
The Impact of Communication Locality on
Large-Scale Multiprocessor Performance

Kirk L. Johnson
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

As multiprocessor sizes scale and computer architects turn to in-
terconnection networks with non-uniform communication laten-
cies, the lure of exploiting communication locality to increase
performance becomes inevitable. Models that accurately quantify
locality effects provide invaluable insight into the importance of
exploiting locality as machine sizes and features change. This
paper presents a framework for modeling the impact of communi-
cation locality on system performance. The framework provides
a means for combining simple models of application, processor,
and network behavior to obtain a combined model that accurately
reflects feedback effects between processors and networks. We in-
troduce a model that characterizes application behavior with three
parameters that capture computation grain, sensitivity to commu-
nication latency, and amount of locality present at execution time.
The combined model is validated with measurements taken from
a detailed simulator for a complete multiprocessor system. Us-
ing the combined model, we show that exploiting communication
locality provides gains which are at most linear in the factor by
which average communication distance is reduced when the num-
ber of outstanding communication transactions per processor is
bounded. The combined model is also used to obtain rough upper
bounds on the performance improvement from exploiting locality
to minimize communication distance.

1 Introduction

At the heart of any multiprocessor lies the interconnection network
through which processing nodes communicate with one another.
The simplest types of interconnection networks allow all distinct
pairs of processors to communicate with the same latency, ignor-
ing contention effects. The simplicity of the cost model provided
by suchuniform communication latency(UCL) interconnection
networks affords simplicity in software systems (e.g. compilers,
schedulers, operating systems) built upon architectures that use
such networks. Unfortunately, mechanisms used to implement
UCL networks are notscalable. Single-level shared-bus archi-
tectures are limited by bus bandwidth and are unable to support
reasonable communication loads from more than a few dozen pro-
cessors. Full crossbars might provide nearly uniform communica-
tion latencies, but excessive hardware requirements prevent them

from being scalable. Indirect, multistage networks that circum-
vent the bandwidth problems of buses and quadratic hardware re-
quirements of full crossbars provide bandwidth which scales with
machine size. But this increased bandwidth comes at a price:all
communication latency increases with the number of processors
in the system.1

Because the construction of scalable UCL networks appears
to be intractable, future large-scale multiprocessors will probably
use some type ofnon-uniform communication latency(NUCL) in-
terconnection network (e.g. meshes, trees). In such networks, all
processors are able to communicate with one another, but laten-
cies may vary greatly. In terms of average communication latency
between all pairs of processors, such networks may do no better
than the most efficient UCL networks. However, as machine sizes
scale, NUCL networks have an advantage: some processors can
remain “close” to one another, regardless of machine size; other
processors gradually become “further” away. The smaller the
distance between a pair of communicating processors, the lower
the communication latency. Moreover, the network bandwidth re-
quired for communication typically decreases with communication
distance.

This difference gives NUCL architectures an advantage over
UCL architectures. As machine sizes scale, applications running
on UCL architectures face increasing latencies for all communi-
cation. On the other hand, with NUCL architectures, some appli-
cations can be organized such that communication patterns tend
to favor nearby processors. Such applications should experience
performance gains commensurate with the degree that communi-
cation latencies can be reduced.

We prefer UCL and NUCL over the more conventional UMA
(uniform memory access) and NUMA (non-uniform memory ac-
cess) nomenclature, because the conventional terms imply shared-
memory semantics. UCL and NUCL capture the same fundamen-
tal difference for a more general class of architectures.

1.1 What i s Locali ty?

Applications often take advantage ofcommunication localityto
realize performance gains. Communication locality is a property
of both applications and architectures.Application locality (or
algorithmic locality) is that which is present in the organization
of an application, independent of architectural details.Architec-
tural locality represents the ability of an architecture to exploit

1Conventional wisdom dictates that this increase is logarithmic in the number of
processors in the system; proponents of “three-space realizability” arguments claim
a somewhat higher rate [9].

Appears inProceedings of the 19th Annual International Sym-
posium on Computer Architecture, May 1992.

application locality.

Two components contribute to application locality. The first,
temporal locality, represents the effect of decreasing the commu-
nication frequency between application threads. Applications that
minimize inter-thread communication by maximizing data reuse
tend to exhibit good temporal locality. The second component,
physical locality, represents the effect of affinity in the commu-
nication patterns amongst an application’s threads. Applications
tend to have good physical locality to the extent that their inter-
thread communication graphs have relatively low bisection width
and high diameter. An application in which all distinct pairs of
threads communicate equally has no physical locality.

With this understanding, the fundamental difference between
UCL and NUCL architectures becomes clear. Both classes of
architectures allow exploitation of temporal locality, but UCL ar-
chitectures are only able to exploit physical locality to the extent
that threads can be collocated when there are more threads than
processors. In addition to being able to collocate threads, NUCL
architectures can exploit physical locality by placing communi-
cating threads on processors such that average communication
distance is minimized.

1.2 ManagingCommunication Latency

As machine sizes scale, communication latencies will also in-
crease. Architects have proposed many approaches for managing
that latency; these approaches can be divided into three broad
categories.

� Those that attempt toavoid long latency operations. These
approaches exploit temporal locality in the application and
focus on enhancing data reuse (e.g. caches, compilation for
data locality).

� Those that attempt toreducecommunication latency. These
approaches exploit physical locality in the application and
focus on minimizing communication distance.

� Those that attempt totoleratelong latency operations. These
approaches typically focus on software paradigms and pro-
cessor architectures which allow useful work to overlap long
latency operations (e.g. multithreading, relaxed memory
consistency models, data prefetching).

This paper focuses on the impact of the latter two approaches
on multiprocessor performance. Numerous researchers have dem-
onstrated the importance of the first approach (exploiting temporal
locality); compilation techniques for increasing temporal locality
continue to be an active area of research [10 , 12].

1.3 Contributions of thi s Paper

This paper describes a framework for analyzing the impact of
communication costs on end application performance for a broad
class of multiprocessors. This framework is then used to quan-
tify the impact of physical locality in large-scale multiprocessors
using interconnection networks organized ask-ary n-dimensional
meshes.

The modeling framework provides a mechanism for combin-
ing separate models of applications, communication mechanisms
(e.g. coherence protocols), and interconnection networks. Each

of the component models can be changed independently of the
others; this provides a means of gauging the importance of partic-
ular application or architectural features in controlled experiments.
Component models are combined such that applications receive
feedback from interconnection networks and only proceed at rates
appropriate to observed communication latencies. The application
model introduced in this paper characterizes application behavior
with three parameters: the application’s computational grain size,
its ability to tolerate communication latency, and the amount of
physical locality present at execution time. Model predictions
agree closely with measurements taken from detailed simulations
of a complete multiprocessor system.

We demonstrate that under a reasonable set of assumptions
about processor and application behavior, the impact of contention
in k-ary n-dimensional mesh networks is bounded. In particular,
we use the combined model to show that when the number of out-
standing communication transactions per processor is bounded,
average per-hop communication latency in large machines ap-
proaches a constant value; this effect is observable in machines
with a few thousand processors. Because average per-hop latency
approaches a constant value under this condition, average com-
munication latencies are linear in communication distance.

This fact has profound impact on the performance improve-
ments available by exploiting physical locality. Any gain due to
exploiting physical locality is bounded by the degree to which
communication latencies are reduced. Since communication la-
tencies are linear in communication distance, exploiting physical
locality to reduce communication distances provides gains which
are at most linear in the factor by which communication distances
are reduced.

We also use the combined model to obtain rough upper bounds
on the performance improvement possible by exploiting physical
locality in two-dimensional mesh networks. In the architecture
used in the simulation experiments, network switches are clocked
twice as fast as processors. Under these conditions, our analysis
indicates that these upper bounds are around two for machines
with 1,000 processors and roughly 50 for machines with a mil-
lion processors. By using the model to investigate the impact of
changing the relative balance between computation and communi-
cation speeds, we demonstrate that these bounds are significantly
larger for architectures with less bandwidth-rich interconnection
networks—decreasing the relative speed of the network by a fac-
tor of eight increases the upper bounds by approximately a factor
of three.

1.4 Overvi ew

The rest of this paper is organized as follows: Section 2 de-
scribes the modeling framework and its components. Section 3
describes the set of experiments used to verify the model. The sec-
tion concludes by presenting results from these experiments and
noting that they agree closely with the values predicted by the
model. Section 4 uses the model to predict performance across a
wide range of machine configurations. Section 5 provides a brief
overview of related work. Section 6 closes with a summary of our
major results. Finally, Appendix A summarizes the nomenclature
used in the rest of the paper.

2

2 AFramework for Model ing

This section presents a framework for modeling the impact of
communication costs on application performance. The framework
consists of three components: an application model describes pro-
cessor behavior in terms of abstract communication transactions, a
transaction model describes the resources required to satisfy com-
munication transactions, and a network model characterizes the
behavior of the underlying interconnection network. The applica-
tion and transaction models are combined to obtain a node model
which describes the behavior of individual multiprocessor nodes
as seen by the interconnection network. The final combined model
is obtained by joining the node and network models. These mod-
els are joined such that applications effectively receive feedback
from the network and only inject messages at rates appropriate to
the message latencies they actually observe.

In order to compare application performance for different ma-
chine configurations and applications with different amounts of
physical locality, a metric of performance is needed. This frame-
work uses average transaction rate as a basis for such comparisons,
as discussed in Section 2.6. Simulation results demonstrating the
accuracy of the model are presented in Section 3.

2.1 Appl i cationModel

The application model describes the behavior of individual pro-
cessors running their portion of an application by indicating how
per-processor communication transaction issue rate depends on
transaction latency. The model captures both application- and
processor-specific details. It characterizes not only the basic com-
putational grain size of an application but also how behavior
changes when transaction latencies increase. Computational grain
size is an informal notion; another common term for the same
notion is computation-to-communication ratio. In this paper, this
notion is captured byTr , the average amount of useful work done
by a thread between successive communication transactions. The
dependence of processor behavior on observed transaction latency
is captured by thelatency sensitivity, s, as described below. We
show thats is intimately related to the degree to which an architec-
ture and application utilize multiple outstanding communication
transactions.

For architectures with UCL interconnection networks, these
two parameters (Tr ands) are sufficient to characterize applica-
tion behavior. For architectures with NUCL interconnection net-
works, additional information about communication patterns that
exist during application execution (e.g. which processing nodes
communicate with one another) is also necessary. These patterns
depend on the amount of physical locality present in an applica-
tion, the topology of the interconnection network, and the degree
to which the mapping used to assign application threads to proces-
sors exploits these features to minimize communication distances.
Because good metrics for these factors are still an area of active
research, this paper uses an operational definition of physical lo-
cality. All information about communication patterns is captured
by a single number: average communication distanced, measured
in network hops. This parameter captures the amount of physical
locality present at execution time. For interconnection networks
with topologies more complex than that of thek-aryn-dimension-
al meshes used in this paper, more detailed representations might
be necessary.

For the applications and architecture described in this pa-

processor issues
communication
transaction

communication
transaction
completes

time

useful work useful work

tt

TrTt

Figure 1: A simple processor in action. Shaded regions between
periods of useful work represent time spent waiting for commu-
nication transactions to complete.

per, communication transactions are cache coherency transactions.
The development of the framework does not depend on this fact;
given an appropriate transaction model, the framework could be
used to model applications and architectures that utilize other
styles of interprocessor communication.

In order to derive a simple application model from first prin-
ciples, consider an application for which the average run length
between successive communication transactions by a thread isT r

cycles. Assume each transaction takes an average ofT t cycles to
complete. When processors can only support a single outstanding
communication transaction, as depicted in Figure 1, the average
inter-transaction issue timett is given by

tt = Tr + Tt (1)

or
Tt = tt � Tr (2)

That is, inter-transaction issue time and average transaction la-
tencyTt are linearly related with a slope of 1 and intercept de-
termined by the computational grain of the application. In what
follows, such relationships betweent t andTt will be referred to
asapplication transaction curves.

Extending this model to accommodate processor architectures
capable of supporting multiple outstanding transactions is straight-
forward. Consider, for example, the case of block multithreaded
processors withp hardware contexts and a context switch time of
Ts cycles (see Figure 2). Each thread runs until it issues a commu-
nication transaction, at which time the processor switches contexts
and restarts execution of the next thread. Such processors have
two basic modes of operation. In the first mode, transaction laten-
cies are small enough to ensure that transactions always complete
before the invoking thread is ready to run again. The following
inequality expresses this condition:

Tt < pTs + (p � 1) Tr (3)

When operating in the first mode, processors are completely able
to mask communication latency. A new transaction is invoked
everyTs+Tr cycles, thus the average inter-transaction issue time
is simply

tt = Tr + Ts (4)

This equation represents the minimum inter-transaction issue time
for a given application when using multithreaded processors.

When the inequality in Equation (3) does not hold, proces-
sors operate in a second mode where they are no longer able to
completely mask communication latencies. When operating in the

3

time

thread 1 issues
communication
transaction

thread 2 issues
communication
transaction

thread 1 thread 2 thread p

thread p issues
communication
transaction

thread 1

communication transaction
issued by thread 1 completes

Tr Tt

Ts

Figure 2: A block multithreaded processor in action. Hashed regions between thread runs represent context switching time; the shaded
region at the right represents time spent waiting for communication transactions to complete.

second mode, processors invokep transactions everyT r + Tt cy-
cles (see Figure 2), thus the average inter-transaction issue time
is given by

tt =
Tr + Tt

p
(5)

or
Tt = ptt � Tr (6)

As with non-multithreaded processors, application behavior is
characterized by a linear relationship betweent t andTt. In fact,
the only difference due top-multithreaded processors is an extra
factor ofp in the slope of thett – Tt relationship (compare Equa-
tions (2) and (6)) and the lower bound on average inter-transaction
issue time given by Equation (4).

None of the experiments described in this paper yielded inter-
transaction issue times approaching the lower bound given in
Equation (4). Thus the rest of this paper drops explicit references
to this bound.

Increases in the slope of an application transaction curve indi-
cate decreased sensitivity of application performance to increases
in transaction latency. For example, consider two applications,A

andB, such that the slope ofB ’s application transaction curve is
twice that ofA. If an increase in transaction latency ofx cycles
causesA’s average inter-transaction issue time to increase byy
cycles, then a similar increase in the transaction latency observed
by B will only increaseB ’s average inter-transaction issue time
by y=2 cycles.

Extending the application model to accommodate other mech-
anisms for supporting multiple outstanding transactions (e.g. weak
ordering, data prefetching) is equally straightforward. The impact
of all such mechanisms is essentially the same: applications for
which processors keep an average ofk transactions outstanding
have application transaction curves with slopesk times greater
than those for the same application running on processors which
can only support a single outstanding transaction. Since increases
in slope indicate decreased sensitivity to communication latency,
this corresponds nicely with the intuition that architectures em-
bodying such mechanisms should be less sensitive to increasing
communication latencies.

Note that the constant offset in the application model (Equation
(6)) depends on an application’s computational grain, as captured
by Tr. When the same application model is used to characterize
application behavior for a range of machine configurations, there
is an implicit assumption that problem size is being scaled such
thatTr remains constant. For many applications this may require
using problem sizes proportional to the total number of hardware
contexts available.

2. 2 Tr ansact i on Model

The transaction model describes the resources required to satisfy
a communication transaction. It encompasses two pieces of infor-
mation: the average number of network messages which must be
sent to satisfy a transaction and the average latency of a transac-
tion.

Intuitively, transaction latencyTt consists of some fixed delay
plus a component dependent on average message latencyT m.
The fixed delay arises from factors such as message sending and
receiving overhead, processing necessary to maintain coherence
in cache-coherent systems, and the like. Thus average transaction
latency is modeled as

Tt = cTm + Tf (7)

wherec indicates the extent to which transaction latency depends
on message latency, andT f represents any fixed delay inherent
in the transaction mechanism. In essence,c is the number of
messages in the “critical path” of a transaction. For simple trans-
action mechanisms which require only single message exchanges
between peers,c = 2 .

The average number of messages required to satisfy a commu-
nication transaction is assumed to be some constantg. Observe
that the average inter-message injection timetm for an individual
node and the average inter-transaction issue timet t are related by
a factor ofg :

tt = g tm (8)

2. 3 Node Model

The node model describes the behavior of a multiprocessor node
from the perspective of the interconnection network. The node
model indicates how fast nodes will inject messages into the in-
terconnection network as a function of average message latency.
In essence, the node model provides the same information for
messages that the application model provides for transactions.

The node model is derived from the application and transaction
models by substituting Equations (7) and (8) into Equation (6) and
simplifying.

Tm =
pg

c
tm �

Tr + Tf
c

(9)

Not surprisingly, Equation (9) indicates that average inter-message
injection timetm and average message latencyTm are linearly re-
lated. The slope of the relationship depends on the constants from
the transaction model and the slope of the application transaction
curve; the intercept on the computational grain and constants from

4

the transaction model. Such relationships betweentm andTm will
be referred to asapplication message curves.

The intuition about the slope of application transaction curves
applies to application message curves as well: the greater the
slope of an application message curve, the less sensitivet m is
to increases inTm. Accordingly, we will refer to the slope of
an application message curve as thelatency sensitivitys . Larger
values ofs correspond to decreased sensitivity of application per-
formance to changes in average message latency. Note thats
is proportional top, the average number of outstanding transac-
tions, where the constant of proportionality is determined by the
parameters of the transaction model.

2. 4 Networ k Model

The network model describes the behavior of the interconnection
network by providing average message latency as a function of
average message size, message injection rate, and average com-
munication distance. In this paper, we use a model for packet-
switched, buffered mesh networks, but the framework can eas-
ily accommodate models for other types of packet-switched net-
works such as that for indirect networks given in [8]. We believe
that modifications to allow for circuit-switched networks would
be straightforward.

The network model used in this paper is that for packet-
switchedk-aryn-dimensional torus networks with separate unidi-
rectional channels in both mesh directions presented by Agarwal
in [1]. The model assumes that messages are wormhole routed
according to ane-cube routing scheme [6]. In this model, channel
utilization � and average message latencyTm are given by

� =
rmBkd

2
(10)

Tm = nkdTh +B (11)

where

rm is the average message injection rate for each node.rm is
related to the average inter-message injection time according
to

rm =
1

tm
(1 2)

B is the average message size, in flits

kd is the average distance per dimension each message must
travel, which is given by the average communication distance
d divided by the number of dimensionsn:

kd =
d

n
(1 3)

Th is the average per-hop latency for the head of a message,
which is given by

Th = 1 +

�
�B

1 � �

��
kd � 1

k2d

��
n+ 1

n

�
(1 4)

Average communication distanced (and thuskd) depends on
the amount of physical locality in an application and the extent
to which good thread-to-processor mappings are used. In addi-
tion to reducing average communication distance, good mappings
can also lead to lower values ofTh, the average per-hop latency.

This happens because reductions ink d provide corresponding re-
ductions in channel utilization� (see Equations (10) and (14)).
Thus the benefits of exploiting physical locality are twofold: both
communication distance and network contention are reduced.

This paper extends Agarwal’s basic network model slightly.
First, as given, Equation (14) is only valid forkd � 1 . Good
mappings of applications that exhibit a considerable degree of
physical locality can easily violate this condition. Under these
circumstances, messages will tend to encounter very little con-
tention delay. Thus, forkd <1 , Th is taken to be 1.

A second extension reflects the effect of contention for the
channels which connect processing nodes to the network. An
accurate network model must account for this factor, for it can
become significant in the presence of long messages or high mes-
sage rates. For the experiments described in Section 3, contention
for these channels added two to five network cycles to the av-
erage message latency. Extending the model to account for this
contention introduces additional complexity to the solution of the
combined model without providing further insight into the issues
at hand. Accordingly, this paper does not treat such an extension.
The modeled values shown in Sections 3 and 4, however, reflect
the inclusion of this factor as discussed in [7].

2. 5 Combi ned Model

We obtain the combined model by using the node and network
models to provide feedback to one another so that individual nodes
“back off” as message latencies increase, injecting messages into
the network at rates appropriate to the message latencies they ac-
tually observe. Equating the right hand sides of Equations (9) and
(11) provides us with a quadratic polynomial inrm, the average
message injection rate. Given values for the various application
and network model parameters, the quadratic is easily solved;
the resulting value ofrm represents the predicted per-node mes-
sage injection for the application and network described by the
given parameter values. Other values of interest (e.g. channel
utilization, average inter-transaction issue time) are obtained by
substituting the predicted value ofrm into the appropriate model
equations.

2. 6 Per f ormance Met r i cs

In order to compare performance of different machine configura-
tions, a performance metric is needed. Such a metric should relate
directly to end performance—the rate at which useful work gets
done.

Within the framework presented in this paper, the average
amount of useful work each thread performs between issuing com-
munication transactions is assumed to be some constantT r . Since
the average inter-transaction issue time istt, the rate at which use-
ful work gets done can be computed directly asT r=tt. Note that
this value is proportional to the average transaction issue rater t,
wherert is given by

rt =
1

tt
(1 5)

WhenTr is held constant,rt serves as a good metric of per-
processor performance—increases inr t are indicative of propor-
tional increases in actual per-processor performance. A good met-
ric of aggregate performance for anN -processor machine is thus

5

Nr t. For a particular application model, the performance ob-
tained with two different machine configurations can be compared
by computing the ratio of the aggregate performance obtained in
each case. Similar computations can be used to compare the per-
formance of different application models for a particular machine
configuration.

3 Exper i ment at i on

This section describes the simulation experiments used to vali-
date the combined model. It begins with a description of the
multiprocessor architecture for which the simulations were run,
followed by a description of the application code used. The sec-
tion concludes with a presentation of simulation results validating
the models developed in Section 2.

3. 1 The Ar chi t ect ur e

The architecture simulated in these experiments is that of the MIT
Alewife machine [2]. The basic Alewife architecture consists of
processor/memory nodes communicating over a packet-switched
interconnection network organized as a low-dimensional mesh.

Each processor/memory node consists of a Sparcle processor
[3], a floating-point coprocessor, several megabytes of DRAM, a
64-kilobyte unified instruction/data cache (direct mapped, 16-byte
lines), and a controller that serves as both memory and network in-
terface. In order to support block multithreading, Sparcle provides
four hardware contexts. Switches between hardware contexts can
be effected in 11 cycles. In addition to providing the processor
direct access to message sending and receiving facilities, the mem-
ory/network interface implements the LimitLESS protocol [4] to
provide coherent caches and shared memory. Components on a
processor/memory node are clocked at 33 to 40 MHz.

The mesh-organized interconnection network provides two
eight-bit unidirectional channels between each neighboring pair
of nodes; one for each direction. The bandwidth of each channel
is around 60 to 80 Mbytes/sec; network switches are clocked twice
as fast as processors. The base delay through a network switch is
a single network cycle. Each network switch is connected to its
corresponding processing node through a pair of eight-bit chan-
nels; one channel is used to deliver messages from the node to
the network, the other to deliver messages from the network to
the processing node. A moderate amount of buffering is provided
on each switch. Messages are wormhole routed according to an
e -cube routing scheme [6].

All simulations were run assuming a 64-node machine orga-
nized as a two-dimensional, radix-eight torus. The simulator used
provides instruction level simulation of Sparcle and cycle-by-cycle
simulation of the cache, controller, and network components.

3. 2 The Appl i cat i on

The model of the previous section described application behavior
in terms of computation grainTr, latency sensitivitys , and aver-
age communication distanced. In order to validate the model, we
devised a synthetic application with several interesting properties.
First, it has a particularly small computation grain size. As the
goal of these experiments was to measure the impact of varying
communication costs on end performance, this is useful—intuition

dictates that these effects should be more pronounced in applica-
tions with small computation grain. Second, the application has
particularly good physical locality: its 64 threads communicate
with one another according to a radix-eight two-dimensional torus
organization. This allowed us to drastically vary average commu-
nication distance by using different thread-to-processor mappings.
Third, by using the block multithreading features of Sparcle to
vary the number of transactions the application kept outstanding,
we could vary the latency sensitivity of the application.

Each of the simulation experiments used the same application
code. In that code, each thread maintains a single word of state in
local memory and repeatedly iterates through a simple inner-loop.
During the course of one pass through the inner-loop, a thread
reads the value from each of its neighbors’ state words, performs
some trivial computation, and writes a new value to its own state
word. Threads make no effort to synchronize with one another.

Note that inter-thread communication takes place through
shared memory. Each time a thread reads a neighbor’s state or
updates its own state, inter-thread communication is effected, if
necessary, through appropriate cache-coherency transactions. Be-
cause Alewife provides coherent caches and all threads run the
same inner-loop, the great majority of attempts to read a neigh-
bor’s state word cause cache-coherency traffic—it is likely one
thread will update its state word before another can read it twice.
Similarly, when a thread updates its local state word, cache-
coherency traffic will usually be needed to invalidate read copies
of the word from neighboring threads’ caches.

Two parameters were varied across the suite of simulations.
First, by using different thread-to-processor mappings, the aver-
age number of hops required to communicate between neighbor-
ing threads in the application’s communication graph could be
changed drastically. Average communication distances for the
nine mappings used in these experiments ranged from one to just
over six network hops.2

The second parameter that was changed between experiments
was the degree of multithreading,p. In each case, the simulation
run consisted of as many independent instances of the basic ap-
plication as there were hardware contexts, with exactly one thread
from each application instance resident on every processor. No
data was shared between application instances, thus threads on the
same node do not communicate with one another. Experiments
were run with one, two, and four hardware contexts.

A priori knowledge of the cache line size and details of the
coherency protocol provides the expected average message size
and average number of messages per transaction; these values
are 96 bits (B= 1 2 flits, assuming 8-bit network channels) and
g = 3 :2 messages per transaction, respectively.

3. 3 Ver i �cat i on of t he Model

The rest of this section presents experimental results which demon-
strate the accuracy of the combined model.

Figure 3 shows application message curves as measured for
the simulation experiments described earlier in this section. As
predicted by Equation (9),tm andTm are linearly related. Note
that increasing the number of contexts causes the application mes-
sage curve slope to increase in the expected manner. That is, the

2Randomly chosen thread-to-processor mappings on a machine of this size lead
to expected average communication distances of just over four network hops (see
Equation (17)).

6

 1 context
� 2 contexts
� 4 contexts

|
25

|
30

|
35

|
40

|
45

|
50

|10

|20

|30

|40

|50

|60

 avg inter-msg injection time (network cycles)

 a
vg

 m
sg

 la
te

n
cy

 (
n

et
w

o
rk

 c
yc

le
s)

slope = 1.69

slope = 3.26

slope = 5.49

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure 3: Average inter-message injection timetm vs. average
message latencyTm. Symbols denote simulation results; dotted
lines represent linear regressions of measured values.

slope for two contexts is roughly twice the slope for one context,
and so on.

Several phenomena cause the increases in slope to be slightly
less than expected. Most of the difference can be attributed to an
unfavorable interaction between the asynchronous nature of the
application code used in the experiments and the cache coherence
protocol.3 Because of this interaction, the constantc in Equation
(7) increases with the number of contexts; in the experiments
with four contexts,c is measured to be 15 percent larger than in
experiments with one context. Sincec occurs in the denominator
of the slope of the node model (Equation (9)), increases inc
manifest themselves as decreases in application message curve
slope.

Figures 4 and 5 plot average communication distance against
average message rate and average message latency. Symbols in-
dicate results from individual simulation runs; dotted curves show
the values predicted by the model. Note that predicted values for
message rate are consistently within a few percent of measured
values and predicted values for message latency track measured
values to within a few network cycles.

4 Resul t s and Di scuss i on

A number of interesting questions can be addressed given a model
that accurately describes the effects of changing communication
costs on application behavior. This section provides analysis and
discussion of two such issues. First, we show that when the
number of outstanding communication transactions per processor
is bounded, communication latencies in large machines are linear
in communication distance. Because of this fact, the exploitation
of physical locality provides gains which are at most linear in the
factor by which average communication distance is reduced.

Second, we use the combined model to obtain rough upper
bounds on the performance improvement possible from exploit-

3No real applications have exhibited this behavior.

 1 context
� 2 contexts
� 4 contexts

|
0.6

|
1.2

|
1.8

|
2.4

|
3.0

|
3.6

|
4.2

|
4.8

|
5.4

|
6.0

|
6.6

|0.020

|0.022

|0.024
|0.026

|0.028

|0.030

|0.032

|0.034

|0.036

|0.038

 avg communication distance (hops)

 a
vg

 m
sg

 in
je

ct
io

n
 r

at
e

(m
sg

s/
n

et
w

o
rk

 c
yc

le
)

�

� �
�

�

�

�

�

�

�
� � �

�

�

�

�

�

Figure 4: Average communication distancedvs. average message
injection raterm. Symbols denote simulation results; dotted lines
show values predicted by combined model.

 1 context
� 2 contexts
� 4 contexts

|
0.6

|
1.2

|
1.8

|
2.4

|
3.0

|
3.6

|
4.2

|
4.8

|
5.4

|
6.0

|
6.6

|10

|20

|30

|40

|50

|60

 avg communication distance (hops)

 a
vg

 m
sg

 la
te

n
cy

 (
n

et
w

o
rk

 c
yc

le
s)

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure 5: Average communication distancedvs. average message
latencyTm. Symbols denote simulation results; dotted lines show
values predicted by combined model.

7

ing physical locality in two-dimensional mesh networks. For the
architecture described in Section 3, we show that these bounds are
somewhat less than one might expect. We establish that this is
due to the relatively high bandwidth provided by the network used
in that architecture and show that the bounds increase when less
bandwidth-rich interconnection networks are used—decreasing the
relative speed of the network by a factor of eight leads to upper
bounds that are roughly three times larger.

4. 1 Bandwi dt h vs . Lat ency

As machine sizes scale, applications with little physical locality
place increasing bandwidth demands on interconnection networks.
Increases in application bandwidth requirements in turn cause con-
tention effects to become more pronounced. Using the framework
presented in this paper, we demonstrate that under a reasonable set
of assumptions about application and processor behavior, the im-
pact of contention effects is bounded, even for very large machines
and communication-intensive applications that induce heavy net-
work loads. Consequently, we show that the performance benefit
from exploiting physical locality to reduce communication dis-
tances is at most linear in the factor that average communication
distance is reduced.

By combining Equations (10), (11), and (14), one can show
that as average communication distances increase, the average
time it takes a message to travel a single network hop approaches
a limiting value given by

Th =
Bs

2 n
(1 6)

See [7] for details. Note that this limiting value depends only
on average message sizeB, latency sensitivitys, and network
dimensionn. For a given application and architecture,Bandn
are constants, whiles is linearly related top, the average number
of outstanding communication transactions.4

Intuitively, Th approaches this limiting value because of the
linkage between application and network behavior. If each node
can only have some finite number of transactions outstanding (i.e.
s is finite), increasing transaction latencies cause transaction is-
sue rates to fall. This negative feedback keeps processors from
loading interconnection networks to a point where communication
latencies become unbounded.

Thus, as machine sizes scale and communication distances
increase,Th approaches the value given by Equation (16). In
turn, this implies that average communication latency is linear in
communication distance. Note that processor architectures able
to support multiple outstanding transactions afford higher values
of s, which lead to proportional increases in the limiting value of
Th.

These conclusions have a profound impact on the potential
benefit of physical locality. Any gain due to exploiting physi-
cal locality is bounded by the degree by which communication
latencies are reduced. Since communication latencies are linear
in communication distance, reducing average communication dis-
tance by some factorxcan only provide performance gains which
are linear inx.

The smaller the computational grain of an application, the
faster the limiting value ofTh will be approached. For appli-
cations with small computational grain, the limiting case can be

4For realistic applications and architectures,s is finite.

| | | | | | ||0.0
|2.0

|4.0

|6.0

|8.0

|10.0

 number of processors

 a
vg

 p
er

-h
o

p
 m

sg
 la

te
n

cy
 (

n
et

w
o

rk
 c

yc
le

s)

101 102 103 104 105 106 107

Figure 6: Average per-hop message latencyT h vs. number of pro-
cessorsN. The solid line represents the application of Section 3
running with two hardware contexts, assuming random communi-
cation patterns. The dashed line shows the impact of increasing
the computation grain of that application by a factor of ten.

approached for relatively small machines. For example, consider
Figure 6.Th is plotted against machine size for two applications;
a two-dimensional interconnection network is assumed. The solid
curve represents the application of Section 3 running on a multi-
threaded processor with two hardware contexts. The dashed curve
shows the effect of artificially increasing the computational grain
size by a factor of ten. In this case (s= 3 :2 6 , B= 1 2 , n= 2),
the limiting value ofTh is approximately 9.8 network cycles. For
the application with smaller computational grain size,Th reaches
over eighty percent of its limiting value with a few thousand pro-
cessors. When the grain size is increased,T h still approaches the
same limiting value, albeit quite a bit more slowly, as expected.
Curves for one and four hardware contexts behave similarly.

4. 2 Phys i cal Local i t y

Intuition dictates that application performance should benefit from
thread-to-processor mappings that reduce overall communication
distance. The more physical locality present in an application,
the greater the gains possible through reducing communication
distances. This section demonstrates that while such gains are
certainly possible, they are somewhat less than one might initially
expect for the architecture described in Section 3—no more than
a factor of two or so for a 1,000 processor machine. An ex-
amination of the factors leading to this less-than-expected impact
indicates that it is primarily due to the relatively high ratio of
communication bandwidth to computation speed in that architec-
ture. Recomputing the gains for architectures with progressively
slower networks confirms this fact showing that larger gains are
possible when processors are faster relative to the speed of the
interconnection network.

Any application with finite latency sensitivitys will be com-
munication-bound for large enough message latencyTm. Once
Tm exceeds some threshold, increases in communication laten-
cies will cause proportional decreases in application performance.

8

Equation (9) indicates that the smaller an application’s computa-
tional grain size, the lower this threshold will be. Further, the
lower this threshold, the greater the impact exploiting physical
locality can have on end performance—reductions in communi-
cation latency are more beneficial when applications are already
communication-bound. Thus, for an application with substan-
tial physical locality and a very small computational grain size,
comparing the performance obtained with best-case mappings and
mappings which ignore physical locality provides a rough upper
bound on the potential benefit of exploiting physical locality for
any application. Since the application described in Section 3 has
the desired properties, it is well suited for use in this comparison.

Random mappings represent the expected case when appli-
cations possess no physical locality or physical locality is ig-
nored when mapping threads to processors. Under these circum-
stances, essentially random communication patterns result. For
torus-connectedk-ary n-dimensional interconnection networks,
assuming random communication patterns and nodes that never
send messages to themselves, the average distance traversed by a
message,d, is given by5

d=
nk n+1

4 (kn � 1)
(1 7)

See [1] or [11] for details.

For this application and network, because the communication
patterns of the application are the same as the network topology, an
ideal mapping in which every communication requires but a single
network hop is trivially obtained. Such a mapping represents the
expected best case.

As discussed in Section 2.6, average transaction issue rate is a
good metric of per-processor performance. Thus, in order to com-
pare performance obtained with different mappings of a particular
application on a given machine configuration, it is sufficient to
compute the ratio of the transaction issue rates obtained in each
case. When this ratio compares the performance of ideal and
random mappings for a given machine sizeN, it is termed the
expected gaindue to exploitation of physical locality.

Figure 7 shows a log-log plot of expected gain against ma-
chine sizes from ten to a million processors for the application
of Section 3 running with one, two, and four hardware contexts.
The curves are strikingly similar—each starts at unity gain for ten
processors, reaches a gain of two at around 1,000 processors, then
quickly enters a region where the randomly-mapped application is
communication-bound. Expected gains for one million processors
range from 40 to 55. Recall that because the application being
measured has very small computation grain, these are rough upper
bounds on the gains available to any application.

Initially, an expected gain of only a factor of two for a 1,000
processor machine seems somewhat surprising. On a machine of
that size, average communication distance for random mappings is
nearly a factor of 16 larger than the single-hop distances afforded
by an ideal mapping. Further, there’s good reason to expect that
for random mappings,Th will be substantially larger, by a factor
of four or more, than for an ideal mapping (see Figure 6). It is
reasonable to expect, then, that thenk dTh term of Equation (11)
will be a factor of 50 or 100 larger for a random mapping than
for an ideal mapping.

5Equation (17) is only exact for even values ofk. For odd values ofk, the

correct value is smaller bynk
n�1

4(kn�1)
. Since this term isO(1

k
), it rapidly becomes

insignificant ask increases.

 1 context
 2 contexts
 4 contexts

| | | | | ||1
|2

|4

|8

|16

|32

|64

 number of processors

 e
xp

ec
te

d
 g

ai
n

101 102 103 104 105 106

Figure 7: Expected gain due to exploitation of physical locality
vs. number of processors (two-dimensional mesh). Each curve
compares performance of ideal mapping vs. random mapping for
a given degree of processor multithreading.

These results indicate that a large disparity exists between the
magnitudes of the difference in communication costs and the dif-
ference in end performance when comparing ideal and random
mappings. By using the application and network models from
Section 2, the degree to which various factors contribute to end
performance can be quantified. Such a breakdown allows identi-
fication of the phenomena that lead to the apparent disparity.

Substituting Equations (7) and (11) into Equation (6) and solv-
ing for the average inter-transaction issue timett gives:

tt =
c

p
nk dTh +

c

p
B+

Tf
p

+
Tr
p

(1 8)

Each of the four terms in Equation (18) represents the contri-
bution tott from a distinct component:

c
p
nk dTh represents the contribution fromvariable message

overhead—those components of message latency that in-
crease with increased communication distance.

c
p
B represents the contribution fromfixed message overhead—

those components of message latency that are fixed with
respect to changes in communication distance.

Tf

p
represents the contribution fromfixed transaction
overhead—those components of transaction latency that are
constant with respect to message latency.

Tr
p

represents the contribution fromactual CPU cycles.

Of these four components, only variable message overhead
increases with communication distance. Thus the exploitation of
physical locality can only affect the contribution of variable mes-
sage overhead.

Figure 8 plots the contribution of each of these components
for ideal and random mappings of the application of Section 3
on a 1,000 processor machine for one, two, and four hardware

9

||0

|30

|60

|90

|120

|150

|180

|210

|240

|270

 a
vg

 in
te

r-
tr

an
sa

ct
io

n
 t

im
e

(n
et

w
o

rk
 c

yc
le

s) variable message overhead
fixed message overhead
fixed transaction overhead
actual CPU cycles

1 ctxt 2 ctxts 4 ctxts
ideal mapping

1 ctxt 2 ctxts 4 ctxts
random mapping

Figure 8: Breakdown of factors contributing to average inter-
transaction issue timett for ideal and random mappings (1000
processors,k= 1 0, n= 2).

contexts. In moving from ideal to random mappings, the absolute
contribution of fixed components declines slightly (no more than a
few cycles)6, while the contribution of variable message overhead
increases drastically, as expected. Because these drastic increases
only serve to bring the contribution due to variable message over-
head on par with that from the fixed components, their net impact
on inter-transaction issue time is limited to a factor of two or so.

In each of the six cases shown in Figure 8, fixed transaction
overhead constitutes around two-thirds of the total fixed com-
ponent. While this might seem inordinately large, in absolute
terms, it corresponds to around 1 or 1.5�s, assuming the timings
discussed in Section 3. Further, recall that for this application
an average transaction requires three or four network messages.
This fixed overhead of 1 or 1.5�s includes not only the sending
and receiving overhead for those messages, but also any memory
accesses and cache coherency processing necessary to complete a
transaction.

When the relative balance of computation speed and commu-
nication bandwidth isn’t as skewed in favor of communication as
for the architecture described in Section 3, the fraction of inter-
transaction time due to fixed transaction overhead and actual CPU
cycles is reduced. Such a reduction increases the relative magni-
tude of increases in communication costs, thus allowing greater
gains when physical locality is exploited.

Table 1 shows the impact of reducing network speed relative
to processor speed by factors of two, four, and eight for the one
context application for thousand- and million-processor machines.
Similar results are obtained with two and four hardware contexts.
As expected, the greater the relative cost of communication, the
greater the benefit of exploiting physical locality.

Increasing the network dimensionnaffords both shorter aver-
age communication distances for random mappings on machines
of a given size (see Equation (17)) and lower values ofT h for
large machines (see Equation (16)). Because both of these effects

6This decline is due to decreased contention for processor-network channels, as
discussed in Section 2.4.

Network Expected gain for
Speed 1 03 processors 1 06 processors

2x faster 2.1 41.2
same 3.1 68.3

2x slower 4.5 101.6
4x slower 5.9 134.3

Table 1: Impact of reducing relative network speed on expected
gains. Network speed is measured relative to processor speed;
“2x faster” represents the architecture described in Section 3.

reduce communication latencies when random mappings are used
without changing the situation when ideal mappings are used, the
impact of exploiting physical locality on end performance is lower
when higher dimensional networks (n> 2) are used.

5 Rel at ed Wor k

In [5], Chittor and Enbody present data obtained from running
experiments similar to those described in Section 3 on the Ame-
tek 2010, a distributed-memory, mesh-connected multiprocessor
somewhat similar to that used in this paper. For the sizes of
machines measured (up to 144 nodes), they note that the effect
of contention for network resources, while observable, does not
significantly impact end performance. From their measurements,
they extrapolate that the impact of network contention will be far
more substantial as machine sizes scale. Both conclusions are
well borne out by the model presented in this paper.

On a different tack, Scherson and Corbett [11] introduce a
framework for bounding the maximum expected speedup of dif-
ferent types of applications running on mesh-connected multipro-
cessors. Because they assume that communication latency is pro-
portional to communication distance, the results presented in this
paper lend credence to their model.

Finally, Agarwal [1] presents the network model described in
Section 2. He uses the model to demonstrate that exploitation
of physical locality enables networks to provide lower message
latencies for a given message injection rate. However, because
fixed message rates are assumed, independent of observed mes-
sage latencies, the absolute conclusions drawn about the impact
of exploiting physical locality are only appropriate for applica-
tions that are completely insensitive to changes in communication
latency.

6 Summar y

For multiprocessors with NUCL interconnection networks, physi-
cal locality will become an important element of the performance
equation as machine sizes continue to increase. This paper devel-
ops a framework that allows accurate modeling of these effects.
Using this framework, we obtain rough upper bounds on the per-
formance impact of exploiting physical locality in architectures
utilizing two-dimensional mesh interconnects.

We introduce a novel application model that characterizes ap-
plication and processor behavior with three parameters relating to
computation grain, latency sensitivity, and physical locality. We
present a framework for combining this model with models for
communication mechanisms and interconnection networks. Be-
havior predicted by the combined model agrees closely with that

10

observed in detailed simulations of a complete multiprocessor sys-
tem.

Previous studies of interconnection network behavior (e.g. [1])
fail to account for the feedback between networks and applica-
tions. We show that when the number of communication transac-
tions each multiprocessor node can have outstanding is bounded,
this feedback prevents processors from loadingk-ary n-dimen-
sional mesh interconnection networks to a point where communi-
cation latencies become unbounded. In fact, we show that when
this condition is met, average per-hop communication latency ap-
proaches a constant value, the value of which is determined by
average message sizeB, an application’s latency sensitivitys
(which is proportional to the average number of transactions a
node keeps outstanding), and the network dimensionn. Further,
we demonstrate that this limiting value can be approached on ma-
chines with a few thousand processors. Finally, because average
per-hop latencies are limited in this manner, we conclude that
exploiting physical locality to reduce average communication dis-
tance can only provide performance improvements that are linear
in the factor by which communication distance is reduced.

Using the modeling framework, we show that for two-dimen-
sional mesh interconnects and the architecture used in the simu-
lation experiments (in which processors are clocked half as fast
as network switches), upper bounds on the performance improve-
ment from exploiting physical locality are around two for ma-
chines with 1,000 processors and roughly 50 for machines with a
million processors. Decreasing the relative network speed leads
to larger upper bounds—slowing the network by a factor of eight
increased these bounds by roughly a factor of three.

Finally, Figure 8 demonstrates the conventional maxim that
fixed communication overheads must be small to support efficient
execution of applications with small computation grain. The fig-
ure also raises an interesting corollary to this bit of common wis-
dom: The smaller the computation grain that can be efficiently
supported, the larger the potential benefit of exploiting physical
locality.

We believe that these basic results, suitably modified, will
continue to hold for architectures using interconnection network
topologies other than thek-aryn-dimensional meshes used in this
paper.

7 Acknowl edgment s

The research reported in this paper is funded in part by NSF grant
MIP-9012773, in part by DARPA contract # N00014-87-K-0825,
and in part by a NSF Presidential Young Investigator Award.

A Nomencl at ur e

n mesh network dimension
k mesh network radix (side length)
N total number of processors

Tr average thread run length between successive communica-
tion transactions

s latency sensitivity
d average communication distance

p degree of hardware multithreading
Ts context switch time

c number of messages in “critical path” of a transaction
g average number of messages per transaction

Tf fixed component of transaction model

Tt average transaction latency
tt average per-processor inter-transaction issue time
rt average per-processor transaction issue rate

Tm average message latency
tm average per-processor inter-message injection time
rm average per-processor message injection rate

B average message size (in flits)
kd average distance a message travels in each dimension
� network channel utilization

Th average per-hop message latency

Ref er ences

[1] Anant Agarwal. Limits on Interconnection Network Performance.
IEEE Transations on Parallel and Distributed Systems, pages 398–
412, October 1991.

[2] Anant Agarwal, David Chaiken, Kirk Johnson, David Kranz,
John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino
Maa, and Dan Nussbaum. The MIT Alewife Machine: A
Large-Scale Distributed-Memory Multiprocessor. Technical Report
MIT/LCS/TM-454, MIT Laboratory for Computer Science, June
1991.

[3] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubia-
towicz. APRIL: A Processor Architecture for Multiprocessing. In
Proceedings of the 17th Annual International Symposium on Com-
puter Architecture, pages 104–114, June 1990.

[4] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. InProceed-
ings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IV),
pages 224–234, April 1991.

[5] Suresh Chittor and Richard Enbody. Performance Evaluation
of Mesh-Connected Wormhole-Routed Networks for Interprocessor
Communication in Multicomputers. InProceedings of Supercomput-
ing ’90, pages 647–656, November 1990.

[6] William J. Dally. Performance Analysis ofk-ary n-cube Intercon-
nection Networks.IEEE Transations on Computers, pages 775–785,
June 1990.

[7] Kirk Johnson and Anant Agarwal. The Impact of Communica-
tion Locality on Large-Scale Multiprocessor Performance. Technical
Report MIT/LCS/TM-463, MIT Laboratory for Computer Science,
February 1992.

[8] Clyde P. Kruskal and Marc Snir. The Performance of Multistage
Interconnection Networks for Multiprocessors.IEEE Transactions
on Computers, pages 1091–1098, December 1983.

[9] Dan Nussbaum and Anant Agarwal. Scalability of Parallel Machines.
Communications of the ACM, pages 56–61, March 1991.

[10] G. N. S. Prasanna. Structure Driven Multiprocessor Compilation
of Numeric Problems. Technical Report MIT/LCS/TR-502, MIT
Laboratory for Computer Science, April 1991.

[11] Isaac D. Scherson and Peter F. Corbett. Communications Overhead
and the Expected Speedup of Multidimensional Mesh-Connected
Parallel Processors.Journal of Parallel and Distributed Comput-
ing, pages 86–96, January 1991.

[12] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing
Algorithm. In Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, pages 30–44,
June 1991.

11

