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Abstract

Processors in large-scale multiprocessors must be able
to tolerate large communication latencies and synchro-
nization delays. This paper describes the architecture
of a rapid-context-switching processor called APRIL
with support for �ne-grain threads and synchroniza-
tion. APRIL achieves high single-thread performance
and supports virtual dynamic threads. A commercial
RISC-based implementation of APRIL and a run-time
software system that can switch contexts in about 10
cycles is described. Measurements taken for several par-
allel applications on an APRIL simulator show that the
overhead for supporting parallel tasks based on futures
is reduced by a factor of two over a corresponding im-
plementation on the Encore Multimax. The scalability
of a multiprocessor based on APRIL is explored using
a performance model. We show that the SPARC-based
implementation of APRIL can achieve close to 80% pro-
cessor utilization with as few as three resident threads
per processor in a large-scale cache-based machine with
an average base network latency of 55 cycles.

1 Introduction

The requirements placed on a processor in a large-scale
multiprocessing environment are di�erent from those in
a uniprocessing setting. A processor in a parallel ma-
chine must be able to tolerate high memory latencies
and handle process synchronization e�ciently [2]. This
need increases as more processors are added to the sys-
tem.
Parallel applications impose processing and commu-

nication bandwidth demands on the parallel machine.
An e�cient and cost-e�ective machine design achieves a
balance between the processing power and the commu-
nication bandwidth provided. An imbalance is created
when an underutilized processor cannot fully exploit the
available network bandwidth. When the network has
bandwidth to spare, low processor utilization can re-
sult from high network latency. An e�cient processor

design for multiprocessors provides a means for hiding
latency. When su�cient parallelism exists, a processor
that rapidly switches to an alternate thread of computa-
tion during a remote memory request can achieve high
utilization.
Processor utilization also diminishes due to synchro-

nization latency. Spin lock accesses have a low over-
head of memory requests, but busy-waiting on a syn-
chronization event wastes processor cycles. Synchro-
nization mechanisms that avoid busy-waiting through
process blocking incur a high overhead.
Full/empty bit synchronization [22] in a rapid context

switching processor allows e�cient �ne-grain synchro-
nization. This scheme associates synchronization infor-
mation with objects at the granularity of a data word,
allowing a low-overhead expression of maximum con-
currency. Because the processor can rapidly switch to
other threads, wasteful iterations in spin-wait loops are
interleaved with useful work from other threads. This
reduces the negative e�ects of synchronization on pro-
cessor utilization.
This paper describes the architecture of APRIL,

a processor designed for large-scale multiprocessing.
APRIL builds on previous research on processors for
parallel architectures such as HEP [22], MASA [8], P-
RISC [19], [14], [15], and [18]. Most of these processors
support �ne-grain interleaving of instruction streams
from multiple threads, but su�er from poor single-
thread performance. In the HEP, for example, instruc-
tions from a single thread can only be executed once
every 8 cycles. Single-thread performance is important
for e�ciently running sections of applications with low
parallelism.
APRIL does not support cycle-by-cycle interleaving

of threads. To optimize single-thread performance,
APRIL executes instructions from a given thread until
it performs a remote memory request or fails in a syn-
chronization attempt. We show that such coarse-grain
multithreading allows a simple processor design with
context switch overheads of 4{10 cycles, without sig-
ni�cantly hurting overall system performance (although
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the pipeline design is complicated by the need to handle
pipeline dependencies). In APRIL, thread scheduling is
done in software, and unlimited virtual dynamic threads
are supported. APRIL supports full/empty bit synchro-
nization, and provides tag support for futures [9]. In this
paper the terms process, thread, context, and task are
used equivalently.
By taking a systems-level design approach that con-

siders not only the processor, but also the compiler and
run-time system, we were able to migrate several non-
critical operations into the software system, greatly sim-
plifying processor design. APRIL's simplicity allows an
implementation based on minor modi�cations to an ex-
isting RISC processor design. We describe such an im-
plementation based on Sun Microsystem's SPARC pro-
cessor [23]. A compiler for APRIL, a run-time system,
and an APRIL simulator are operational. We present
simulation results for several parallel applications on
APRIL's e�ciency in handling �ne-grain threads and
assess the scalability of multiprocessors based on a
coarse-grain multithreaded processor using an analyt-
ical model. Our SPARC-based processor supports four
hardware contexts and can switch contexts in about 10
cycles, which yields roughly 80% processor utilization
in a system with an average base network latency of 55
cycles.
The rest of this paper is organized as follows. Sec-

tion 2 is an overview of our multiprocessor system archi-
tecture and the programming model. The architecture
of APRIL is discussed in Section 3, and its instruction
set is described in Section 4. A SPARC-based imple-
mentation of APRIL is detailed in Section 5. Section 6
discusses the implementation and performance of the
APRIL run-time system. Performance measurements of
APRIL based on simulations are presented in Section 7.
We evaluate the scalability of multithreaded processors
in Section 8.

2 The ALEWIFE System

APRIL is the processing element of ALEWIFE, a large-
scale multiprocessor being designed at MIT. ALEWIFE
is a cache-coherent machine with distributed, globally-
shared memory. Cache coherence is maintained using
a directory-based protocol [5] over a low-dimension di-
rect network [20]. The directory is distributed with the
processing nodes.

2.1 Hardware

As shown in Figure 1, each ALEWIFE node consists of
a processing element, 
oating-point unit, cache, main
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Figure 1: ALEWIFE node.

memory, cache/directory controller and a network rout-
ing switch. Multiple nodes are connected via a direct,
packet-switched network.
The controller synthesizes a global shared memory

space via messages to other nodes, and satis�es requests
from other nodes directed to its local memory. It main-
tains strong cache coherence [7] for memory accesses.
On exception conditions, such as cache misses and failed
synchronization attempts, the controller can choose to
trap the processor or to make the processor wait. A
multithreaded processor reduces the ill e�ects of the
long-latency acknowledgment messages resulting from
a strong cache coherence protocol. To allow experimen-
tation with other programming models, the controller
provides special mechanisms for bypassing the coher-
ence protocol and facilities for preemptive interproces-
sor interrupts and block transfers.
The ALEWIFE system uses a low-dimension direct

network. Such networks scale easily and maintain high
nearest-neighbor bandwidth. However, the longer ex-
pected latencies of low-dimension direct networks com-
pared to indirect multistage networks increase the need
for processors that can tolerate long latencies. Further-
more, the lower bandwidth of direct networks over indi-
rect networks with the same channel width introduces
interesting design tradeo�s.
In the ALEWIFE system, a context switch occurs

whenever the network must be used to satisfy a re-
quest, or on a failed synchronization attempt. Since
caches reduce the network request rate, we can em-
ploy coarse-grain multithreading (context switch ev-
ery 50{100 cycles) instead of �ne-grain multithreading
(context switch every cycle). This simpli�es proces-
sor design considerably because context switches can be
more expensive (4 to 10 cycles), and functionality such
as scheduling can be migrated into run-time software.
Single-thread performance is optimized, and techniques
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used in RISC processors for enhancing pipeline perfor-
mance can be applied [10]. Custom design of a process-
ing element is not required in the ALEWIFE system;
indeed, we are using a modi�ed version of a commercial
RISC processor for our �rst-round implementation.

2.2 Programming Model

Our experimental programming language for ALEWIFE
is Mul-T [16], an extended version of Scheme. Mul-T's
basic mechanism for generating concurrent tasks is the
future construct. The expression (future X), where
X is an arbitrary expression, creates a task to evaluate
X and also creates an object known as a future to even-
tually hold the value of X. When created, the future
is in an unresolved, or undetermined, state. When the
value of X becomes known, the future resolves to that
value, e�ectively mutating into the value of X. Con-
currency arises because the expression (future X) re-
turns the future as its value without waiting for the
future to resolve. Thus, the computation containing
(future X) can proceed concurrently with the evalu-
ation of X. All tasks execute in a shared address-space.
The result of supplying a future as an operand of

some operation depends on the nature of the operation.
Non-strict operations, such as passing a parameter to
a procedure, returning a result from a procedure, as-
signing a value to a variable, and storing a value into a
�eld of a data structure, can treat a future just like any
other kind of value. Strict operations such as addition
and comparison, if applied to an unresolved future, are
suspended until the future resolves and then proceed,
using the value to which the future resolved as though
that had been the original operand.
The act of suspending if an object is an unresolved

future and then proceeding when the future resolves is
known as touching the object. The touches that auto-
matically occur when strict operations are attempted
are referred to as implicit touches. Mul-T also includes
an explicit touching or \strict" primitive (touch X)

that touches the value of the expression X and then
returns that value.
Futures express control-level parallelism. In a large

class of algorithms, data parallelism is more appropri-
ate. Barriers are a useful means of synchronization for
such applications on MIMD machines, but force unnec-
essary serialization. The same serialization occurs in
SIMD machines. Implementing data-level parallelism
in a MIMD machine that allows the expression of maxi-
mumconcurrency requires cheap �ne-grain synchroniza-
tion associated with each data object. We provide this
support in hardware with full/empty bits.
We are augmenting Mul-T with constructs for data-

level parallelism and primitives for placement of data
and tasks. As an example, the programmer can use
future-on which works just like a normal future but
allows the speci�cation of the node on which to schedule
the future. Extending Mul-T in this way allows us to
experiment with techniques for enhancing locality and
to research language-level issues for programming par-
allel machines.

3 Processor Architecture

APRIL is a pipelined RISC processor extended with
special mechanisms for multiprocessing. This section
gives an overview of the APRIL architecture and fo-
cuses on its features that support multithreading, �ne-
grain synchronization, cheap futures, and other models
of computation.
The left half of Figure 2 depicts the user-visible pro-

cessor state comprising four sets of general purpose reg-
isters, and four sets of Program Counter (PC) chains
and Processor State Registers (PSR). The PC chain
represents the instruction addresses corresponding to
a thread, and the PSR holds various pieces of process-
speci�c state. Each register set, together with a single
PC-chain and PSR, is conceptually grouped into a single
entity called a task frame (using terminology from [8]).
Only one task frame is active at a given time and is
designated by a current frame pointer (FP). All reg-
ister accesses are made to the active register set and
instructions are fetched using the active PC-chain. Ad-
ditionally, a set of 8 global registers that are always
accessible (regardless of the FP) is provided.
Registers are 32 bits wide. The PSR is also a 32-bit

register and can be read into and written from the gen-
eral registers. Special instructions can read and write
the FP register. The PC-chain includes the Program
Counter (PC) and next Program Counter (nPC) which
are not directly accessible. This assumes a single-cycle
branch delay slot. Condition codes are set as a side
e�ect of compute instructions. A longer branch delay
might be necessary if the branch instruction itself does a
compare so that condition codes need not be saved [13];
in this case the PC chain is correspondingly longer.
Words in memory have a 32 bit data �eld, and have
an additional synchronization bit called the full/empty
bit.
Use of multiple register sets on the processor, as in the

HEP, allows rapid context switching. A context switch
is achieved by changing the frame pointer and empty-
ing the pipeline. The cache controller forces a context
switch on the processor, typically on remote network re-
quests, and on certain unsuccessful full/empty bit syn-
chronizations.
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Figure 2: Processor State and Virtual Threads.

APRIL implements futures using the trap mechanism.
For our proposed experimental implementation based
on SPARC, which does not have four separate PC and
PSR frames, context switches are also caused through
traps. Therefore, a fast trap mechanism is essential.
When a trap is signalled in APRIL, the trap mechanism
lets the pipeline empty and passes control to the trap
handler. The trap handler executes in the same task
frame as the thread that trapped so that it can access
all of the thread's registers.

3.1 Coarse-Grain Multithreading

In most processor designs to date (e.g. [8, 22, 19, 15]),
multithreading has involved cycle-by-cycle interleaving
of threads. Such �ne-grain multithreading has been
used to hide memory latency and also to achieve high
pipeline utilization. Pipeline dependencies are avoided
by maintaining instructions fromdi�erent threads in the
pipeline, at the price of poor single-thread performance.
In the ALEWIFE machine, we are primarily con-

cerned with the large latencies associated with cache
misses that require a network access. Good sin-
gle thread performance is also important. Therefore
APRIL continues executing a single thread until a mem-
ory operation involving a remote request (or an unsuc-
cessful synchronization attempt) is encountered. The
controller forces the processor to switch to another
thread, while it services the request. This approach is
called coarse-grain multithreading. Processors in mes-
sage passing multicomputers [21, 27, 6, 4] have tra-
ditionally taken this approach to allow overlapping of
communication with computation.

Context switching in APRIL is achieved by changing
the frame pointer. Since APRIL has four task frames,
it can have up to four threads loaded. The thread that
is being executed resides in the task frame pointed to
by the FP. A context switch simply involves letting the
processor pipeline empty while saving the PC-chain and
then changing the FP to point to another task frame.
Threads in ALEWIFE are virtual. Only a small sub-

set of all threads can be physically resident on the pro-
cessors; these threads are called loaded threads. The re-
maining threads are referred to as unloaded threads and
live on various queues in memory, waiting their turn
to be loaded. In a sense, the set of task frames acts
like a cache on the virtual threads. This organization
is illustrated in Figure 2. The scheduler tries to choose
threads from the set of loaded threads for execution to
minimize the overhead of saving and restoring threads
to and from memory. When control eventually passes
back to the thread that su�ered a remote request, the
controller should have completed servicing the request,
provided the other threads ran for enough cycles. By
maximizing local cache and memory accesses, the need
for context switching reduces to once every 50 or 100
cycles, which allows us to tolerate latencies in the range
of 150 to 300 cycles with 4 task frames (see Section 8).
Rapid context switching is used to hide the latency

encountered in several other trap events, such as syn-
chronization faults (or attempts to load from \empty"
locations). These events can either cause the proces-
sor to suspend execution (wait) or to take a trap. In
the former case, the controller holds the processor until
the request is satis�ed. This typically happens on lo-
cal memory cache misses, and on certain full/empty bit
tests. If a trap is taken, the trap handling routine can
respond by:

1. spinning { immediately return from the trap and
retry the trapping instruction.

2. switch spinning { context switch without unloading
the trapped thread.

3. blocking { unload the thread.

The above alternatives must be considered with care
because incorrect choices can create or exacerbate star-
vation and thrashing problems. An extreme example
of starvation is this: all loaded threads are spinning
or switch spinning on an exception condition that an
unloaded thread is responsible for ful�lling. We are in-
vestigating several possible mechanisms to handle such
problems, including a special controller initiated trap
on certain failed synchronization tests, whose handler
unloads the thread.
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An important aspect of the ALEWIFE system is its
combination of caches and multithreading. While this
combination is advantageous, it also creates a unique
class of thrashing and starvation problems. For exam-
ple, forward progress can be halted if a context execut-
ing on one processor is writing to a location while a con-
text on another processor is reading from it. These two
contexts can easily play \cache tag", since writes to a lo-
cation force a context switch and invalidation of other
cached copies, while reads force a context switch and
transform read-write copies into read-only copies. An-
other problem involves thrashing between an instruction
and its data; a context will be blocked if it has a load
instruction mapped to the same cache line as the tar-
get of the load. These and related problems have been
addressed with appropriate hardware interlock mecha-
nisms.

3.2 Support for Futures

Executing a Mul-T program with futures incurs two
types of overhead not present in sequential programs.
First, strict operations must check their operands for
availability before using them. Second, there is a cost
associated with creating new threads.

Detection of Futures Operand checks for futures
done in software imply wasted cycles on every strict
operation. Our measurements with Mul-T running on
an Encore Multimax show that this is expensive. Even
with clever compiler optimizations, there is close to a
factor of two loss in performance over a purely sequen-
tial implementation (see Table 3). Our solution em-
ploys a tagging scheme with hardware-generated traps
if an operand to a strict operator is a future. We believe
that this hardware support is necessary to make futures
a viable construct for expressing parallelism. From an
architectural perspective, this mechanism is similar to
dynamic type checking in Lisp. However, this mecha-
nism is necessary even in a statically typed language in
the presence of dynamic futures.
APRIL uses a simple data type encoding scheme for

automatically generating a trap when operands to strict
operators are futures. This implementation (discussed
in Section 5) obviates the need to explicitly inspect
in software the operands to every compute instruction.
This is important because we do not want to hurt the
e�ciency of all compute instructions because of the pos-
sibility an operand is a future.

Lazy Task Creation Little can be done to reduce the
cost of task creation if future is taken as a command
to create a new task. In many programs the possibility

of creating an excessive number of �ne-grain tasks ex-
ists. Our solution to this problem is called lazy task cre-
ation [17]. With lazy task creation a future expression
does not create a new task, but computes the expression
as a local procedure call, leaving behind a marker indi-
cating that a new task could have been created. The
new task is created only when some processor becomes
idle and looks for work, stealing the continuation of that
procedure call. Thus, the user can specify the maximum
possible parallelism without the overhead of creating a
large number of tasks. The race conditions are resolved
using the �ne-grain locking provided by the full/empty
bits.

3.3 Fine-grain synchronization

Besides support for lazy task creation, e�cient �ne-
grain synchronization is essential for large-scale parallel
computing. Both the data
ow and data-parallel models
of computation rely heavily on the availability of cheap
�ne-grain synchronization. The unnecessary serializa-
tion imposed by barriers in MIMD implementations of
data-parallellism can be avoided by allowing �ne-grain
word-level synchronization in data structures. The tra-
ditional test&set based synchronization requires extra
memory operations and separate data storage for the
lock and for the associated data. Busy-waiting or block-
ing in conventional processors waste additional proces-
sor cycles.
APRIL adopts the full/empty bit approach used in

the HEP to reduce both the storage requirements and
the number of memory accesses. A bit associated with
each memory word indicates the state of the word: full
or empty. The load of an empty location or the store
into a full location can trap the processor causing a
context switch, which helps hide synchronization delay.
Traps also obviate the additional software tests of the
lock in test&set operations. A similar mechanism is
used to implement I-structures in data
owmachines [3],
however APRIL is di�erent in that it implements such
synchronizations through software trap handlers.

3.4 Multimodel Support Mechanisms

APRIL is designed primarily for a shared-memory mul-
tiprocessor with strongly coherent caches. However,
we are considering several additional mechanisms which
will permit explicit management of caches and e�cient
use of network bandwidth. These mechanisms present
di�erent computational models to the programmer.
To allow software-enforced cache coherence, we have

loads and stores that bypass the hardware coherence
mechanism, and a 
ush operation that permits soft-
ware writeback and invalidation of cache lines. A loaded
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Type Format Data transfer Control 
ow

Compute op s1 s2 d d  s1 op s2 PC+1

Memory ld type a d d  mem[a] PC+1

st type d s mem[a] s PC+1

Branch jcond offset if cond

PC+offset

else PC+1

jmpl offset d d  PC PC+offset

Table 1: Basic instruction set summary.

context has a fence counter that is incremented for
each dirty cache line that is 
ushed and decremented
for each acknowledgement from memory. This fence
counter may be examined to determine if all writebacks
have completed. We are proposing a block-transfer
mechanism for e�cient transfer of large blocks of data.
Finally, we are considering an interprocessor-interrupt
mechanism (IPI) which permits preemptive messages
to be sent to speci�c processors. IPIs o�er reasonable
alternatives to polling and, in conjunction with block-
transfers, form a primitive for the message-passing com-
putational model.
Although each of these mechanisms adds complex-

ity to our cache controller, they are easily implemented
in the processor through \out-of-band" instructions as
discussed in Section 5.

4 Instruction Set

APRIL has a basic RISC instruction set augmented
with special memory instructions for full/empty bit op-
erations, multithreading, and cache support. The at-
traction of an implementation based on simple SPARC
processor modi�cations has resulted in a basic SPARC-
like design. All registers are addressed relative to a cur-
rent frame pointer. Compute instructions are 3-address
register-to-register arithmetic/logic operations. Condi-
tional branch instructions take an immediate operand
and may increment the PC by the value of the immedi-
ate operand depending on the condition codes set by the
arithmetic/logic operations. Memory instructions move
data between memory and the registers, and also inter-
act with the cache and the full/empty bits. The basic
instruction categories are summarized in Table 1. The
remainder of this section describes features of APRIL
instructions used for supporting multiprocessing.

Data Type Formats APRIL supports tagged point-
ers for Mul-T, as in the Berkeley SPUR processor [12],
by encoding the pointer type in the low order bits of a

1 0 1

1 0

0 0

01

Fixnum

Other

Cons

Future

Bit 31 Bit 0

1

0

Figure 3: Data Type Encodings.

data word. Associating the type with the pointer has
the advantage of saving an additional memory reference
when accessing type information. Figure 3 lists the dif-
ferent type encodings. An important purpose of this
type encoding scheme is to support hardware detection
of futures.

Future Detection and Compute Instructions
Since a compute instruction is a strict operation, special
action has to be taken if either of its operands is a fu-
ture. APRIL generates a trap if a future is encountered
by a compute instruction. Future pointers are easily
detected by their non-zero least signi�cant bit.

Memory Instructions Memory instructions are
complex because they interact with the full/empty bits
and the cache controller. On a memory access, two data
exceptions can occur: the accessed location may not be
in the cache (a cache miss), and the accessed location
may be empty on a load or full on a store (a full/empty
exception). On a cache miss, the cache/directory con-
troller can trap the processor or make the processor
wait until the data is available. On full/empty excep-
tions, the controller can trap the processor, or allow the
processor to continue execution. Load instructions also
have the option of setting the full/empty bit of the ac-
cessed location to empty while store instructions have
the option of setting the bit to full. These options give
rise to 8 kinds of loads and 8 kinds of stores. The load
instructions are listed in Table 2. Store instructions are
similar except that they trap on full locations instead
of empty locations.
A memory instruction also shares responsibility for

detecting futures in either of its address operands. Like
compute instructions, memory instructions also trap
if the least signi�cant bit of either of their address
operands are non-zero. This introduces the restriction
that objects in memory cannot be allocated at byte
boundaries. This, however, is not a problem because
object allocation at word boundaries is favored for other
reasons [11]. This trap provides support for implicit fu-
ture touches in operators that dereference pointers, e.g.,
car in LISP.
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Name Type Reset f/e bit EL1 trap CM2 response

ldtt 1 No Yes Trap

ldett 2 Yes Yes Trap

ldnt 3 No No Trap

ldent 4 Yes No Trap

ldnw 5 No No Wait

ldenw 6 Yes No Wait

ldtw 7 No Yes Wait

ldetw 8 Yes Yes Wait
1Empty location. 2Cache miss.

Table 2: Load Instructions.

Full/EmptyBit Conditional Branch Instructions
Non-trapping memory instructions allow testing of the
full/empty bit by setting a condition bit indicating the
state of the memory word's full/empty bit. APRIL
provides conditional branch instructions, Jfull and
Jempty, that dispatch on this condition bit. This pro-
vides a mechanism to explicitly control the action taken
following a memory instruction that would normally
trap on a full/empty exception.

Frame Pointer Instructions Instructions are pro-
vided for manipulating the register frame pointer (FP).
FP points to the register frame on which the currently
executing thread resides. An INCFP instruction incre-
ments the FP to point to the next task frame while
a DECFP instruction decrements it. The incrementing
and decrementing is done modulo the number of task
frames. RDFP reads the value of the FP into a register
and STFP writes the contents of a register into the FP.

Instructions for Other Mechanisms The special
mechanisms discussed in Section 3.4, such as FLUSH

are made available through \out-of-band" instructions.
Interprocessor-interrupts, block-transfers, and FENCE

operations are initiated via memory-mapped I/O in-
structions (LDIO, STIO).

5 An Implementation of APRIL

An ALEWIFE node consists of several interacting sub-
systems: processor, 
oating-point unit, cache, memory,
cache and directory controller, and network controller.
For the �rst round implementation of the ALEWIFE
system, we plan to use a modi�ed SPARC processor
and an unmodi�ed SPARC 
oating-point unit.1 There
are several reasons for this choice. First, we have chosen

1The SPARC-based implementation e�ort is in collaboration
with LSI Logic Corporation.

to devote our limited resources to the design of a custom
ALEWIFE cache and directory controller, rather than
to processor design. Second, the register windows in
the SPARC processor permit a simple implementation
of coarse-grain multithreading. Third, most of the in-
structions envisioned for the original APRIL processor
map directly to single or double instruction sequences
on the SPARC. Software compatibility with a commer-
cial processor allows easy access to a large body of soft-
ware. Furthermore, use of a standard processor permits
us to ride the technology curve; we can take advantage
of new technology as it is developed.

Rapid Context Switching on SPARC SPARC
processors contain an implementation-dependent num-
ber of overlapping register windows for speeding up pro-
cedure calls. The current register window is altered
via SPARC instructions (SAVE and RESTORE) that mod-
ify the Current Window Pointer (CWP). Traps incre-
ment the CWP, while the trap return instruction (RETT)
decrements it. SPARC's register windows are suited for
rapid context switching and rapid trap handling because
most of the state of a process (i.e., its 24 local reg-
isters) can be switched with a single-cycle instruction.
Although we are not using multiple register windows for
procedure calls within a single thread, this should not
signi�cantly hurt performance [25, 24].
To implement coarse-grain multithreading, we use

two register windows per task frame { a user window
and a trap window. The SPARC processor chosen for
our implementation has eight register windows, allow-
ing a maximum of four hardware task frames. Since
the SPARC does not have multiple program counter
(PC) chains and processor status registers (PSR), our
trap code must explicitly save and restore the PSRs
during context switches (the PC chain is saved by the
trap itself). These values are saved in the trap window.
Because the SPARC has a minimum trap overhead of
�ve cycles (for squashing the pipeline and computing
the trap vector), context switches will take at least this
long. See Section 6.1 for further information.
The SPARC 
oating-point unit does not support reg-

ister windows, but has a single, 32-word register �le.
To retain rapid context switching ability for applica-
tions that require e�cient 
oating point performance,
we have divided the 
oating point register �le into four
sets of eight registers. This is achieved by modifying

oating-point instructions in a context dependent fash-
ion as they are loaded into the FPU and by maintaining
four di�erent sets of condition bits. A modi�cation of
the SPARC processor will make the CWP available ex-
ternally to allow insertion into the FPU instruction.
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Support for Futures We detect futures on the
SPARC via two separate mechanisms. Future point-
ers are tagged with their lowest bit set. Thus, direct
use of a future pointer is 
agged with a word-alignment
trap. Furthermore, a strict operation, such as subtrac-
tion, applied to one or more future pointers is 
agged
with a modi�ed non-�xnum trap, that is triggered if an
operand has its lowest bit set (as opposed to either one
of the lowest two bits, in the SPARC speci�cation).

Implementation of Loads and Stores The
SPARC de�nition includes the Alternate Space Indi-
cator (ASI) feature that permits a simple implementa-
tion of APRIL's many load and store instructions (de-
scribed in Section 4). The ASI is available externally as
an eight-bit �eld. Normal memory accesses use four of
the 256 ASI values to indicate user/supervisor and in-
struction/data accesses. Special SPARC load and store
instructions (LDASI and STASI) permit use of the other
252 ASI values. Our �rst-round implementation uses
di�erent ASI values to distinguish between 
avors of
load and store instructions, special mechanisms, and
I/O instructions.

Interaction with the Cache Controller The cache
controller in the ALEWIFE system maintains strong
cache coherence, performs full/empty bit synchroniza-
tion, and implements special mechanisms. By examin-
ing the processor's ASI bits during memory accesses,
it can select between di�erent load/store and synchro-
nization behavior, and can determine if special mecha-
nisms should be employed. Through use of the Memory
Exception (MEXC) line on SPARC, it can invoke syn-
chronous traps corresponding to cache misses and syn-
chronization (full/empty) mismatches. The controller
can suspend processor execution using the MHOLD
line. It passes condition information to the processor
through the Coprocessor Condition bits (CCCs), per-
mitting the full/empty conditional branch instructions
(Jfull and Jempty) to be implemented as coprocessor
branch instructions. Asynchronous traps (IPI's) are de-
livered via the SPARC's asynchronous trap lines.

6 Compiler and Run-Time Sys-

tem

The compiler and run-time system are integral parts
of the processor design e�ort. A Mul-T compiler for
APRIL and a run-time system written partly in APRIL
assembly code and partly in T have been implemented.
Constructs for user-directed placement of data and pro-
cesses have also been implemented. The run-time sys-

tem includes the trap and system routines, Mul-T run-
time support, a scheduler, and a system boot routine.
Since a large portion of the support for multithread-

ing, synchronization and futures is provided in soft-
ware through traps and run-time routines, trap han-
dling must be fast. Below, we describe the implemen-
tation and performance of the routines used for trap
handling and context switching.

6.1 Cache Miss and Full/Empty Traps

Cache miss traps occur on cache misses that require
a network request and cause the processor to context
switch. Full/empty synchronization exceptions can oc-
cur on certain memory instructions described in Sec-
tion 4. The processor can respond to these exceptions
by spinning, switch spinning, or blocking the thread.
In our current implementation, traps handle these ex-
ceptions by switch spinning, which involves a context
switch to the next task frame.
In our SPARC-based design of APRIL, we implement

context switching through the trap mechanism using
instructions that change the CWP. The following is a
trap routine that context switches to the thread in the
next task frame.

rdpsr psrreg ; save PSR into a reserved reg.

save ; increment the window pointer

save ; by 2

wrpsr psrreg ; restore PSR for the new context

jmpl r17 ; return from trap and

rett r18 ; reexecute trapping instruction

We count 5 cycles for the trap mechanism to allow
the pipeline to empty and save relevant processor state
before passing control to the trap handler. The above
trap handler takes an additional 6 cycles for a total of 11
cycles to e�ect the context switch. In a custom APRIL
implementation, the cycles lost due to PC saves in the
hardware trap sequence, and those in calling the trap
handler for the PSR saves/restores and double incre-
menting the frame pointer could be avoided, allowing a
four-cycle context switch.

6.2 Future Touch Trap

When a future touch trap is signalled, the future that
caused the trap will be in a register. The trap han-
dler has to decode the trapping instruction to �nd that
register. The future is resolved if the full/empty bit of
the future's value slot is set to full. If it is resolved,
the future in the register is replaced with the resolved
value; otherwise the trap routine can decide to switch
spin or block the thread that trapped. Our future touch
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trap handler takes 23 cycles to execute if the future is
resolved.
If the trap handler decides to block the thread on an

unresolved future, the thread must be unloaded from
the hardware task frame, and an alternate thread may
be loaded. Loading a thread involves writing the state of
the thread, including its general registers, its PC chain,
and its PSR, into a hardware task frame on the pro-
cessor, and unloading a thread involves saving the state
of a thread out to memory. Loading and unloading
threads are expensive operations unless there is special
hardware support for block movement of data between
registers and memory. Since the scheduling mechanism
favors processor-resident threads, loading and unload-
ing of threads should be infrequent. However, this is an
issue that is under investigation.

7 Performance Measurements

This section presents some results on APRIL's perfor-
mance in handling �ne-grain tasks. We have imple-
mented a simulator for the ALEWIFE system written
in C and T. Figure 4 illustrates the organization of the
simulator. The Mul-T compiler produces APRIL code,
which gets linked with the run-time system to yield an
executable program. The instruction-level APRIL pro-
cessor simulator interprets APRIL instructions. It is
written in T and simulates 40,000 APRIL instructions
per second when run on a SPARCServer 330. The pro-
cessor simulator interacts with the cache and directory
simulator (written in C) on memory instructions. The
cache simulator in turn interacts with the network sim-
ulator (also written in C) when making remote memory
operations. The simulator has proved to be a useful
tool in evaluating system-wide architectural tradeo�s
as it provides more accurate results than a trace driven
simulation. The speed of the simulator has allowed us
to execute lengthy parallel programs. As an example, in
a run of speech (described below), the simulated pro-
gram ran for 100 million simulated cycles before com-
pleting.
Evaluation of the ALEWIFE architecture through

simulations is in progress. A sampling of our results on
the performance of APRIL running parallel programs
is presented here. Table 3 lists the execution times of
four programs written in Mul-T: �b, factor, queens
and speech. �b is the ubiquitous doubly recursive Fi-
bonacci program with `future's around each of its re-
cursive calls, factor �nds the largest prime factor of
each number in a range of numbers and sums them up,
queens �nds all solutions to the n-queens chess prob-
lem for n = 8 and speech is a modi�ed Viterbi graph
search algorithm used in a connected speech recognition

Mul-T
Compiler

APRIL
Simulator

Network
Simulator

Mul-T program

APRIL machine language program

Network transactions

Memory requests/acks

Directory
Memory

, 
Run-time sys

Post-mortem 
scheduler

T-Mul-T 
emulator/
tracer

Multimax program

Parallel traces

Other parallel tracers:
trap bit, ATUM2

Cache

Sim.

Memory 
requests/acks

Single-processor
execution trace of
parallel program

Figure 4: Simulator Organization.

system called SUMMIT, developed by the Spoken Lan-
guage Systems Group at MIT. We ran each program
on the Encore Multimax, on APRIL using normal task
creation, and on APRIL using lazy task creation. For
purposes of comparison, execution time has been nor-
malized to the time taken to execute a sequential version
of each program, i.e., with no futures and compiled with
an optimizing T-compiler.
The di�erence between running the same sequential

code on T and on Mul-T on the Encore Multimax
(columns \T seq" and \Mul-T seq") is due to the over-
head of future detection. Since the Encore does not
support hardware detection of futures, an overhead of a
factor of 2 is introduced, even though no futures are ac-
tually created. There is no overhead on APRIL, which
demonstrates the advantage of tag support for futures.
The di�erence between running sequential code on

Mul-T and running parallel code on Mul-T with one
processor (\Mul-T seq" and 1) is due to the overhead
of thread creation and synchronization in a parallel pro-
gram. This overhead is very large for the �b benchmark
on both the Encore and APRIL using normal task cre-
ation because of very �ne-grain thread creation. This
overhead accounts for approximately a factor of 28 in
execution time. For APRIL with normal futures, this
overhead accounts for a factor of 14. Lazy task cre-
ation on APRIL creates threads only when the machine
has the resources to execute them, and performs much
better because it has the e�ect of dynamically partition-
ing the program into coarser-grain threads and creating
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T Mul-T
Program System seq seq 1 2 4 8 16

Encore 1.0 1.8 28.9 16.3 9.2 5.1
�b APRIL 1.0 1.0 14.2 7.1 3.6 1.8 0.97

Apr-lazy 1.0 1.0 1.5 0.78 0.44 0.29 0.19

Encore 1.0 1.4 1.9 0.96 0.50 0.26
factor APRIL 1.0 1.0 1.8 0.90 0.45 0.23 0.12

Apr-lazy 1.0 1.0 1.0 0.52 0.26 0.14 0.09

Encore 1.0 1.8 2.1 1.0 0.54 0.31
queens APRIL 1.0 1.0 1.4 0.67 0.33 0.18 0.10

Apr-lazy 1.0 1.0 1.0 0.51 0.26 0.13 0.07

Encore 1.0 2.0 2.3 1.2 0.62 0.36
speech APRIL 1.0 1.0 1.2 0.60 0.31 0.17 0.10

Apr-lazy 1.0 1.0 1.0 0.52 0.27 0.15 0.09

Table 3: Execution time for Mul-T benchmarks. \T seq" is T running sequential code, \Mul-T seq" is Mul-T running
sequential code, 1 to 16 denote number of processors running parallel code.

fewer futures. The overhead introduced is only a fac-
tor of 1.5. In all of the programs, APRIL consistently
demonstrates lower overhead due to support for thread
creation and synchronization over the Encore.
Measurements for multiple processor executions on

APRIL (2 { 16) used the processor simulator without
the cache and network simulators, in e�ect simulating a
shared-memory machine with no memory latency. The
numbers demonstrate that APRIL and its run-time sys-
tem allow parallel program performance to scale when
synchronization and task creation overheads are taken
into account, but when memory latency is ignored. The
e�ect of communication in large-scale machines depends
on several factors such as scheduling, which are active
areas of investigation.

8 Scalability of Multithreaded

Processor Systems

Multithreading enhances processor e�ciency by allow-
ing execution to proceed on alternate threads while the
memory requests of other threads are being satis�ed.
However, any new mechanism is useful only if it en-
hances overall system performance. This section ana-
lyzes the system performance of multithreaded proces-
sors.
A multithreaded processor design must address the

tradeo� between reduced processor idle time and in-
creased cache miss rates, network contention, and con-
text management overhead. The private working sets of
multiple contexts interfere in the cache. The added in-

terference misses coupled with the higher average tra�c
generated by a higher utilized processor impose greater
bandwidth demands on the interconnection network.
Context management instructions required to switch
the processor between threads also add to the over-
head. Furthermore, the application must display suf-
�cient parallelism to allow multiple thread assignment
to each processor.
What is a good performance metric to evaluate mul-

tithreading? A good measure of system performance is
system power, which is the product of the number of
processors and the average processor utilization. Pro-
vided the computation of processor utilization takes into
account the deleterious e�ects of cache, network, and
context-switching overhead, the processor utilization is
itself a good measure.
We have developed a model for multithreaded pro-

cessor utilization that includes the cache, network, and
switching overhead e�ects. A detailed analysis is pre-
sented in [1]. This section will summarize the model
and our chief results. Processor utilization U as a func-
tion of the number of threads resident on a processor
p is derived as a function of the cache miss rate m(p),
the network latency T (p), and the context switching
overhead C:

U(p) =

8>><
>>:

p

1+T (p)m(p)
for p < 1+T (p)m(p)

1+Cm(p)

1
1+Cm(p) for p � 1+T (p)m(p)

1+Cm(p)

(1)

When the number of threads is small, complete over-
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lapping of network latency is not possible. Processor
utilization with one thread is 1=(1+m(1)T (1)). Ideally,
with p threads available to overlap network delays, the
utilization would increase p-fold. In practice, because
the miss rate and network latency increase to m(p) and
T (p), the utilization becomes p=(1 +m(p)T (p)).
When it is possible to completely overlap network

latency, processor utilization is limited only by the con-
text switching overhead paid on every miss (assuming
a context switch happens on a cache miss), and is given
by 1=(1 +m(p)C).
The models for the cache and network terms have

been validated through simulations. Both these terms
are shown to be the sum of two components: one com-
ponent independent of the number of threads p and the
other linearly related to p (to �rst order). Multithread-
ing is shown to be useful when p is small enough that
the �xed components dominate.
Let us look at some results for the default set of sys-

tem parameters given in Table 4. The analysis assumes
8000 processors arranged in a three dimensional array.
In such a system, the average number of hops between a
random pair of nodes is nk=3 = 20, where n denotes net-
work dimension and k its radix. This yields an average
round trip network latency of 55 cycles for an unloaded
network, when memory latency and average packet size
are taken into account. The �xed miss rate comprises
�rst-time fetches of blocks into the cache, and the inter-
ference due to multiprocessor coherence invalidations.

Parameter Value

Memory latency 10 cycles
Network dimension n 3
Network radix k 20
Fixed miss rate 2%

Average packet size 4
Cache block size 16 bytes

Thread working set size 250 blocks
Cache size 64 Kbytes

Table 4: Default system parameters.

Figure 5 displays processor utilization as a function of
the number of threads resident on the processor when
context switching overhead is 10 cycles. The degree
to which the cache, network, and overhead components
impact overall processor utilization is also shown. The
ideal curve shows the increase in processor utilization
when both the cache miss rate and network contention
correspond to that of a single process, and do not in-
crease with the degree of multithreading p.
We see that as few as three processes yield close to

80% utilization for a ten-cycle context-switch overhead
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Figure 5: Relative sizes of the cache, network and overhead
components that a�ect processor utilization.

which corresponds to our initial SPARC-based imple-
mentation of APRIL. This result is similar to that re-
ported by Weber and Gupta [26] for coarse-grain mul-
tithreaded processors. The main reason a low degree of
multithreading is su�cient is that context switches are
forced only on cache misses, which are expected to hap-
pen infrequently. The marginal bene�ts of additional
processes is seen to decrease due to network and cache
interference.
Why is utilization limited to a maximum of about

0.80 despite an ample supply of threads? The reason is
that available network bandwidth limits the maximum
rate at which computation can proceed. When avail-
able network bandwidth is used up, adding more pro-
cesses will not improve processor utilization. On the
contrary, more processes will degrade performance due
to increased cache interference. In such a situation,
for better system performance, e�ort is best spent in
increasing the network bandwidth, or in reducing the
bandwidth requirement of each thread.
The relatively large ten-cycle context switch overhead

does not signi�cantly impact performance for the de-
fault set of parameters because utilization depends on
the product of context switching frequency and switch-
ing overhead, and the switching frequency is expected
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to be small in a cache-based system. This observation
is important because it allows a simpler processor im-
plementation, and is exploited in the design of APRIL.
A multithreaded processor requires larger caches to

sustain the working sets of multiple processes, although
cache interference is mitigated if the processes share
code and data. For the default parameter set, we found
that caches greater than 64 Kbytes comfortably sus-
tain the working sets of four processes. Smaller caches
su�er more interference and reduce the bene�ts of mul-
tithreading.

9 Conclusions

We described the architecture of APRIL { a coarse-
grain multithreaded processor to be used in a cache-
coherent multiprocessor called ALEWIFE. By rapidly
switching to an alternate task, APRIL can hide com-
munication and synchronization delays and achieve high
processor utilization. The processor makes e�ective use
of available network bandwidth because it is rarely idle.
APRIL provides support for �ne-grain tasking and de-
tection of futures. It achieves high single-thread perfor-
mance by executing instructions from a given task until
an exception condition like a synchronization fault or re-
mote memory operation occurs. Coherent caches reduce
the context switch rate to approximately once every 50{
100 cycles. Therefore context switch overheads in the
4{10 cycle range are tolerable, signi�cantly simplifying
processor design. By providing hardware support only
for performance-critical operations and migrating other
functionality into the compiler and run-time system, we
were able to simplify the processor design even further.
We described a SPARC-based implementation of

APRIL that uses the register windows of SPARC as
task frames for multiple threads. A processor simulator
and an APRIL compiler and run-time system have been
written. The SPARC-based implementation of APRIL
switches contexts in 11 cycles. APRIL and its asso-
ciated run-time system practically eliminate the over-
head of �ne-grain task creation and detection of fu-
tures. For Mul-T, the overhead reduces from 100%
on an Encore Multimax-based implementation to under
5% on APRIL. We evaluated the scalability of multi-
threaded processors in large-scale parallel machines us-
ing an analytical model. For typical system parameters
and a 10 cycle context-switch overhead, the processor
can achieve close to 80% utilization with 3 processor
resident threads.
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