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Abstract

A basic question about NP is whether or not search reduces in polynomial time to decision.
We indicate that the answer is negative: under a complexity assumption (that deterministic
and non-deterministic double-exponential time are unequal) we construct a language in NP for
which search does not reduce to decision.

These ideas extend in a natural way to interactive proofs and program checking. Under
similar assumptions we present languages in NP for which it is harder to prove membership
interactively than it is to decide this membership, and languages in NP which are not checkable.
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1 Introduction

The work on interactive proofs brought to light a basic question: how powerful does a prover need
to be to convince a veri�er of membership in a language L?

Clearly, the prover needs at least the power to decide the language for himself. The question
we focus on is whether this is enough.

There are interactive proofs known for complete problems in NP, P#P and PSPACE where it
is su�cient for the prover to be able to decide membership in the language. Such power is also
su�cient for almost all of the languages in IP that have been closely examined (speci�cally, the
languages of graph isomorphism, graph non-isomorphism [GMW], and quadratic non-residuosity
[GMR]). On the other hand all known interactive proofs for complete languages for coNP require
the prover to do more than decide membership in the language. Similarly, all known interactive
proofs for the language of quadratic residuosity require the prover to do more than decide quadratic
residuosity.

As we will see, this is essentially a generalization of the old question of whether search problems
reduce to their decision counterpart for NP. Namely, is computing a witness for membership in
L 2 NP any harder than establishing the existence of such a witness? For NP-complete problems
it is well known that the answer is no: given an oracle for membership a witness can be computed
in polynomial time. But for general L 2 NP the problem remains open.

In this paper, we use natural complexity assumptions to indicate that proving membership may
be harder than deciding it. As a �rst example we look at decision versus search in NP. We then
turn to interactive proofs, and �nally apply the same ideas to derive results on the di�culty of
program checking.

Let us proceed to describe our results in detail.

1.1 Decision Versus Search in NP

Before we can present our results, we need to say what we mean by \search," \decision," and
the \reduction" of the former to the latter. We will keep the discussion here informal; for formal
de�nitions we refer the reader to Section 2.1. We start with some terminology.

Suppose �(�; �) is a polynomial time computable binary relation. We let �(x) = fw : �(x; w) = 1g
be the set of all �-witnesses for x. We say that � is an NP-relation if there exists a constant c such
that for all x 2 f0; 1g� it is the case that �(x) � f0; 1gjxj

c

. We let L� = f x 2 f0; 1g� : �(x) 6= ; g.
Now let L � f0; 1g� be a language. We say that � de�nes L if L = L�. Clearly, L 2 NP i� there

exists an NP-relation which de�nes L. It is important to note, however, that for any particular NP
language L, there are many (di�erent) NP-relations which de�ne it.

Associated to any NP language L is a (single) decision problem and a class of search problems.
The decision problem, of course, is just the problem of deciding membership in L. As for the search
problems, there is one for each NP-relation which de�nes L, and the search problem corresponding
to a particular NP-relation � which de�nes L is the following: given x 2 L, �nd a �-witness for x.
For example, if L is SAT then the decision problem is to decide whether or not a given formula
is satis�able. One of the associated search problems is to determine a truth assignment of a given
satis�able formula (but there are other associated search problems as well).

We are interested in de�ning what it means for search to reduce to decision for L. As a means
to obtaining the de�nition and understanding the issues involved, we begin by discussing a less
general notion: that of reducing search to decision for an NP-relation � (de�ning L).

Fix a particular NP-relation � which de�nes L. We say that \search reduces to decision for �"
if the search problem for � is solvable in polynomial time given an oracle for the decision of L = L�.
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More precisely, search reduces to decision for � if there exists a polynomial time oracle machine W
such that for all x 2 L it is the case that WL(x) (the output of W with oracle L and input x) is
a �-witness for x. Intuitively, the search problem for � is no harder than the decision problem for
the corresponding language.

We are now ready to state what it means for search to reduce to decision for a language L 2 NP.
We recall that there are many di�erent NP-relations de�ning L. In general, search might reduce
to decision for some of these and not for others. Our de�nition is to say that search reduces to
decision for L has long as there is some NP-relation � (de�ning L) such that search reduces to
decision for �. In other words, we say that search reduces to decision for L as long as at least one
of the (many di�erent) search problems associated to the decision problem for L is no harder than
this decision problem.

The motivation for this de�nition, which stems from the question of whether proving member-
ship can be harder than deciding it, will become clearer as we go on. For the moment, it is more
important to stress the generality of our de�nition and the strength of negative conclusions that are
based on it. In particular, to say that search does not reduce to decision for a particular language
L (as in the conclusion of the theorem that follows) is to make a strong statement indeed, because
it means that for all � de�ning L it is the case that search does not reduce to decision for �. That
is, all the search problems corresponding to the decision problem of L are harder than this decision
problem. In particular, the existence of a language for which search does not reduce to decision
certainly implies the existence of an NP-relation for which search does not reduce to decision.

To state the theorem we �rst need the following de�nitions:

EE =
S
c�0DTIME(2c2

n

) and NEE =
S
c�0NTIME(2c2

n

) :

Theorem 1.1 Suppose EE 6= NEE. Then there is a language in NP for which search does not
reduce to decision.

Note that the conclusion (of the above theorem) implies P 6= NP. Whether the assumption could
be reduced to P 6= NP (or even E 6= NE) remains an open question.

We note that if L is NP-complete, then for any NP-relation � that de�nes L, it is the case that
search reduces to decision for � (a consequence of the \self-reducibility" and NP-completeness of
SAT as well as certain features of the proof of Cook's theorem [Co], this fact is one of the most
basic and well-known ones in the theory of computation). In particular, by our de�nition, search
certainly reduces to decision for any NP-complete language. So the \hard" problems (from the
point of view of search versus decision) will necessarily be non-NP-complete. In particular, the
language of the conclusion of the above theorem is not NP-complete.

The decision versus search question has attracted the attention of researchers ever since NP
was introduced (we survey some of the work on this subject in Section 1.5). However, we note that
previous work has focused on the question of whether search reduces to decision for NP-relations
(not NP languages) and the conclusions have been weaker than ours.

1.2 Competitive Proof Systems: the Natural Extension

NP represents the simplest kind of proof system. An NP proof system for L is de�ned by a
polynomial time \veri�er" V . This veri�er talks to a \prover" who, on an input x common to
both parties is allowed to send the veri�er a single message of length polynomial in n = jxj. As a
function of this message and the common input, the veri�er decides whether or not to accept (this
\decision" of the veri�er is a polynomial time binary predicate � evaluated on the common input
and the prover's message). In the case that x 2 L, there must exist some deterministic \prover"
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P who can convince the veri�er to accept (this is the \completeness" condition). In the case that
x 62 L, no \prover" should be able to convince the veri�er to accept (this is the \soundness"
condition). We usually specify an NP proof system by a pair (P; V ) where P is a prover satisfying
the completeness condition. Clearly, L 2 NP if and only if it possesses an NP proof system.

How powerful need the prover P be in an NP proof system for L? It is clear he must have at
least the ability to decide L for himself. Let us call a NP proof system (P; V ) \competitive" if this
\minimal" ability is also su�cient; more precisely, (P; V ) is competitive if P runs in polynomial
time given an oracle for L. It now becomes clear that the question of whether or not search
reduces to decision for L 2 NP captures the computational di�culty of the prover's task under
this \competitive" measure of complexity. More precisely, we observe that L has a competitive NP
proof system if and only if search reduces to decision for L. Thus, Theorem 1.1 indicates that there
is a language L 2 NP to give an \NP proof" of which any prover must use power over and above
that necessary to decide L.

NP-proof systems, however, are very restrictive. It becomes natural to ask: would the prover's
task be alleviated if the parties were allowed interaction and the proof was now only required to
be correct with high probability? In other words, we now consider interactive proofs (cf. [GMR]).
We recall that in an interactive proof both parties are allowed to be probabilistic and the parties
are allowed to exchange messages, for a polynomial number of rounds, before the veri�er decides
whether or not to accept. Completeness and soundness are required to hold only with high prob-
ability (see Section 4.1 for precise de�nitions). Let us call an interactive proof system competitive
if the provery runs in probabilistic polynomial time given access to L as an oracle. Then does
every language in NP (and more generally in IP) have a competitive interactive proof? In other
words, does the extra leeway provided by interaction and randomness reduce the burden on the
prover, or does the discrepancy between proving and deciding remain even if coins and interaction
are allowed?

Quadratic residuosity provides a telling example. Let QR = f (x;N) : 9y 2 Z�
N s.t. x � y2

(mod N) g, and QNR = f (x;N) : :9y 2 Z�
N s.t. x � y2 (mod N) g. Search is not known to

reduce to decision for QNR; in all known NP proof systems for QNR, the prover requires the
ability to factor N , and factoring is not known to be reducible to quadratic residuosity. Yet, we do
know of interactive proofs for 2 QNR where it su�ces for the prover to be able to tell membership
in QR (i.e., QNR does have competitive interactive proofs) [GMR]. On the other hand, there is no
known interactive proof for QR where it su�ces for the prover to be able to decide membership in
QR (i.e QR is not known to have a competitive interactive proof).

Our next result indicates that in general, interaction and randomness will not make the prover's
task easier. More precisely, we indicate that not all languages in NP have competitive interactive
proofs. Letting BPEE denote the class of languages recognized with bounded error by a probabilistic
TM running in time 2c2

n

for some constant c � 0, we have the following

Theorem 1.2 If NEE 6� BPEE then there is a language in NP that does not have a competitive
interactive proof.

The complexity of a prover in an interactive proof system is a basic question which is attracting
a fair amount of attention (cf. Section 1.5). The notion of competitive interactive proofs that
we introduce provides a new angle from which to understand this question; whereas past work
has focused on providing upper bounds on the complexity of provers, we are instead trying to
understand the \comparative" complexity of proving versus deciding.

y The prover here refers, of course, to the \honest" prover of the completeness condition; the soundness condition
of the proof system is as usual required to hold with respect to any (computationally unbounded) prover.
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1.3 Program Checking

We brie
y mention our results on program checking that are in the same vein as the above.
Blum and Kannan [BK] introduced the notion of program checkers (see Section 5 for full de�ni-

tions). Negative results in this domain begin with Yao [Ya] who presented a language in determin-

istic space 2n
log log n

that does not have a checker. Beigel and Feigenbaum [BF] and Krawczyk [Kr]
improved this to deterministic space nlog

� n. The question of whether there are languages of reason-
able complexity that are not checkable was answered by [BF] under an assumption: they showed
there was one such in NP provided non-deterministic triple exponential time is not contained in
bounded probabilistic triple exponential time. We improve the assumption to double exponential
time. Namely, we have the following

Theorem 1.3 If NEE 6� BPEE then there is a language in NP that does not have a checker.

1.4 A Natural Candidate?

Clearly, it would be most interesting to exhibit an example of a natural problem in NP for which
there are no competitive interactive proofs. A candidate example | as we indicated in Section 1.2
| is the quadratic residuosity problem. Let us consider the interactive proofs known for member-
ship both in QR and QNR in more detail.

First for membership of (x;N) in QNR, the following protocol is repeated k times (cf. [GMR]).
The veri�er tosses a coin c 2 f0; 1g. If c = 1 then the veri�er sends the prover z = xr2 mod N for
random r 2 Z�

N , else the veri�er sends the prover z = r2 mod N for random r 2 Z�
N . The prover is

then asked to guess the value of c. If the prover guesses correctly in each repetition of the protocol,
then the veri�er accepts. Clearly, if (x;N) 2 QNR then c = 1 if and only if (z;N) 62 QR. Thus, it
is su�cient for the prover to be able to tell membership in QR in order to guess c and the prover
is competitive. On the other hand, if (x;N) 62 QNR then the probability that the veri�er accepts
is no greater than 2�k .

How about proving that (x;N) 2 QR? A simple proof would be the factorization of N or a
y 2 Z�

N such that x � y2 (mod N). In fact, all known interactive proofs of this fact require the
ability to factor N . As we do not know whether factoring reduces to deciding quadratic residuosity,
it remains an intriguing open problem whether membership in QR can be interactively proved by
a probabilistic polynomial time prover with access to a QR oracle. In particular, if the answer to
this question were negative, we would get the following interesting number theoretic implication:
integer factorization is not polynomial time reducible to deciding quadratic residuosity.

We note that there are special classes of integers N for which (x;N) 2 QR can be interactively
proved by a probabilistic polynomial time prover with access to a QR oracle. For example, this can
be done when N is the product of a constant number of primes (cf. Section 6).

1.5 Related Work

We discuss related work on decision versus search and the complexity or provers.

Decision versus Search for NP. The \decision versus search" question has attracted the atten-
tion of researchers ever since NP was introduced. It has been studied in many di�erent contexts
and from many angles, and, in particular, many results have indicated that for NP, search is likely
to be harder than decision. We stress that all these results are about search versus decision for
NP-relations, not NP-languages. So, in that sense, the conclusions are weaker than ours.

Let us now describe some of this work. In what follows we let � denote a polynomial time
computable binary predicate.
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Valiant [Va] appears to have been the �rst to indicate that there are NP-relations � for which
search is unlikely to reduce to decision; speci�cally, assuming P 6= NP \ coNP, he presents a
particular NP-relation � with the property that search does not reduce to decision for �. However,
the underlying language L� in Valiant's result is easy; in fact, it equals f0; 1g

�. Borodin and Demers
[BD] strengthen Valiant's result in this regard by showing that under the same assumption, there is
a NP-relation � for which L� 2 NP�P but search still does not reduce to decision for �. Hartmanis
and Hemachandra [HH] present results similar to Valiant's but assuming P 6= UP \ coUP.

Impagliazzo and Naor [IN] indicate that, at least in relativized worlds, the assumption P 6=
NP \ coNP is not necessary for the conclusion of Valiant's result. More precisely, they present a
relativized world in which P = NP\ coNP but there exists an NP-relation � such that L� = f0; 1g�

and search does not reduce to decision for �.
The assumption P 6= NP su�ces to indicate that the \usual" method of self-reduction (where

one constructs a witness bit-by-bit, given an oracle for the language) may not always work: Selman
[Se] shows that under this assumption there is a NP-relation � for which L� 2 NP � P but, given
a pair of strings (x; u) and an oracle for L�, it is impossible to decide in polynomial time whether
or not there is an extension of u which is a �-witness for x.

We stress again that none of the above work addresses the problem we consider. They focus
on NP-relations, asking whether there exist (speci�c) NP-relations � for which it is impossible to
reduce the search problem for � to the corresponding decision problem for L�. We focus on NP
languages, asking whether there exists a language L, for which, for any associated search problem
�, it is impossible to reduce the search problem for � to its corresponding decision.

Decision versus Search in other settings. The usual reduction of search to decision has a
strong sequential 
avor, and Karp, Upfal and Wigderson [KUW] investigated the degree to which
this is necessary. Ben-David, Chor, Goldreich and Luby [BCGL] investigate the \decision versus
search" question in the context of average-case complexity. Impagliazzo and Tardos [IT] consider
the decision versus search question in the exponential case, and present an oracle relative to which
E = NE but there is an exponential time binary predicate whose search problem is not solvable in
exponential time.

The Complexity of Provers. Several recent works present results on the complexity of provers
in interactive proofs. Let us describe some of them.

Shamir's result [Sh] implies that polynomial space provers su�ce to prove PSPACE languages.
The best upper bound on the complexity of a prover of a coNP language, due to Lund, Fortnow,
Karlo� and Nisan [LFKN], is probabilistic, polynomial time with a #P oracle.

Bellare and Petrank [BP] investigate the complexity of zero-knowledge (ZK) provers, and in-
dicate that such provers can be reasonably e�cient; speci�cally, they show that any language
possessing a statistical ZK interactive proof possesses one with a prover who is a probabilistic,
polynomial time machine with access to an NP oracle.

In the case of multi-prover proofs, Babai, Fortnow and Lund [BFL] show that exponential time
provers su�ce for exponential time languages.

We stress that all these works are concerned with upper bounding the complexity of provers
in an \absolute" sense. The model of competitive interactive proofs that we introduce here is
for the purpose of studying the complexity of provers in a di�erent way; namely, in terms of the
\comparative" complexity of proving versus deciding.

Recent Work. Independently of this work, Impagliazzo and Sudan [IS] show that if NE 6= coNE
then there is a language in NP for which search does not reduce to decision. Here the conclusion
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is the same as in Theorem 1.1, but the assumption is di�erent (and not known to be either weaker
or stronger). They also show that if E 6= NE then there is a NP-relation � for which search does
not reduce to decision; this is the same conclusion as in the above-mentioned result of Borodin and
Demers [BD], but under an assumption which is di�erent from that of [BD] (but, again, not known
to be either weaker or stronger). Finally, Spielman [Sp] has constructed an uncheckable set in �P

2

under the assumption that �E
2 6= �E

2 .

Publication Notes. These results appeared in a preliminary form in [BG]. Later, merged with
[BF], they appeared in [BBFG].

1.6 Relations to other Notions

We focus in this paper on (competitive) interactive proofs and checking. Related notions are
function-restricted interactive proofs [BK], multi-prover interactive proofs [BGKW] and coherence
[Ya]. Here we discuss how these notions relate to ours and also how our results impinge on them.
First, let us list the (complexity classes corresponding to) the notions in this area.

The Complexity Classes in this area. The following are the (main) complexity classes that
the ensuing discussion will focus on.

compNP = fL : L has a competitive NP-proof system g

= fL 2 NP : search reduces to decision for L g

IP = fL : L has an interactive proof system g

compIP = fL : L has a competitive interactive proof system g

frIP = fL : L has a function-restricted interactive proof system g

MIP = fL : L has a multi-prover interactive proof system g

Check = fL : L is checkable g

Coh = fL : L is coherent g

Function-restricted interactive proofs. Function-restricted interactive proof systems are a
variant of interactive proof systems introduced by Blum and Kannan [BK]. Like competitive
interactive proofs, they make the restriction that the honest prover be a probabilistic, polynomial
time machine with access to an oracle for the language in question. But, in contrast to competitive
interactive proofs, they also restrict the dishonest prover. Speci�cally, they ask that a dishonest
prover be a function from veri�er messages to strings. In particular, the response of the dishonest
prover to a veri�er message is not allowed to depend on previous questions of the veri�er (that is,
its messages are independent of the history).

As we will see (cf. Lemma 4.3) it is the case that compIP � frIP. Blum and Kannan also
established that Check � frIP. On the other hand, based on the techniques of [FRS], one can show
that frIP � MIP.

Function-restricted interactive proofs were introduced in order to relate program checking to
interactive proofs. We introduce competitive interactive proofs to address the question of how
much power is necessary for the honest prover to prove membership interactively, whence it is
imperative to not weaken the de�nition of interactive proofs by making assumptions on the power
of the dishonest prover. However, we use the notion of function-restricted proof systems to provide
a uni�ed treatment of our results. We establish the main technical lemmas needed for our proofs in
terms of the equivalent notion of \deciders" (cf. Section 3), and then use these lemmas to derive our
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results on competitive interactive proofs and checking in a simple way. In particular, (improving
[BF]; see below) we do show that if NEE 6� BPEE then there is a language in NP� frIP.

Competitive multi-prover proofs. One could de�ne competitive multi-prover proofs. However,
using techniques of [FRS], one can show that the corresponding class of languages is identical to
frIP.

Coherence. The notion of coherence was introduced by Yao [Ya]. Informally, a language L is
coherent if the membership of x in L can be decided in probabilistic polynomial time and bounded
error by a machine (called the examiner) which has access to L as an oracle but is allowed to query
this oracle only on points di�erent from x. If L is not coherent we say it is incoherent. Beigel and
Feigenbaum [BF] prove the existence of incoherent languages in NP under the assumption that non-
deterministic triple exponential time is not contained in bounded probabilistic triple exponential
time. Since checkable languages and languages in frIP are coherent (cf. [Ya, BF]), they thereby
establish the existence of uncheckable languages in NP, and languages in NP� frIP, under the same
assumption.

One can show that if search reduces to decision for L, or L has a competitive interactive proof
then also L is coherent. So the construction of incoherent sets yields negative results about these
notions as well. However, the fact that our stronger results on all these notions (namely decision
versus search, competitive interactive proofs, checking and function restricted proofs) are obtained
more directly (i.e. avoiding incoherence) indicates that coherence may not be the best approach to
negative results in this area.

We note that, intuitively, coherence has a 
avor di�erent from that of the other notions we have
considered; while the common underpinning of these others is the notion of a \proof" (interactive
or non-interactive), coherence is not a form of \proof." Indeed, the examiner gives no \proof" that
x 2 L | there is no guarantee as to what would happen if the examiner is run with an oracle
di�erent from L. It is by exploiting this \proof" like quality of the notions we consider that we
were able to derive results that are stronger than those derived by the coherence approach.

In this context we note also that one can separate the classes of checkable and coherent languages
inside NP, assuming NEE 6� BPEE (cf. Theorem 5.4).

Summary. We summarize relationships amongst the various complexity classes we have discussed.
First, some notation. We de�ne the triple exponential time class

NEEE� =
S
c�0NTIME(22

2n
c

) :

Similarly, we let BPEEE� denote the class of languages recognized with bounded error by a prob-

abilistic TM running in time 22
2n

c

for some constant c � 0.

The following inclusions are known, or easily derived from known techniques:

(1) compNP � NP \ compIP.
(2) NP [ compIP � IP � MIP.
(3) compIP [ Check � frIP � MIP \ Coh.

Under the assumption NEE 6� BPEE we establish the following:

(4) NP is not contained in any of the following: compNP; compIP; Check; frIP.
(5) NP \ Coh is not contained in any of the following: compNP; compIP; Check; frIP.

For the results of line (4), see Theorems 2.9, 4.4, 5.3 and 3.6. For those of line (5), see the (theorem
and) discussion at the end of Section 5. Finally, under the assumption NEEE� 6� BPEEE�, [BF]
establish the following:
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(6) NP 6� Coh.

2 Decision versus Search in NP

In this section we present a simple construction of a language in NP for which search does not
reduce to decision, assuming that EE 6= NEE. In later sections we will extend the argument to
interactive proofs and program checking. Let us begin with the de�nitions.

2.1 De�nitions

The goal of this section is to make precise what we mean by \search reduces to decision for an NP
language L." Since the issues were discussed at length in Section 1.1, we will here be brief, stating
the (formal) de�nitions and limiting the discussion to essentials.

It is convenient to proceed in steps. We begin by de�ning NP-relations and saying what it
means for search to reduce to decision for them. We then use this this to say what it means for
search to reduce to decision for a NP language.

De�nition 2.1 Let �(�; �) be a polynomial time computable binary relation, and let x 2 f0; 1g�.
We let �(x) = fw 2 f0; 1g� : �(x; w) = 1 g, and call the members of this set �-witnesses for x. We
say that � is an NP-relation if there exists a constant c 2 N such that for all x 2 f0; 1g� it is the
case that �(x) � f0; 1gjxj

c

. The language de�ned by � is f x 2 f0; 1g� : �(x) 6= ; g and is denoted
L�.

Note that if � is an NP-relation then L� 2 NP.

Notation: If W (�) is an oracle machine, then WL(x) denotes the output of W with oracle L �
f0; 1g� and input x 2 f0; 1g�.

We now say what it means for search to reduce to decision for an NP-relation. An equivalent
formulation of the de�nition that follows appears in [BD].

De�nition 2.2 Suppose � is an NP-relation and W (�) is a polynomial time oracle machine. Let
L = L�. We say that W is a �-witness �nder if for each x 2 L it is the case that WL(x) 2 �(x).
We say that search reduces to decision for � if there exists a �-witness �nder.

Note that the witness �nder is not restricted to any particular method (for example, it is not required
that the length of queries be decreasing with time). Rather, any polynomial time computation is
allowed. This strengthens negative results.

We now wish to say what it means for search to reduce to decision for an NP language (as
opposed to an NP-relation). Begin with the following terminology.

De�nition 2.3 Suppose � is an NP-relation and L � f0; 1g� is a language. We say that � de�nes

L if L = L�.

Clearly, L 2 NP i� there exists an NP-relation which de�nes L. However, for any particular
language L 2 NP, there may be many di�erent NP-relations which de�ne L. If L is NP-complete,
then search reduces to decision for any of these NP-relations. However if L is not NP-complete,
then search might reduce to decision for some of them but not for others. In de�ning what it means
for search to reduce to decision for L we have chosen to be liberal: we ask only that there be some
NP-relation � de�ning L for which search reduces to decision.
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De�nition 2.4 Suppose L � f0; 1g�. We say that search reduces to decision for L if there exists
an NP-relation � such that � de�nes L and search reduces to decision for �.

As we have indicated in Section 1, our de�nition is motivated by interactive proofs and the question
of whether proving membership is harder than deciding it. Proving membership in L is easy (in
the sense that L has a competitive NP-proof system) as long as search reduces to decision for some
NP-relation de�ning L, so we are led to De�nition 2.4. We note, in this context, that there are
languages (such as f0; 1g�) which are easy but have an associated search problem which is hard [Va],
and we certainly don't wish to think of search as being harder than decision for these languages.
Appropriately, search does reduce to decision for these languages according to our de�nition.

Finally, we note that the existence of a language for which search does not reduce to decision
does, of course, imply the existence of an NP-relation for which search does not reduce to decision,
so negative results under our de�nition are stronger than those which simply conclude the existence
of NP-relations for which search is harder than decision.

Whenever � is understood we will say \witness" or \witness �nder" rather than \�-witness" or
\�-witness �nder."

2.2 Uniformly Log-Sparse Languages

Our proof will use languages which combine logarithmic sparseness with the property that it be
possible to e�ciently identify a logarithmic sized superset of the strings below any given length.
Let us proceed to the formal de�nitions.

De�nition 2.5 The census function �L : N ! N of L � f0; 1g� of a language L is de�ned by
�L(n) =

Pn
i=0 jL \ f0; 1g

ij. We say that L is log-sparse if �L(n) = O(logn).

That is, �L(n) is the number of strings in L which have length � n, and a language is log-sparse if
it contains at most O(logn) strings of length at most n. Log-sparse languages were used in [HSI]
where they were called \super-sparse."

The next de�nition formalizes the idea of being able to e�ciently identify some super-set of a
language, and then speci�es the notion of \uniform log-sparseness" in which we are interested.

De�nition 2.6 We say that C � f0; 1g� is a candidate selector for L if C is polynomial time
decidable and L � C. We say that a language L is uniformly log-sparse if it has a log-sparse
candidate selector.

As we will see in Section 2.3, the interest of uniformly log-sparse languages is that they form a class
for which the problem of reducing search to decision is particularly hard. Let us end this section
by stating a lemma which we will use later. This lemma generalizes work of Hartmanis, Sewelson
and Immerman [HSI], who showed that there is a log-sparse language in NP� P if EE 6= NEE. y

Log-sparseness is weaker than uniform log-sparseness in that no candidate selector is required, but
it is easy to see that a uniformly log-sparse language in NP� P nonetheless exists under the same
assumption. For completeness we provide a sketch of the (entirely standard) proof.

Lemma 2.7 If EE 6= NEE then there is a uniformly log-sparse language in NP� P.

Proof: We use a standard \downward separation" argument. Assume EE 6= NEE and suppose
L0 2 NEE�EE. De�ne L = fy:0g(jyj)�jyj : y 2 L0g, where g(k) = 22

k

. We claim that L is uniformly
log-sparse and L 2 NP� P.

y [HSI] claimed the converse as well, but Allender [Al] points out that their proof is 
awed and the theorem cannot
be proved using techniques that relativize.
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De�ne A to be the algorithm which on input x 2 f0; 1gn behaves as follows. If n is not in the range
of g then A outputs 0. Else it computes k = g�1(n) and outputs 1 i� the last n � k bits of x are
zero. Then C = f x : A(x) = 1 g is a candidate selector for L and �C(n) � 21+g

�1(n) = O(logn),
so L is uniformly log-sparse.

The fact that L 2 NP� P follows directly from the fact that L0 2 NEE � EE.

2.3 A Language for which Search Does not Reduce to Decision

The following, which is the main lemma of this section, shows that the reduction of search to
decision for a uniformly log-sparse language is only possible in the trivial case where the language
is already in P.

Lemma 2.8 Suppose L is a uniformly log-sparse language for which search reduces to decision.
Then L 2 P.

Proof: By assumption, there exists an NP-relation � and a polynomial time oracle machine W
such that � de�nes L and W is a �-witness �nder. We will construct a polynomial time machine
M which decides L. We begin by describing the idea informally.

The idea is to use W as a subroutine to �nd a witness. The di�culty is, of course, that W makes
oracle queries about L itself. Not having access to an oracle for L, our machine M certainly cannot
correctly answer these queries. To see how it can nonetheless exploit W , suppose for a moment
that W is guaranteed to make only one oracle query in its entire computation on input x. Then
M can try both possible answers. That is, it branches into a pair of parallel computations. In the
�rst it answers the query by 0 and in the second it answers it by 1, and in both cases it then runs
W until W halts. Clearly x 2 L if and only if at least one of these runs outputs a witness, and the
strategy is polynomial time.

This idea extends to W making O(logn) queries. In reality, however, W could make polynomially
many queries so that this strategy is not e�cient. This is the point where we invoke the uniform
log-sparseness of L (which we have not used so far). This implies that there are really only O(logn)
\e�ective" queries that W can make: since W can only write down queries of polynomial length,
we can use the log-sparse candidate selector of L to identify a set of at most O(logn) strings which
include all strings in L which W could possibly query, and we need branch only on these.

With this overall strategy in mind let us now specify the operation of M more precisely. Since �
is an NP-relation, there exists a constant c 2 N such that for all x 2 f0; 1g� it is the case that
�(x) � f0; 1gjxj

c

. We can assume that there is a constant d > 0 such that on any input x 2 f0; 1g�

the machine W will halt in � djxjd steps and output a string of length jxjc, regardless of how the
oracle queries of W are answered. We also assume (wlog) that all queries made by W are distinct.
Let C be a log-sparse candidate selector for L. Now, on input x 2 f0; 1gn the machine M behaves
as follows:

(1) M runs W on input x. Each time W makes an oracle query q, the machine M provides a
response as follows:
(1.1) If q 62 C then M responds with 0.
(1.2) Else it continues by trying in parallel both possible answers 0 and 1. That is,M branches

into two \parallel" computations. In the �rst it lets the response to q be 0 and in the
second it lets the response to q be 1. It then continues to run W in each computation.

In this manner M generates a number of parallel computations. After dnd steps all of these
computations have halted and each has yielded an nc bit output (the output of W ).
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(2) M now examines the set of outputs from the previous step. It accepts if at least one of these
outputs w satis�es �(x; w) = 1, and rejects otherwise.

This completes the description of the machine M . The fact that it works should be clear, but for
completeness let us spell it out.

First, to see that M accepts x if and only if x 2 L, it su�ces to check that on at least one of
the parallel computations all oracle queries are correctly (that is, according to L) answered. But
Step (1.1) is obviously correct by de�nition of the candidate selector and in step (1.2) everything
is being tried, so one of the runs will certainly end up having all the right query answers.

The next thing to check is that M runs in polynomial time. It su�ces to show that the total
number of parallel computations is nO(1). For this it su�ces to show that the number of branches
on any path is O(logn). We now argue the latter. First note that any query q has length at
most dnd (the running time of W ). But branching only occurs when q 2 C, and we have assumed
that all W 's queries are distinct. So the number of times branching occurs is at most the size of
f q 2 C : jqj � dnd g, which is at most �C(dn

d) = O(logn). This completes the proof.

We can now put the pieces together to obtain the result:

Theorem 2.9 If EE 6= NEE then there exists a language in NP for which search does not reduce
to decision.

Proof: By Lemma 2.7 there exists a uniformly log-sparse language L 2 NP� P. By Lemma 2.8,
search cannot reduce to decision for L.

Note that the fact that search does not reduce to decision for L implies that L is not NP-complete.
The existence of a non NP-complete language in NP�P can however be established assuming only
P 6= NP (cf. [La]).

3 Deciders and their Properties

Before extending the ideas of the previous section to interactive proofs and checking, we pause to
develop some technical materiel. This materiel will be useful in proving the results of later sections.
In particular we introduce the notion of a \decider" which will enable us to give a uni�ed and more
concise treatment of the rest of the results of this paper. We begin with the de�nition.

De�nition 3.1 Let D be a probabilistic, polynomial time oracle machine. We say that D is a
decider for language L if for each x 2 f0; 1g� the following is true:

(1) if x 2 L then DL(x) accepts with probability � 2=3
(2) if x 62 L then the probability that DA(x) accepts is � 1=3 for all oracles A.

We note that L has a decider if and only if it is in function-restricted IP (cf. [BK]). So deciders
are just a way of characterizing languages in frIP. They can also be viewed as \checkers for yes
instances." They are weaker than multi-prover interactive proofs: the results of [FRS] imply that if
L has a decider then it has a multi-prover interactive proof. For us the motivation of De�nition 3.1
is to \generalize" the notion of a witness �nder in the light of our proof of Lemma 2.8. The property
of the witness �nder that was important in that proof was that it was correct for x 2 L as long
as oracle queries were answered correctly (i.e. according to L), and it was \correct" for x 62 L no
matter how oracle queries were answered. Like a witness �nder, correctness of the decider on inputs
x 2 L is guaranteed (except here only with high probability) as long as oracle queries are correctly
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answered. On the other hand if x 62 L then again correctness is guaranteed with high probability,
no matter how oracle queries are answered. As we will see, these properties will su�ce for us to
appropriately extend Lemma 2.8 to Lemma 4.3.

The error probability of 1=3 in the above de�nition is not always su�cient. It is convenient to
also de�ne the following.

De�nition 3.2 Let D be a probabilistic, polynomial time oracle machine. We say that D is a
strong decider for L if for each x 2 f0; 1g� the following is true:

(1) if x 2 L then DL(x) accepts with probability � 1� 2�jxj

(2) if x 62 L then the probability that DA(x) accepts is � 2�jxj for all oracles A.

Standard error-reduction, of course, says that strong deciders exist whenever deciders exist. For
completeness let us state this as a proposition and provide a sketch of the proof.

Proposition 3.3 If L has a decider then it has a strong decider.

Proof: Let D be a decider for L. We de�ne machine D0 as follows. On input x, machine D0 runs D
on input x a total of m = O(n) times, each time with independent coin tosses. The oracle queries
made by D0 are answered by D0 by way of his own oracle (that is, if D makes oracle query q then
D0 makes oracle query q, and provides the answer he receives to D). D0 outputs the majority vote
of the outputs of D in the m trials. To see that D0 is a strong decider for L, let XA

1 ; : : : ; X
A
m denote

the sequence of random variables representing the outcomes of D with oracle A in these successive
trials. These are independent, and for each i = 1; : : : ; m satisfy Pr[XL

i = 1] � 2=3 in the case that
x 2 L, and Pr[XA

i = 1] � 1=3 for all oracles A in the case that x 62 L. An application of standard
Cherno� bounds yields the desired conclusions.

We saw in Section 2 that reducing search to decision for uniformly log-sparse languages is hard.
Here we show that these same languages also do not have deciders unless they are in BPP.

Lemma 3.4 Suppose L is uniformly log-sparse and has a decider. Then L 2 BPP.

Proof: By Proposition 3.3, L has a strong decider D. We show how to use D to construct a BPP
machine M to decide L. The idea is very much the same as that in the proof of Lemma 2.8, with
the decider here playing the role that the witness �nder played in that proof. That is, on input x
the machine M will run D on input x and answer its oracle queries according to the same rules
as those used in the proof of Lemma 2.8. M accepts if and only if the decider accepts on at least
one of the parallel computations. The main di�erence (with respect to Lemma 2.8) lies in the fact
that there is no way to tell whether a particular output of the decider is correct (in Lemma 2.8
one can always check whether or not the output of the witness �nder is really a witness). Instead,
the correctness of the procedure follows from the fact that the error probability of D is very small
(2�n). Details follow.

Let d be a constant such that D always halts in � dnd steps on inputs of length n. Let C be
the log-sparse candidate selector for L. We assume (wlog) that all oracle queries made by D are
distinct. On input x 2 f0; 1gn the machine M behaves as follows:

(1) M runs D on input x. Each time D makes an oracle query q, the machine M provides a
response as follows:
(1.1) If q 62 C then D responds with 0.
(1.2) Else it continues by trying in parallel both possible answers 0 and 1. That is,M branches

into two \parallel" computations. In the �rst it lets the response to q be 0 and in the
second it lets the response to q be 1. It then continues to run W in each computation.
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In this manner M generates a number of parallel computations. After dnd steps all of these
computations have halted and each has yielded a output of 1 or 0 (the output of D).

(2) M now examines the set of outputs from the previous step. It accepts if at least one of these
outputs is 1.

Since the answers in one of these parallel computations correspond to L, machine M accepts with
probability � 1 � 2�n if x 2 L. Now suppose x 62 L. Let Q = f q 2 C : jqj � dnd g, and let A
denote the set of all subsets of Q. Each parallel computation of M corresponds to running D with
some oracle A 2 A. It follows that the probability thatM accepts is at most

P
A2A Pr[DA accepts].

By assumption D is a strong decider for L, so we can bound this by jAj � 2�n. But we claim that
jAj � nO(1), and so the probability that M accepts is o(1), completing the proof. To justify the
claim, note that jAj � 2jQj and jQj � �C(dn

d) = O(logn).

Recall that BPEE denote the class of languages accepted in time 2c2
n

for some constant c � 0 by
a probabilistic machine with bounded error. By an argument analogous to that used in the proof
of Lemma 2.7 we can show the following.

Lemma 3.5 If NEE 6� BPEE then there exists a uniformly log-sparse language in NP� BPP.

Combining this with Lemma 3.4 we obtain the following theorem which we will use in the next two
sections.

Theorem 3.6 If NEE 6� BPEE then there exists a language in NP which does not have a decider.

We remarked earlier that L has a decider i� L 2 frIP, so Lemma 3.6 says that NEE 6� BPEE implies
NP 6� frIP. In later sections we will use Theorem 3.6 to show that (NEE 6� BPEE implies) NP 6�
compIP; Check by showing that languages in compIP and Check have deciders (cf. Lemmas 4.3
and 5.2).

4 Competitive Interactive Proofs

We begin by recalling the notion of an interactive proof. We then de�ne competitive interactive
proofs and present our results.

4.1 Interactive Proofs

Interactive proofs are extensions of NP ones, so let us begin by recalling the latter. An NP proof
system for a language L 2 NP is de�ned by a polynomial time veri�er V . We imagine this veri�er
talking to a \prover." The parties receive a common input x, and the prover's goal is to convince
the veri�er to accept. To this end he is allowed to send the veri�er a (single) message of length
nO(1). The veri�er's decision as to whether or not to accept is made as a function of the common
input and this message (since the veri�er is deterministic, this \decision" is a polynomial time
binary predicate � evaluated on the common input and the prover's message). In the case that
x 2 L, we ask there exist some deterministic \prover" P who can convince the veri�er to accept
(this is the \completeness" condition). In the case that x 62 L, no \prover" should be able to
convince the veri�er to accept (this is the \soundness" condition). We usually specify an NP proof
system as a pair (P; V ) where P is a prover satisfying the completeness condition. Clearly, L 2 NP
if and only if it possesses an NP proof system.

Interactive proofs, which were introduced by Goldwasser, Micali and Racko� [GMR], are a
natural extension of such NP proof systems. Both parties are now allowed to be probabilistic.
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Moreover, they are allowed to interact (that is, they exchange messages for a polynomial number
of rounds, and it is only at the end of this exchange that V decides whether or not to accept). We
say that (P; V ) is an interactive proof for a language L if (1) on common input a string in L, it is
possible for P to induce V to accept with high probability, and (2) on common input a string not
in L, there is no prover who can prevent V from rejecting with high probability.

Let us now proceed more formally. A party A in an interactive proof may be viewed as a
(probabilistic) function of the common input and the conversation so far. The outcome of this
function on input x (the common input) and c (transcript of conversation so far), which we denote
by A(x; c), is the next message computed by A (and sent to the other party).y We assume that the
transcript of the conversation at any point may be uniquely parsed into its constituent messages.
We may discuss the complexity of such parties in the usual way, viewing them as being computed by
(probabilistic) Turing machines. For example, the veri�er is a party computable by a probabilistic,
polynomial time TM. Complexity is measured as a function of the length of the common input
(which we usually denote by n). The total number of moves (a move consists of a party computing
and sending a message) as well as the length of all messages are assumed to be bounded by
a polynomial in n. At the end of the interaction, the veri�er accepts or rejects by applying a
(deterministic) binary predicate to the common input and transcript of conversation. Suppose
a prover A interacts with a veri�er B on common input x. The \probability that B accepts in
its interaction with A on common input x" is the probability that B accepts given the common
input x and transcript �1�1 : : :�g�1�g�1�g chosen according to the following experiment: �1 =
A(x; �); �1 = B(x; �1); �2 = A(x; �1�1); �2 = B(x; �1�1�2); : : : ; �g = A(x; �1�1 : : :�g�1�g�1).
(Here g = g(n) is the total number of moves, � is the empty string, and we are assuming for
simplicity that A speaks �rst and last. The probabilities are over the random choices of both
parties in this conversation).

De�nition 4.1 (Interactive Proofs [GMR]) Let (P; V ) be a pair of (probabilistic) functions. We
say that (P; V ) is an interactive proof system for language L if V is probabilistic, polynomial time,
and

(1) For every x 2 L the probability that V accepts in its interaction with P on common input x is
� 2=3

(2) For every x 62 L and every function bP , the probability that V accepts in its interaction with bP
on common input x is � 1=3.

The �rst condition is the completeness condition and the second is the soundness condition.

We note the strength of the soundness condition: the quanti�cation is over all functions bP (we call
them \cheating" or \dishonest" provers), even non-computable ones.

We note that an NP proof system is a special kind of interactive proof system. Speci�cally, an
NP proof system is an interactive proof system (P; V ) in which both P and V are deterministic,
the interaction is restricted to a single message from the prover to the veri�er, and the probabilities
in the completeness and soundness conditions are 1 and 0 (rather than 2=3 and 1=3), respectively.
The addition of interaction and randomness, however, seems to add signi�cantly to the language
recognition power of the system. It was established by Lund, Fortnow, Karlo� and Nisan [LFKN]
that IP (the class of languages possessing interactive proofs of membership) contains the polynomial
time hierarchy, and Shamir [Sh] extended this to show that IP equals PSPACE.

y When we say that this function is probabilistic we mean that to any x; c party A actually associates a distribution
on strings, and A(x;c) is a random element of this distribution.
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4.2 Competitive Interactive Proofs

A basic complexity theoretic question is to determine how e�cient the prover P can be in an
interactive proof (P; V ) of a language L. Certainly he would need at least the ability to decide
the language himself. We de�ne a competitive interactive proof system as one where the prover is
allowed no more than this. Speci�cally, he must run in probabilistic polynomial time given access
to L as an oracle. As we will see, competitive interactive proofs represent the natural generalization
of the problem of decision vs. search.

De�nition 4.2 Let P be a probabilistic polynomial time oracle machine and V a probabilistic
polynomial time machine. We say that (P,V) is a competitive interactive proof system for a language
L if

(1) For every x 2 L the probability that V accepts in its interaction with PL on common input x
is � 2=3

(2) For every x 62 L and every interactive TM bP , the probability that V accepts in its interaction
with bP on common input x is � 1=3.

The �rst condition is the completeness condition and the second is the soundness condition. We
call P a competitive prover.

We note that the soundness condition remains the same as in the de�nition of interactive proofs. In
particular, we do not restrict the computational power of the \cheating" prover bP in the case x 62 L.
Our goal is to understand the di�culty of providing a correct proof, and unrestricted soundness
would appear to be an inherent property of \proofs."

Competitive NP proof systems are de�ned in the natural way. That is, a competitive NP
proof system is a competitive interactive proof system in which both parties are deterministic, the
interaction is restricted to a single message from the prover to the veri�er, and the probabilities
in the completeness and soundness conditions are 1 and 0 (rather than 2=3 and 1=3), respectively.
Equivalently, it is an NP proof system in which the prover is restricted to polynomial time plus an
oracle for L. We now note that search reduces to decision for L if and only if L has a competitive
NP proof system (the prover in the competitive NP proof system corresponds to the witness �nder).
It is in this sense that competitive interactive proofs are the natural extension of the problem of
decision versus search.

4.3 A NP Language not Possessing a Competitive Interactive Proof

In Section 2 we presented a language L 2 NP for which search is unlikely to reduce to decision.
In other words, L is unlikely to have a competitive NP proof system. The truth, however, is that
proving membership in NP languages remains hard even when interaction and randomness are
allowed: we will show here that there is probably an NP language which does not even have a
competitive interactive proof system. Given the results of Section 3 we need only the following
lemma which shows that any language possessing a competitive interactive proof also has a decider
(or, equivalently, that compIP � frIP).

Lemma 4.3 Suppose L has a competitive interactive proof system. Then it has a decider.

Proof: Let (P; V ) be a competitive interactive proof for L. We note that in probabilistic polynomial
time we can run both P and V . So given an oracle for A, the machine D, on input x, can sample
the space of conversations between PA and V on input x, and accept if and only if the conversation
obtained is accepting. Details follow.
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Let r(n) denote (a polynomial bound on) the number of coin tosses used by P and V on any input
of length n. D picks, uniformly at random, a r(n) bit string RP and a r(n) bit string RV . He
now runs P and V on common input x, using RP as the coins for P and RV as the coins for V .
That is, assuming for example that P sends the �rst message, D would run P (with coins RP )
to get P 's �rst message. He would then run V (with coins RV ) to get the response, and so on.
Oracle queries made by P in this process are answered by D by way of its own oracle (that is, if
P makes oracle query q then D makes oracle query q, and provides the answer he receives to P ).
Eventually D obtains the output of V (1 if V accepts and 0 otherwise), and outputs this value.
Given any particular oracle A, it is the case that DA(x) is a 0=1 random variable, and clearly the
probability that it is 1 equals the probability that V accepts in its interaction with PA on common
input x. By the assumption that (P; V ) was a competitive interactive proof for L it follows that
Pr[DL(x) = 1] � 2=3 in the case that x 2 L, and Pr[DA(x) = 1] � 1=3 for all oracles A in the case
that x 62 L.

Combining Lemma 4.3 and Theorem 3.6 yields the theorem.

Theorem 4.4 If NEE 6� BPEE then there exists a language in NP that does not have a competitive
interactive proof.

We note that we have done more than simply show that interactive proofs may be more powerful
than competitive ones, because the language L of Theorem 4.4 is in NP, a subclass of IP which
possesses particularly simple interactive proofs. To show only that interactive proofs are more
powerful than competitive ones, it would su�ce to present a language in IP (but not necessarily
in NP) which does not have a competitive interactive proof. This can be done under weaker
assumptions, by an extension of the same argument we used above. For example, let

EESPACE =
S
c�0SPACE(2

c2n) :

Then we can show that if EESPACE 6� BPEE then there exists a language in IP which does not
possess a competitive interactive proof.

In general, to construct a language L which lies in some particular complexity class C but
does not possess a competitive interactive proof, it su�ces to assume that the \double-exponential
counterpart" of C is not contained in BPEE. We put the phrase \double-exponential counterpart"
in quotes because it, of course, does not always make sense (many classes have no such counterpart).
But there are many natural classes (such as those used here) for which this paradigm does make
sense.

4.4 Zero-Knowledge Aspects

The \competitive" aspects of zero-knowledge proofs may also be worth investigating. To initiate
such an investigation, let us try to discuss brie
y what one can easily infer from known work and
what are the open questions.

Do NP languages have competitive zero-knowledge interactive proofs? In general, of course,
they probably do not since by Theorem 4.4 they probably do not even have competitive interactive
proofs (let alone ZK ones). An appropriate question then is whether NP languages which possess
competitive interactive proofs also possess competitive zero-knowledge interactive proofs. The
answer depends on the kind of zero-knowledge one considers and on the kind of cryptographic
assumptions one is willing to make.

Let us �rst consider computational ZK. The result of Goldreich, Micali and Wigderson [GMW]
implies that NP-complete languages have competitive ZK interactive proofs, given the existence of
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one-way functions (more generally, it implies that if search reduces to decision for L then L has
a competitive ZK interactive proof, given the existence of one-way functions). We do not know
whether the assumption that there exist one-way functions su�ces to show that any language which
possesses a competitive interactive proof also possesses a competitive ZK interactive proof. But
we do know that the latter conclusion may be established with stronger assumptions such as the
existence of \ideal" secure circuit evaluation or the existence of \oblivious transfer." This follows
from the result of Kilian [Ki] (and we refer the reader to that paper for details on what exactly are
these assumptions).

All statistical ZK languages known to possess competitive interactive proofs are also known
to possess statistical ZK competitive interactive proofs (these languages are graph isomorphism
[GMW], graph non-isomorphism [GMW], and quadratic non-residuosity [GMR]). We do not, of
course, know whether or not quadratic-residuosity has a competitive statistical ZK interactive proof
given that we do not know whether or not it has a competitive interactive proof at all.

5 Program Checking

Blum and Kannan [BK] introduced the notion of program checkers. Informally, a checker for a
function f is a probabilistic, polynomial time oracle machine which receives as an oracle a program
P which purports to compute f . The checker also receives an input x. If the program is entirely
correct (that is, P (y) = f(y) for all y) then the checker is supposed to accept with high probability.
However if the program disagrees with f on the particular input x provided to the checker then the
checker should reject with high probability. The de�nition follows. We note that by a \program"
we mean a deterministic machine that halts on all inputs. We also recall that the characteristic
function of a language L is the function �L : f0; 1g

� ! f0; 1g de�ned by �L(x) = 1 if x 2 L and 0
otherwise.

De�nition 5.1 [BK] Let C be a probabilistic polynomial time oracle TM. C is a checker for
f : f0; 1g�! f0; 1g if for all programs P and all x 2 f0; 1g� it is the case that

(1) If P (y) = f(y) for all y 2 f0; 1g� then CP (x) accepts with probability � 2=3

(2) If P (x) 6= f(x) then the probability that CP (x) accepts is � 1=3.

We say C is a checker for a language L if it is a checker for the characteristic function of L. L is
checkable if it has a checker.

The de�nition is close in spirit to that of (competitive) interactive proofs, but there are two im-
portant di�erences. First, unlike interactive proofs, checking is a \symmetric" notion in which the
checker for language L must be able to determine that P is correct on x not only when x 2 L but
also when x 62 L. Second, programs are history independent objects, while (cheating) provers are
not. Thus, if L and L both have competitive interactive proofs then L has a checker, while we do
not know whether or not every checkable language has a competitive interactive proof.

Checkers are also related to multi-prover interactive proofs [BGKW]. In particular, results of
[FRS] imply that the class of languages which possess checkers in contained in MIP\coMIP (where
MIP is the class of languages possessing multi-prover interactive proofs of membership). We note
that MIP = NEXP, by the result of [BFL].

Blum and Kannan [BK] showed that Check = frIP\ cofrIP. It follows that checkable languages
have deciders. For completeness, however, let us see this directly.

Lemma 5.2 Suppose L has a checker. Then it has a decider.
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Proof: Let C be a checker for L. Let D be the probabilistic polynomial time oracle machine
which, on input x, works as follows. D begins by querying its oracle with the string x. If the oracle
returns 0 then D rejects. Else, it runs C on input x, using its own oracle (denoted A) to answer C's
oracle queries, and accepts i� C accepts. We claim that D is a decider for L. To see this we need
to check that for each x 2 f0; 1g� the two conditions of De�nition 3.1 hold. The �rst condition is
clear. To see that the second is true, suppose x 62 L, and suppose �rst that A(x) = 0. In this case,
D rejects with probability 1. Now suppose A(x) = 1. Then the probability that D accepts is at
most 1=3 because C is a checker.

Combining Lemma 5.2 and Theorem 3.6 yields the theorem.

Theorem 5.3 If NEE 6� BPEE then there exists a language in NP that is not checkable.

Similarly if EESPACE 6� BPEE then there exists a language in PSPACE which is not checkable.
We recall that a language L is coherent if the membership of x in L can be decided in probabilis-

tic polynomial time and bounded error by a machine (called the examiner) which has access to L
as an oracle but is allowed to query this oracle only on points di�erent from x. If L is not coherent
we say it is incoherent. Previous negative results on checking were established by �rst exhibiting
incoherent sets and then exploiting Yao's observation that any incoherent set is uncheckable (cf.
[Ya, BF]). We note that our (stronger) results are obtained more directly. Moreover, our techniques
indicate that even within NP the class of coherent sets could be much \larger" than the class of
checkable ones. Let us sketch why this is so.

The \disjoint union" of languages A and B, denoted A�B, is f0x : x 2 Ag[f1x : x 2 Bg; this
construct is widely used in complexity theory (eg. [BD, HH]). It is easy to see (cf. [BF]) that L�L is
coherent for any language L. It is also easy to see that the transformationL 7! L�L preserves many
complexity characteristics of L; for example, membership in NP; compNP; compIP;Check; frIP. In
particular, combining this observation with Theorem 5.3 yields the claimed separation:

Theorem 5.4 If NEE 6� BPEE then there exists a language in NP that is coherent but not check-
able.

6 Towards Competitive Proofs for Quadratic Residuosity

In this section we return to the unresolved question of whether the language of quadratic residu-
osity has a competitive interactive proof system, and present a special case of the problem where
competitive proofs are possible.

6.1 De�nitions

We will be looking at \promise" problems rather than problems of language membership. The
di�erence is that in the former we begin with a \promise" that the input already belongs to some
set, and we have only to \decide" whether or not it falls in a given subset of this set. Such problems
have been considered in many works; eg. [ESY]. The formalization we use is di�erent from (but
equivalent to) the ones used in these works, and is as follows. The problem is speci�ed by a pair of
disjoint sets (A;B). Intuitively, the input is promised to be in A[B and we have to decide whether
it is in A or in B. Corresponding to promise problems are promise oracles which are guaranteed to
be correct only when the \promise" is true.

De�nition 6.1 A promise problem is a pair of disjoint sets (A;B). A promise oracle (for a promise
problem (A;B)) is an oracle which given a query q returns 1 if q 2 A and 0 if q 2 B.
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Note that while promise problems are, intuitively, \easier" than language recognition problems,
promise oracles are correspondingly weaker than (normal) oracles. In particular, a promise oracle
for (A;B) is weaker than an oracle for just A (or B) in that its response on queries outside A [B
is indeterminate.

A competitive interactive proof for a promise problem (A;B) is just an interactive proof that
x 2 A given that x 2 A [ B and having the property that the \competitive" prover gets only a
promise oracle for (A;B). The more formal de�nition follows.

De�nition 6.2 Let P be a probabilistic polynomial time oracle machine and V a probabilistic
polynomial time machine. We say that (P; V ) is a competitive interactive proof for promise problem
(A;B) if

(1) For every x 2 A and every promise oracle O for (A;B), the probability that V accepts in its
interaction with PO on common input x is � 2=3

(2) For every x 2 B and every interactive TM bP , the probability that V accepts in its interaction
with bP on common input x is � 1=3.

6.2 Results

We recall that x 2 Z�
N is a quadratic residue (or square) mod N if x � y2 (mod N) for some

y 2 Z�
N , and a quadratic non-residue (or non-square) modN otherwise. Also, recall from Section 1.2

that
QR = f (x;N) : x is a square mod N g

QNR = f (x;N) : x is a non-square mod N g :

The special case we are interested in is when N is the product of a constant number of distinct odd
primes. To be more precise, �rst de�ne

QRs = f (x;N) 2 QR : N is a product of s distinct odd primes g
QNRs = f (x;N) 2 QNR : N is a product of s distinct odd primes g :

We will present a competitive interactive proof that (x;N) 2 QRs given that it is already in
QRs [ QNRs. Note that QRs and QNRs are not complements of each other so that, formally, we
are talking of a competitive interactive proof for the promise problem (QRs;QNRs) in the sense of
De�nition 6.2.

Theorem 6.3 Let s be an integer � 1. Then the promise problem (QRs;QNRs) possesses a com-
petitive interactive proof.

In related work, Kompella and Adleman [KA] present checkers for this same special case of quadratic
residuosity when the modulus is the product of a constant number of primes (i.e. they present
checkers for the promise problem (QRs;QNRs)). Their construction does not, however, extend to
competitive interactive proofs, because the correctness of their checker uses the fact that a program
(in contrast to a cheating prover) is history independent.

To prove Theorem 6.3, we begin by recalling some basic number theoretic facts. We refer the
reader to [An, NZ] for number-theoretic background and justi�cation of these facts.

For x 2 Z�
N we let QN (x) = 0 if x is a quadratic residue mod N , and 1 otherwise. Suppose

N = p1 � � �ps where p1; : : : ; ps are distinct odd primes. De�ne the binary relation ' on Z�
N by

x ' y i� 8i : 1 � i � s : Qpi(x mod pi) = Qpi(y mod pi) :

This is an equivalence relation. The equivalence class of x under this relation (namely f y 2
Z�
N : x ' y g) is called its residue class. The product xy mod N of two elements x; y 2 Z�

N is a
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square mod N if x; y are from the same residue class and a non-square mod N otherwise. The
total number of residue classes is 2s, and they are all of the same size. We will denote them by
R1
N ; : : : ; R

2s
N , with the convention that the last, R2s

N , is the class of quadratic residues mod N .
We recall that there exists a competitive interactive proof for quadratic non-residuosity. We

will exploit this fact by reducing the proof of (x;N) 2 QRs to a polynomial number of proofs of
non-residuosity in such a way that the prover need use only probabilistic, polynomial time and a
promise oracle for (QRs;QNRs). The �rst step is the following de�nition.

De�nition 6.4 Let N be a product of s distinct odd primes and let t = 2s. We call a vector
(y1; : : : ; yt�1) 2 (Z�

N)
t�1 representative of Z�

N if the following conditions hold

(1) yi is a non-square mod N for each i = 1; : : : ; t� 1
(2) yiyj mod N is a non-square mod N for each pair of indices i; j satisfying 1 � i < j � t� 1.

This leads us to a way to reduce a residuosity test to to a collection of non-residuosity tests as long
as we are in possession of a representative vector.

Proposition 6.5 Let N be a product of s distinct odd primes and let x 2 Z�
N . Suppose ~y =

(y1; : : : ; yt�1) is representative of Z�
N (where t = 2s). Then (x;N) 2 QRs if and only if xyi mod N

is a non-square mod N for each i = 1; : : : ; t� 1.

Proof: xyi mod N will be a non-square mod N for each i = 1; : : : ; t � 1 if and only if its residue
class di�ers from the residue class of yi for each i = 1; : : : ; t� 1. But since ~y is representative, this
happens if and only if x is a square mod N .

To use this, however, we have to be able to get representative vectors. It su�ces to show how
the prover can construct a representative vector and then convince the veri�er that it is indeed
representative, all using only probabilistic, polynomial time and a promise oracle for (QRs;QNRs).

Proposition 6.6 There is a probabilistic, polynomial time oracle machine R which on input (x;N) 2
QRs[QNRs and access to the promise oracle for (QRs;QNRs) outputs either a representative vector
for Z�

N or the special symbol ?, with the probability of the latter event being at most 1=4.

Proof: R picks at random ~y1; : : : ; ~ym 2 (Z�
N)

t�1, where t = 2s and m is a constant to be de�ned
later. For each i = 1; : : : ; m the machine R then uses the promise oracle to test whether or not the
conditions of De�nition 6.4 hold for ~yi. If some vector ~yi passes the test then the �rst such vector is
output If all vectors fail the test then R outputs ?. The probability that a particular vector passes
the test is (t � 1)!=tt�1, which is a positive constant. So it su�ces to choose m to be a constant
such that �

1�
(t� 1)!

tt�1

�m
�

1

4
:

(A (crude) calculation shows that m = O((2e)t) su�ces). That R runs in probabilistic, polynomial
time is clear.

We can now proceed to describe the protocols. We begin by recalling (following [GMR]) the basic
(competitive) protocol to prove non-residuosity.

Protocol QNR

Input: (x;N) and 1k

(V1) V picks at random c1; : : : ; ck 2 f0; 1g and r1; : : : ; rk 2 Z�
N , sets zi = xcir2i mod N (for

i = 1; : : : ; k) and sends z1; : : : ; zk to P .
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(P1) P sets di to 0 if zi is a quadratic residue mod N and 1 otherwise (for i = 1; : : : ; k), and sends
d1; : : : ; dk to V .

(V2) V accepts if and only if ci = di for all i = 1; : : : ; k.

Proposition 6.7 Protocol QNR has the following properties:

(1) If (x;N) 2 QNR then the probability that V accepts in its interaction with P is 1
(2) If (x;N) 62 QNR then for any bP the probability that V accepts in its interaction with bP is

� 2�k.
(3) P is competitive (that is, it runs in probabilistic, polynomial time given an oracle for QNR).

Proof: The �rst two items follow from basic properties of modular residues, and we refer the
reader to [GMR] for proofs. The last item is clear.

We now proceed to the competitive interactive proof for QRs. We will use Protocol QNR as a
subprotocol.

Protocol QR(s)

Input: (x;N) 2 QRs [QNRs

Notation: We let t = 2s.

(P1) P runs the algorithm of Proposition 6.6 and sends the output to V

(V1) If V receives ? from P then it rejects. If instead it receives a vector ~y = (y1; : : : ; yt�1) 2
(Z�

N)
t�1 then the parties proceed to the next step.

Sub-Protocol: P uses Protocol QNR (with security parameter k set to 2) to prove to V
that

(1) yi is a non-square mod N for each i = 1; : : : ; t� 1
(2) yiyj mod N is a non-square modN for each pair of indices i; j satisfying 1 � i < j � t�1.
(3) xyi mod N is a non-square mod N for each i = 1; : : : ; t� 1

(a total of (t� 1)(t+ 2)=2 invocations of the QNR protocol).

(V2) V accepts i� each of the above sub-proofs was accepting.

The correctness of the protocol follows from the results established above. Details follow.
Suppose (x;N) 2 QRs. Proposition 6.6 implies that the parties get a representative vector

and proceed to the sub-protocol with probability � 3=4. De�nition 6.4 and Proposition 6.5 imply
that the inputs to the non-residuosity sub-proofs are all indeed non-squares mod N , and thus
Proposition 6.7 implies that these sub-proofs all succeed with probability 1. So V accepts with
probability � 3=4.

Suppose (x;N) 2 QNRs. If bP sends ? in its �rst step then V rejects, so suppose he sends a
vector ~y = (y1; : : : ; yt�1) 2 (Z�

N)
t�1. If ~y is not representative then by De�nition 6.4 either there

is an i such that yi is a square mod N or there is a pair i < j such that yiyj mod N is a square
mod N . In either case, the corresponding non-residuosity sub-proof fails with probability � 3=4,
and V rejects. So suppose ~y is representative. But then Proposition 6.5 implies there is an i such
that xyi mod N is a square mod N . So the corresponding non-residuosity sub-proof fails with
probability � 3=4 and V again rejects.

The competitiveness of P follows from Propositions 6.6 and 6.7.
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The reason this does not extend to arbitrary N is, of course, that the number of residue classes
could in general be exponential in the length of N , and in polynomial time we could not even write
down a representative list. On the other hand, working through the proofs shows that the result
does extend to the case where s: N ! N is a polynomial time computable function of N which is
bounded above by lg lg lgN = lg lg jN j. For simplicity we have stuck to the case of constant s.

Clearly, the weakness of this result is in the \promise" thatN is already a product of (exactly) s
odd primes; this is what may be hard to prove competitively if one wants a competitive interactive
proof of QR.

7 Open Questions

� Quadratic-residuosity. We think that the most interesting open question is whether or not the
language of quadratic residuosity has a competitive interactive proof. Conditional results on the
subject would also be interesting: for example, could one show that if quadratic residuosity has
a competitive interactive proof then factoring is reducible (in probabilistic, polynomial time)
to deciding quadratic residuosity? (Note that an a�rmative answer to this last question would
imply that if QR has a competitive interactive proof then it has an NP-proof via the simple
\factorization witness.")

� Reducing assumptions. Another open question is whether one can reduce the assumptions
required for our results. In particular can one show that there is a language for which search
does not reduce to decision given P 6= NP, or even E 6= NE? Or could cryptographic assumptions
such as the existence of one-way functions be used to establish the existence of languages in IP
which don't have competitive interactive proofs?

� Other settings. What is the relationship of decision to search in the context of optimization
problems and approximation algorithms, and does \search reduce to decision" in this setting?
For example, consider the Traveling Salesman Problem (TSP). Let !(G) denote the weight of
an optimal tour on a (weighted) graph G, and suppose � � 1 is a constant. Suppose A is an
oracle satisfying !(G) � A(G) � � �!(G) for all graphs G. Is there a polynomial time procedure
which, with oracle access to A and input G, outputs a tour (in G) of weight at most � � !(G)?

� Perfect completeness. An interactive proof (P; V ) for L is said to have perfect completeness if
the probability of acceptance in the completeness condition is 1. We know that any language
L possessing an interactive proof also possesses one with perfect completeness [FGMSZ]. Does
any language possessing a competitive interactive proof also possesses a competitive interactive
proof with perfect completeness? (One of the motivations for this question is the fact that
our competitive proof for the special case of quadratic residuosity in Section 6 does not possess
perfect completeness).

� Zero-knowledge. We discussed the open questions in Section 4.4.
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