]
without EAS's. Similarly, we can construct an algorithm B over
(F(g,bl,...,bn_m), H U {g,bl,...,bn_m}) which satisfies the requirement
of the theorem. It is also necessary to note that assuming that in G

there were no attempts to divide by zero, then in 2 too there are no

attempts to divide by zero. ]



Section 10
Example: Before stating a general theorem, we shall prove that if G
computes a; + a, +... + a over (F(a), H U a), then G has at least n-1

FAS's. 1Indeed, assume that G uses at most n-2 FAS's. Then the cor-

responding B computes

2 .
q =EC Hb Y(lsJ)
11 j

and the rank of (vy(k,j)) is 2. ZLet k be the number of distinct rows of
v(i,j) and thus k = 2,

W.l.o.g. let i(l) < i(2) <,.. <i(k) <i(k + 1) be such that
i(1) =1, i(k + 1) = n <+ 1, and for every £ < k the rows i(4) through

i(4L + 1) - 1 are equal.

Therefore,
i(4+1)~1 2 ; X
q = Z‘ k\ b C,) I b.Y(l(f’)sJ)
=1 i=i(4) Ty d

which is not a monomial of the form (3).

Section 11

From here on we shall use the notation VE(S) to denote the minimum
aumber of EAS's required to compute S C F(a) over (F(a), H U a) when we
assume that it is clear what F and H are.

Lemma: Let Pl""’Pm € Fla] (F[a] denotes the set of polynomials in a

over F), Let Toseeest be monomials over F, namely elements of the form
n -
£ema @ e
;] 1

Then VE(Pl,a..,Pm) = vE(Plrl,...,Pmrm).

Proof: Trivial. ]



Section 12

k n a(i, )
et P= X fj 1 a, 35 be in Fla]. (When we write such an
=1 4=1

equation, we shall always assume that
- j .

Each such P can be written as

k n .
P=f Ha.a(s’z) (E f f -1 II a a(J,E)-a(s,E»:= r(l + q) where
s ] 1 378 g &
a(s, L) : B(3,4)
r = f Ila, 7 q =% g.la s for suitable B(j,4&) and g,.
8773 1 3 j/ ]
We have assumed that £ #0 and of courseg = 0. Suchal+gqg

will be called a normal form of P. We shall say that 1 +~q1,..., 1+ a4,

are a normal form for Pl,...,Pm if each 1 + 9 is a normal form for Pi'

Let Qqseeesd be 1like above. Ml”"’Mt of the form

n .
M_ - Ha B(J,z)
N

will be called the basis for Qpseesqy if and only if for every q; there

exist g;,...,gt € F such that

j=1 11
and {M,...,Mt} is a minimal set satisfying these requirements. Such a set

is unique.
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and we may also write ﬁ |
-1
1 3 !
9 2 "3 0 0 |
| s -1
1 %2
1, ) 0 5 0 0 |
5 a,
|
| q 0 0 1 1 ”
i ] i )

We also have

B(3, %)

Section 14

Theorem: Let Pl""’Pm € Fla]. Let 1+ 4q,...,1+ q, be a normal form

for Pl,...,Pm and let (B(J,E))jzl’...’t; 2=1,...,n be the defining matrix

for the basis of Gpoevesdye Then

VE(PiseessP ) 2 rank(B(j,£)).

Proof: By the lemma in Section 11, it is enough to show that if G computes

1 4—q1,.,,, 1+ q. it has at least p = rank(p(j,£)) EAS's., Assume that G

has at most p - 1 EAS's. Then by the theorem in Section 9, there exists



12

an algorithm §3 computing

£,
{1+ Z g; Mj | 1 <1i<m without EAS's where
i=1
n n-ptl 2 -
M, =T (¢, 1 p YHe)yB(,H)
T oge1r Fem1 e
n-p+l
(¢, B v(4se) was substituted for a,).
L e 4
e=1
« BT S a5, vk e)
But also M = (Ic," °7)1m b_ =1 FHJ> ’
] 1€
£ e=1
if we define
n
€@ise) = & B(j,4)v(4,e),
2=1

=Lt e=1,..., n - p+1

we see that ¢ (j,e) is the product of matrices B(j,£) and v(£,e) of

ranks p and n - p + 1 respectively. Therefore,

rank(€(j,e)) 21

and let jO be a row which has a nonzero element (and thus

. i
Mjo € F(g,bl,...,bn_ +1) - F(c)). Let i, be such that gjg # 0. Then,
using arguments similar to those of the example in Section 10 it follows that

* LY ~ - » 3
l1+4q, =1+2%2 g% M, is not a monomial and the theorem is proved by
i . j P

i J

contradiction, ]
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Before stating several corollaries we can remark that a similar

theorem holds for rational functions.

Section 15
Corollary: At least 2 EAS's are required to compute both ajag=a,a, and
. . " . . no
aa, + 2,2, (the real and the imaginary parts of (a1 + a21)x(a3 + aal). -
Section 16
In the following corollaries the variables € and 7, with indices,

will range over Bpseeerd . We shall assume that variables having

different indices are distinct. Furthermore € (1 N = ¢,

Section 17

n»

G, and

secesm; j=l,.0.,n

Corollary: Let §

A
= i, k)). be matrices. Then the product of £ and
i (] ))J=1,...,n; k=1,...,p P 5 N

cannot be computed with less than (mtp-1)(n-1) EAS's. ]

Section 18

G(x) and H = G U{x) for some field G and an indeterminate
n(i) .

L E(i,j)x) for i = 1,...,m. Then Py,+..,P  cammot

0]

Corollary: Let F

x over F, Let Pi

t
be computed with less than Z n, EAS's. ™
i=1
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Section 19

n(i) n(i)

Corollary: X I § (i,j,k)nyk , 1=1,...¢, , cannot be computed
i=0 k=0 :
£ 2
with less than Z(n(i) + 1) EAS's where F = G(x,y), H = G VU {x,y}. r]
1

Section 20
Our method is capable of establishing lower bounds which at most
equal the number of indeterminates, and thus may also be referred to as a

dimensionality method (dimension = number of indeterminates). If now

P € G(x) is to be computed over (G(x), G U {x}) then we should be able

to find lower bound on the number of AS's required to compute P. Some

results in this direction have been recently obtained by Borodin and

Cook [B&C 74]. Their methods belong to the class of rate-of-growth methods.
Using arguments similar to those of [K74] it is sometimes possible

to combine these two methods. We shall describe briefly a weaker version

of a more general theorem.

Se:.ion 21
We shall assume that F = G(x), H = G U {x} and we introduce the

notion of a weakly-essential AS (WEAS).

Definition: An AS § *~61 + 62 in an algorithm over

(G(x,a,b,c,d), G U {x,a,b,c,d}) will be called weakly essential if and

only if
1. 61,62 € G(x,c,d) and,
2, 61 and 62 are linearly independent as elements of G(x,c,d) when

considered as a linear space over G(c,d).



15

(Such AS ¢ +~ 61 ¥ 62 is obviously not an EAS.)

For a set {(x,a) < G(x,a) we shall denote by v({(x,a)) the

minimum number of both EAS's and WEAS's required to compute {(x,a) over

(G(x,a), G U {x,a}).

Section 22

Theorem: Let (7 compute {(x,a) over (G(x,a), G U {x,a)) using V() EAS's
and WEAS's. Then there exists B over (G(x,¢), G U {x,c}) which computes
Al(x,g),...,An(x,g), ¥ (x,A) € G(x,c) using at most v(() - vE(w(x,g))

WEASs, il

Section 23

This theorem may be used in the following way: if for a certain
t(x,a), Al(x,g),...,An(x,g), (x,A) can be shown to require always at
least (say) m WEAS's to be computed, then G has at least

vE(w(x,é)) + m EAS'Ss and WEASs.

Section 24

n ;
Corollary: Tet (i compute I aixl-1 and P(x) € G(x) over (G(x,a), G U {x,a})
1
and let m be the minimum number of WEASs required to compute P(x) over
n ]
(G(x), G U {x}). Then as vE(E aixl-l) =n -1 it follows that ( has

1
at least m + n - 1 ASs.
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