Type Abstraction Rules for Rferernces:
AComparison of Foowr Which Have Ahieved Notoriety

James WillianQO’Tode k. *

Abstract

I present four type abstraction rules which have been
introduced by various authors to permit pol ynoerphic
type safety in the presence of mutable data. Each of
the type abstractionrules is discussed inthe context of
the 1 anguage 1nvhi chis vas introduced, and the various
abstractionrules are conpared.

Categories and Subject Descriptions: D3.1 [Program-
mng Languages] — Formal Dfinitions and Theory;
D3.3 [Rogrammmng Ianguages] — Language (bn-
structs: Implicit Typing; D 1.] Rrogrammng Tech-

ni ques| — Miscellancous: Polymrphic Referenes;

General Jerm: languages, Type Theory, Pol ymor-
phism Reference Val ues.

Additional Key Words and Phrases: type systems, pol y-
norphi ¢ references, mutation, effect system, type infer-
ence, type reconstruction, inperative types, weak pol y-
morphi s Standard M, FX-89.

*National Sci ence Foundati on Graduate Fell ow.

Thi s research was supported by the Defense Advanced Research
Projects Agency of the Department of Def ense and was noni t ored

by the Office of Naval Research under contract nunber NJ0014-
83- K- 0125.

Authors’ address: MIT Laboratory for Conputer Science, 545

Technol ogy Square, Canbridge, Mssachusetts 02139.
FE-mail: james@zermatt.lcs.mit.edu

1 Type Astraction Rules

The type abstraction rules I consider here are:

1. EX8%-pure: expression abstracted mst be pure
2. Tofte-applicative: one-level store types
3. Dumas-111: tvo-level store types

4. McQueen-veak: type variables have strength

2 FX-89-pure

Ataches specific side-effect information to all function
arrovs and enforces the correctness of these effect spec-
ifications. The expression which is abstracted wth re-
spect to a type variable nust have no (i nmadi ate) si de-
effects.

This ought to nake it a very restrictive rule, as com
pared to the others. (Mide fromthe fact that T expect
the checking of the side-eflect specifications to disallow
nore programs.) Hovever, insertinganexplicit type ab-
straction at the appropriate point withinthe expression
mght alleviate the probl em

2.1 FX-89 Language Syntax

¢ I = Identifiers
7 . P = Pimtive types
v :U ::= P primtive type
I type 1dentifier
U—U function
e : E = I variabl e
(lambda (I) E) lanhda
(E E) application

(let (I E) E) generic-let

The type donain U contains the types v chare sup-
plied by the programmar in explicit type declarations.
The type of afunctionencodes the type of 1ts argunent

and its result. If the type of the argunent is menomor-
phic, thenit may be omtted. The type V¢.v represents
the type of pol ynorphi ¢ val ues abstracted over the type
paramter ¢ .

In the expression donmain, lambda abstracts E over
the ordinary variable I.

2.2 Deductive System

I present the typing systemof 1FXas as formal deduc-
tion systemconsisting of a set of type reconstruction
rules. The type systemcontains generic (i.e. general)
type variables, and distinguishes between these generic
type variables and the type identifiers which appear in
user-supplied types. The type systemal so distingui shes
betveen nononar phi ¢ and pol ynar phi ¢ types:

a G = (¢neral type variables

g M = P primtive type
I type 1dentifier
G general type variable
M—M function

T : T ::= P primtive type
I type 1dentifier
G general type variable
T—T function

VI.. LT polymrphictype

The IFXtyping rul es make use of an inportant dis-
tinction betveen the Mand Ttype donains. The rules
are designed so that Mtypes nay be omtted from
formal argunent type declarations, but T types nay
not. Thus, the different levels in the type syntax spec-
ify the restrictions on the input programs. The use of
syntactically-specified restrictions 1s intended to com
mmni cate clearly to the programmer the limtations of
the type reconstruction system

Type Schenes

The TFX type systemsupports the generic pol yror-
phisnfoundin M, as vell as the explicit pol yner phism
found in Reynol ds’ second-order pol ynorphi ¢ 1 arhda
calculus. In order to provide generic pol ynorphism
tye schems are defined which represent the gereric

(i.e. general) type of avariable vhichis permtted nul-
tiple instantiations:

Defintion (Type Schem). A lye shemn is a
termof the form
Vaqg. . .q T,

vwhere « 1. .. gare the generic varidbles of 7 € T

_ "The synhols VandV are distinguished deliberately:
V binds the generic type variables of atype schene, and
YV binds type variables wthin a type.

Dfini tion (Alpha-renaming). Tpes 7 and 7 " are
al pha-renanable (witten 7 ~ 7 /) iff'some renaming of
type variables bound in 7 produces 7 .

Dfinition (Instantiation). The type 7 ' is anin
stance of the scheme p = Vay. .. 7 (Wwittenn = #) iff
there are nonomarphic p ... psuchthat 7 p;/a;] =~ +
(The = relation extends to type schemes by n = n ' iff
Vrip=717=>n=rT.)

Note that only Mtypes nmay be substituted to produce
instantiations, and that 1t is assuned that substitution
takes place wth renamng of any bound type variables

to avold capture. The result of substituting u for ¢ in
7 will be witten 7[p/t]. The type scheme § = V.7,
having no generic type variables, wll occasionally be
abbrevi ated as 7.

The inference rules for explicitly typed terms are pre-
sented first. Atype assignmant A naps each variablein
1ts dominto a type schene. The notation A, refers to
the type assignment Avwith the assignment for variable
z removed.

The notation FQ{7) refers to the free generd type
wridlesof 7, and FI{7) torefer tothe free tyeiden
tifiersof 7. Similarly, FM A) refers to the free generd
type varidbles of the type schenas in the assignment A
Aso, Gn(A 7) is defined as fol lovs:

Dfini tion (Generalization). The gewrdizdion
of 7 vithrespect to A(witten (én(A 7)), is the type
scheme n = Vou. 7, vhere {os} =F 1) — FM 4).

Typi ng Rules

The type reconstruction rules of IFXare as follows:

ITAMBIA

As+(z:pbke:r
AF (lambda (z) €) : p— 1

APPL
AF ez — 17
A e 1
AR (e &) 1 7

The above rules describe the typing requiremants of
val ue abstraction and val ue application.

The folloving rules describe the typing requirenants
of variables and the M-style generic let construct.

VAR NST _
(z:Voy.7)E A
AF x: T o]

ILET
A & : 1
AF g1 = Gn(4 73) = Gn(4 7))
A He: Gn(A 7 4))F e T
AR (let (zg) e): T

Generic let

The TLET and VAR NST rules provide the M-style
generic let. IIEI associates a generic type schemm
wth the let-bound variable, and VAR NST permts
each occurence of the variable to be independently as-
signed any instance of its generic type scheme. 'The
conveni ence of autonatic generalization and instantia-
tion are provi ded by these tworules. InlFX the typing
rules permt this convemnience wth the caveat that the
automatically deduced type parameters be Mtypes.

The typing pover of the ILEIrule is equvalent to
that provided by rewiting the let expression in the
usual vay, vhile naking use of open and close:

((lambda (2: 7) e[(open x)/z]) (close g)).

Ibvever, this transformation is not pure syntactic
sugar, because 1t requires 7, the explicitly pol ynorphic
type of the bound variable.

3 "Dfte-applicative

(ontamnates all type variables appearing in any type
expression at whichthe ref constructor is instantiated.
The contamnated type variables are inperative, the
others are applicative. This distinction is naintained
by type abstraction, and is enforced at function call
boundaries, etc. The abstraction rule does not permmt
abstractions of expansive expressions wth respect to
1nperative type variables; expansive expressions are let
and appl 1 cation expressions.

3.1 Definitions

The typi ngsystentdi stingui shes betveen irperdtiveand
aplicative type variabl es:

t € ApTyVar
e ImpTyVar
o € TyVar =ApTyVar UImpTyVar

<

T : M ::= P primtive type
G type variable
M—M function
Tref reference type

Dofini tion (Type Closwe). The iye dasureof
with respect to A(witten Qos 47), is the type scheme
n =Vea;. 1, vhere { of =tyvars 7 — tyvars 4

Dfini tion (Applicative Bpe Qoswe). The q
ficdive type doswe of 7 with respect to A (witten
ApQos ,7), is the type schem n = Yoy, 7, vhere
{ @ =apptyvars 7 — apptyvars A

Wien a type scheme is instantiated, only inperative
types may be substituted for inperative type variabl es.
MAnexpressionis considered to be expmsiteif 1ts eval ua-
tion mght expand the domainof the store (i.e., allocate
mutable data). The classification adopted in [Tfte87]
1s that let expressions and applications are expansive,
but 1anhda abstractions and variable accesses are not.

3.2 Typing rul es

The reference creation operator ref is assigned the i
perative type V u. u— uref. The rules vhich provide
type abstraction of expansive and nomexpansive ex-
pressions in the imperative/applicative systemare as
foll ows:

VARNST
(x:gozi.r) c A
AF x: T o]
LEL Fxpansi ve
AF g: 1
ep 18 expansi ve.

Ay He: ppQos ym)F e T
AR (let (zg) e): T

LEL Mo expansi ve
AF g: 1

€p 18 NOIFexpansi ve.
Ay He: Qos gam) b e T
AR (let (zg) e): T

3.3 Applicative Types and FX 89

In FX 89, type abstractionis permtted only vhen the
side-effect specifications ensure that the pol ynoerphic
expressionis referentially transparent. [Tfte87] takes a
different approach, based on the concept of agplicative
types. Tofte classifies certain expressions as epusite,
and permmts type abstraction of these expressions only
wthrespect to qplicaivetype variables. This type ab-
straction rule permts different type abstractions than
does the FX89 pure-type-abstractionrule, as I wll
showlater. Rerhaps the 1mperative typing discipline
can be comhined wth the type reconstruction system
of FX89.

4 Damas-1I11

Mintains atwlevel versionof inperative types, distin
gui shi ng those type variables vhich have been contam
inated already fromthose which wll becone contam-
nated by further application. The deductions carry a
set of type variables, and so also do any type schenas
which are arrovs. Types, however, do not carry sets of
type variables, nor is there nore than a single top-level
such set in a type schema.

4.1 Defini tions

The typing systemdefines schenes to include a set of
type variabl es:

a € TyVar

T : T ::= P primtive type
G type variable
T—T function

Tref reference type

7 :8S ::= T type
T—TxA inpure function
Y an pol ynar phi ¢ type

Dfinition (Bpe Qosure). The tye doswe of n
wth respect to type assignment A and type variables

A(witten Ilos 42y), is the type schene n ' =V o;. 9,
vhere { o;} =tyvars n — (tyvars Ayvars A

Wien a type schena is instantiated, the substitution
1s used to expand the set of type variables, and the set
of type variables nay be spuriously expanded as vell.

4.2 Typing rul es

The reference creation operator ref is assigned the i

perative type V t.¢ —trefx { ¢t} . "The rules vhich pro-

vide type abstraction and 1nstantiation are as foll ows:

DARDNST
(z:Var)e A
AF 2 T[] x b

AF g :np*x A
Ay He:Tos am)F e:np*x A
AF (Qet (zg) e):npx A

The rules vhich describe the typing requiremants of
val ue abstraction and val ve application are as followvs:

TAVEA

A He: 1) F e:mx A
AF (lambda (z) e): (7 —7* Ax ¢

AF e (g—m)x A
AF e i x A
AF (e) : 7% A

5 MacQueen weak

Ataches nurhers to type variables whi chneasure their
“veakness” (strength). The mmhers indicate how
nany appl 1 cations nust take pl ace before areference to
the type variable mght have been created. Astraction
1s permtted only wth respect to type variables vhose
veakness renains positive. Wakness is dovavard con
tamnating, and the reference constructor is the source
of contamnation. Afurther restriction is not yet vell
understood: Aninstantiation of alet-bound variable is
strength-11mted sonehow rel ated to the outermst ab-
stractionlevel at whichthe expressionof whichit is part
appears as an operand. Better figure this out.

5.1 Definitions

The typi ngsystemdi stingui shes bet veen imperdtiveand
aplicative type vari abl es:

w € Strength={ ...,
a € Tyvar
av € WeakTyVar =TyVar x Strength

-1,01, ..

., 00}

T : M ::= P primtive type
G type variable
M—M function
Tref reference type

Dfinition (Strength Limt). The type 7 is w
strength linled witten [7] %, iff all type variables in
7 with non-i1nfim te strength have strength less than or
equal to w

Dfini tion (Strengthening). The strengtheningof 7,
witten [7]FT, is the type in vhich all type variables
wth non-infinite strength have incrementally 1arger
strength. So [7y —]t = [n]™ — [#]™, and
[e®]tF = o, but [a¥]H = .

Dfinition (Weak Bpe Qoswe). The wedk {ype
dosweof T vithrespect to A(witten Wak(os AT), 18
the type schene n = Vo' 7, vhere { of =tyvars 7 —

w

tyvars A and w ; =min{ o ¥ € tyvars 7} .

Wien a type schene is instantiated, the type substi-
tuted for a type variable mst not be stronger than the
type variable.

Weak Typi ng Ril es

The type reconstruction rules of McQeenveak are as
foll ovs:

VUAMRIA

A He)k e r

AF (lambda () e) : [p— 7t

VAPHL

Ar e [g—]t

Ak g1
[7]°
AR (e &) 1 7

The above rules describe the typing requiremants of
val ue abstraction and val ue application.

The followng rules describe the typing requi remants
of variables and the M-style generic let construct.

WIST
(z:Yol'.7)e A
(7]

Ar 77)

A & : 1
Ay He: WakQos am) b e T
AR (let (zg) e): T

The reference value constructor ref is assigned the
typeV d.d — alref.

6 Corparison of
Astraction Riles

6.1 Dhnas-IIT > Tofte-applicative

(1) let £ = let x = (fn x => x) 1
in (fn y => !(ref y))
end

in (f 1; f true)
end

[1fte87] provides this exanple on page 73.

Dhnas-111 can type this systembecause the let ex
pression defming £ is abstractable wth respect to the
type of y. This is the case because the two-level anal ysis
of the allocated types of the let expression reveals that
none are already allocated, although the type of y wll
be allocated by further application.

Tofte-applicative cammot type this systembecause the
one-1evel anal ysis reveal s marel y that the type of yis-or-
wll-be allocated, and the let expression is considered
expansive, so the type abstractionis not permtted.

6.2 Tofte-applicative > Danas-111

(2) D known exanpl e.

[Tofte87] states on page 73 that an enbeddi ng exists.

6.3 MacQueen-weak >
Tofte-applicative, Danas-111

(3)
let fold = fn f => fn i => fn 1 =>
let data = ref 1
result = ref i
in (while (!'data <> []) do

exanpl e, because the two-level anal ysis alsoreveal s that
the 1 anhda expression defining £ has not yet allocated
at any types.)

McQeen-veak cammot type this exanple, because
rid mst be gi venatype wthstrengthone, andyet rid,
after instantiation, is applied twce. Ths lovers the
strength so that the strength of the type of y becomas
zero. Therefore, the type abstraction is not permtted.

(result := f(hd('data))('result);

data := tl('data));
lresult)
end

in let fast _reverse = fold cons []

in (fast_reverse [3,5,7];

fast_reverse [true,true,false])

end

end

[te87], Fxanple 4.5, nentioned on page 74.

McQeen-veak can type this exanple, because the
counting nethods used by the typing al gori thmdeduce
that fold nust be applied three tinas before any al-
location occurs, and since fast reverse 1s defined by
applyingfold only twice, fast _reversestill has atype
of strength one, and so may be generalized wth respect
to the type of the el emants of the list.

Tofte-applicative cannot type this exanple because
the one-level store typing anal ysis considers the expres-
sion (fold cons []1) to be expansive, and therefore
does not permnt the type abstraction.

Danas-TT1 cannot type this exanpl e because the two-
level mathod also considers all type variables to have
been allocated by the evaluation of (fold cons [1),
and therefore does not permmt the necessary type ab-
straction.

6.4 Dhnas-I1II, Tofte-applicative >
McQieen- veak

(4) let rid = fn x => !(ref x)
in let f = fn y => rid (fn a => a) y
in (f 0O;
f true)
end

end

Tofte-applicative can type this exanple, because the
defini ng expression for £ is alanhda abstraction, which
1s consi dered non-expansi ve, andso the type abstraction
wth respect to the type of y is permtted even though
it is aninperative type. (Thnas-TIT can also type this

6.5 FX89-pure > Ihnas-111I,
Tofte-applicative, McQieen- veak

(5) let nop = fn f => fn x =>
let g =fny =>1f x
in x
end
in let h = nop (fn a => !(ref a))
(fn b => b)
in (h O;
h true)
end
end

FX89-pure can type this exanpl e because the side-
effect anal ysis systemcorrectly determnes that nop has
no latent side-effects, because the eval uation of nop ap-
plied to any argunents £ and x wll marely return x. If
T vere applied by nop, then the latent effect of the type
of nop would include the latent effect of 1ts argumant
type, the type of £. Therefore, the defini ng expression
for his pure, and nay be abstracted wthrespect tothe
type of b.

Danas-111 and Tofte-applicative cannot type this ex
anpl e because the store-typing anal ysis mathods as-
sune that allocationhas occured at the type of a during
the eval uation of the defining expression for h (the ap-
plication of nop). The binding of g in the definition of
nop constrains the type of a to be the sam as the type
of b. TTherefore, type abstraction with respect to the
type of b1s not permtted.

McQeen-weak camnot type this exanple because
the nmaxi mmweakness permtted for the type of a 1s
zero, because it 1s an operand of nop. 'Therefore, the
type of b is forced to strength zero and the type ab-
stractionis not permtted. M intuitionfor this is that
nop is presunad to apply its argunents conpl etel y.

6.6 Ihnas-III, Tofte-applicative,
McQieen- veak > FX 89- pure

(6) let k = fn a =>

let r = ref a
in fn b => Ir
end

in let £ = k []
in (f 0O;

f true;

false)
end
end

Danas- 111, Tofte-applicative, and McQeen veak
can type this exanpl e because the defini ng expression
for £ can be abstracted wth respect to the type of b.
Al three systems wll not permt abstraction wth re-
spect to the type of a, because an allocation at that
type will have occured. Fowever, this does not prevent
the other abstraction, because the types of a and b are
not rel ated.

FX 89-pure cammot type this exarpl e because the ab-
straction rule requires that no allocations have taken
place, and does not distinguish betveen the type vari-
ables at whichall ocations have taken pl ace and the type
variables at which no allocation have (or will) occur.

6.7 Further Specul ation

Hvever, the above example wll be typed by FX89-

pure if anexplicit abstractionis inserted wthinthe def-
imtionof k. Tt is also interesting to observe that even
wth an explicit type abstraction in the defmition of k,
1t wll not be possible to give £ a generic type, because
of the pure-abstraction rule. Yet £ wll be autonati-
cally projected as required inthis exanple, and £ can
be opened explicitly as vell. Special casing the abstrac-
tion rule in let to permt generalization by opening
vould circunvent this peculiarity, althoughit wll not
elimmnate the need for explicit abstractions.

Aso, I do not expect explicit abstractions to sol ve
this problemin general. Including types in alloca
tion (and perhaps other) effects, and relaxing the pure-
abstraction rule to examne the side effects and selec-
tivel y permt type abstractions should provide a much
more general treatnent of this problem I call this the
“A11oc@T” typing system This systemis essentially
the systemwhich is nentioned in [Dinas85] on pages
90-91, vhere he observes that attachingsets of types to
type arrows wll complicate the unification al gorithm
for types. Dimas-III therefore attaches a set of types
to type schene arrows and also a set of types to typing
assertions. Tofte-applicative nmay be vieved as attach-
ing asingle set of types to type scheras.

7 Sumary

Danas-111 is strictly superior to Tofte-applicative, but
McQeenveak and FX 89 pure are inconparable to
either of the above. Tofte has suggestedin[Tofte89] that
McQeen-weakis strictly superior to Tofte-applicative,
but this is not the case (see exanple (4))

Appendix (snh)

Fxanpl es provi ded in snh syntax.

(1) let val £ = let val x = (fn x => x) 1
in (fn y => !'(ref y))
end

in (f 1; f true)
end;

(2) N known exanpl e.

(3)
let fun fold £ i 1 =
let val data = ref 1
and result = ref i
in while (!'data <> []) do

(result := f£(hd ('data))('result);

data := tl('data)
);
'result
end
and cons a b = a::b
val fast_reverse = fold cons []
in fast_reverse [3,5,7];
fast _reverse [true,true,false]
end;

(4) let fun id x = x
and rid x = !(ref x)
fun £ y = rid id y
in (f 0;
f true)
end;

(5) let fun id b = b
and rid a = !(ref a)
and nop f x =
let fun gy = f x

in x
end

val h = nop rid id

in (h O;

h true)

end;
(8) let fun ka =
let val r = ref a
in fn b => Ir
end
val £ = k []
in (f 0O;
f true;
false)
end;
Appendi x (fx)

Fxanpl es provi ded in FX 89 syntax.

(1)
(let ((f (let ((x ((lambda (x) x) 1)))
(lambda (y) (get (mew y))))))
(begin
(f 1)
(f #t)))

(2) N known exanpl e.

(3)
(let ((fold (lambda (f i) (lambda (1)
(let ((data (new 1))
(result (new i)))
(begin
(while (not (null? (get data)))
(begin
(set result (f (car (get data))
(get result)))
(set data (cdr (get data)))))
(get result))))))))
(let ((fast_reverse (fold cons nil)))
(begin
(fast reverse (list 3 5 7))
(fast reverse (list #t #t #£)))))

(4) (let ((id (lambda (x) x))
(rid (lambda (x) (get (new x)))))
(let ((f (lambda (y) ((rid id) y))))
(begin
(£ 0)
(f #£))))
(8)

(let ((id (lambda (b) b))

(rid (lambda (a) (get (new a))))
(nop (lambda (f)
(lambda (x)
(let ((g (lambda (y) (f x))))
x)))))
(et ((h ((nop rid) id)))
(begin
(h 0)
(h #t£))))

(8) (let ((k (lambda (a)
(let ((r (new a)))
(lambda (b) (get r))))))
(let ((£f (k nil)))
(begin
(f 0)
(£ #t)

#£)))

Rferences

[DBuns82] Twnas, L, Mlner, R, “Principal type-
scheras for functional program”, Roeedngs of
the 9th Amud Syposiumon Finaples of Fo
gramny Laguges, January 1982, pages 207-
212.

[Duas85] Dwas, L, “Bpe Ssignant in Po
grammng lanuages”, Ph.D Thesis (SF33-85,
Ui versity of Elinburgh, April 1985.

[Gfford87] Gflord, D K, Jouvelot, P, Tucassen, J.
M, Sheldon, M A, e FX-87 Rference M annadl,
MT/ICS/TR 407, October 1987.

[Hindley69] Hndley, R, “Ihe principal type-schena
of an object in combinatory logic”, Rusactions
o the Awrican Mhemticd Sciety, vol. 146,
1969, pages 29-60.

[Iucassen87] Tucassen, J. M, s ad Effecs: B
wwrds the Integration of Hinctiond and Irperative
Rogramirg, Th. D Thesis MT/LCS/TR 408,
Mssachusetts Institute of TEchnology, Septenber
1987.

[MacQueen84] McQeen, D, “Mdules for Stan
dard M, Roecdings of the 198 ACMGifer
ence on TSP and Filiond Rograming, 1984,
pages 198-207.

ner78 ner eory O T-
[Nl per78] Mlner, R, “ATheory of Type Pol ym
phismin Progranmng”, Jound o Gmier axd
SetemSiences, vol . 17, 1978, pages 349-375.

[Miris68] Mrris, J. H, Jobde Gl MEs of

Fogamny Imgpuges, Mssachusetts Institute
of Technol ogy, MGTR 57, 1968.

[O’Bole89] OTole, Janes Wiliam Jr., Zpe R
costruction wth Hrst Qass Rlymrphic Ves,
MT/TCS/TM380, 1989.

[Dfte87] Bfte, Mds, Operdiod Smdics ad

Ryrorphic Tpe Inference, Ph. D "Thesis, Uhi ver-
sity of Elnburgh, 1987.

