
Low-Cost Support for Fine-Grain Synchronization in

Multiprocessors

David Kranz, Beng-Hong Lim, Donald Yeung and Anant Agarwal

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

As multiprocessors scale beyond the limits of a few tens of processors, they must look
beyond traditional methods of synchronization to minimize serialization and achieve the
high degrees of parallelism required to utilize large machines. By allowing synchronization
at the level of the smallest unit of memory, �ne-grain synchronization achieves these goals.
Unfortunately, supporting e�cient �ne-grain synchronization without inordinate amounts of
hardware has remained a challenge.

This paper describes the support for �ne-grain synchronization provided by the Alewife
system. The premise underlying Alewife's implementation is that successful synchronization
attempts are the common case when serialization is minimized through word-level synchro-
nization. For our applications, the failure rates were less than 7%. E�ciency at low hardware
cost is achieved by providing hardware support to streamline successful synchronization at-
tempts and relegating other non-critical operations to software. Alewife provides a large
synchronization name space by associating full/empty bits with each memory word. Suc-
cessful synchronization attempts execute at normal load-store speeds, while attempts that
fail invoke appropriate software trap handlers through a fast trap mechanism. The software
handlers deal with the issues of retrying versus blocking, queueing, and rescheduling. The
e�ciency of Alewife's mechanisms is analyzed by comparing the costs of various synchroniza-
tion operations and parallel application execution time. In several applications we studied,
our hardware support improved performance by 35%{50%.

1 Introduction

To execute on a MIMD multiprocessor, a program must be partitioned into threads that com-
municate either by reading and writing to shared memory or sending messages. This commu-
nication must be synchronized to ensure correctness. Under the shared-memory abstraction,
synchronization between threads is used to enforce one of the following conditions:

1. Read-after-write data-dependency. This ensures that a thread that uses data computed
by another thread reads the data only after the producing thread has written the data.
Producer-consumer and barrier synchronization are examples of synchronization that en-
force this data-dependency.

1

2. Mutual exclusion. Mutual exclusion allows di�erent threads to modify shared data atom-
ically. It allows threads to have exclusive read/write access to shared data if threads are
forced to acquire a mutual-exclusion lock before modifying the data and release the lock
after modifying the data.

Synchronization incurs an overhead because of a loss of parallelism and the cost of the
synchronization operation itself. In this paper, we are concerned with providing support for
enforcing these conditions e�ciently without requiring inordinate amounts of hardware.

For a program to execute e�ciently on a multiprocessor, the serialization imposed by the
synchronization structure of the program must be reduced as much as possible and the overhead
of the synchronization operations must be small compared to real computation time. Multipro-
cessors have traditionally supported only coarse-grain synchronization (e.g. barriers and mutual
exclusion locks). It is known that �ne-grain synchronization is an e�ective way to enhance the
performance of many applications, provided it can be implemented e�ciently. By e�ciently, we
mean that good performance is obtained for programs that bene�t from �ne-grain synchroniza-
tion without a�ecting the performance of other programs adversely.

In the case of data-dependence, �ne-grain synchronization allows the amount of data trans-
ferred from one thread to other threads in one synchronization operation to be small, e.g., a word
or small cache block. In the case of mutual exclusion, it allows memory words to be individually
locked with minimal overhead. The above de�nition of �ne-grain synchronization does not make
any assumptions on the granularity of threads. However, it does imply that the frequency of
synchronization will be high because each synchronization operation signals the production or
release of a small amount of data.

Although barrier synchronization can result in unnecessary serialization, it has the advantage
that the shared data protected by a barrier can be accessed with normal reads and writes {
synchronization doesn't take place until all of the data have been accessed. In contrast, with
�ne-grain synchronization, each reference to that shared data must be a synchronizing memory
operation (as opposed to a normal load or store). It is thus important that the cost of a
synchronizing memory operation be made as close as possible to that of an ordinary memory
operation.

An added advantage of cheap synchronizing reads and writes is that they allow one to
dynamically partition data even if the compiler does not know whether a particular reference
needs to be synchronized. In many cases better load balance can be obtained through dynamic
partitioning. If the application has su�cient parallelism, this will result in a large number of
memory operations being potentially synchronizing. However, in many of these cases the data
will be produced and consumed by the same processor such that no waiting will be required for
the synchronizing memory operations.

We argue that the issue of �ne-grain synchronization must be addressed at all levels of a
computer system. The programming language must allow parallelism and synchronization at the
level of a data word to be expressed easily, and �ne-grain synchronization must be implemented
e�ciently at the system level, in both hardware and software.

This paper focuses on the support for �ne-grain synchroninzation in the Alwife machine [2],
a shared-address space, distributed-memory multiprocessor being developed at MIT. At the

2

system level, Alewife provides hardware-support for �ne-grain synchronization in the form of
full/empty bits (as in the HEP [18]) and e�cient traps.

The processor implements load and store instructions that trap on various states of the
full/empty bit. Little or no overhead is incurred if the referenced data is available. If the data
required by a read operation is not yet available, the processor traps. We avoid providing ex-
tensive hardware support by handling these traps entirely in software. We have implemented
various software strategies that use synchronization type information provided by the com-
piler/programmer to choose suitable waiting algorithms when the trap is taken.

The contributions of this work are:

� We propose an architecture that implements �ne-grain synchronization using a single hard-
ware full/empty bit, an atomic swap instruction and software scheduling of threads. We
observe that synchronized data are usually available when needed, so we simplify the
hardware by implementing thread waiting or blocking in software. We provide some ev-
idence that this observation is indeed true for real applications executing on Alewife{for
the applications we studied, the failure rates were less than 7%.

� The required hardware support is simple enough that our processor, Sparcle [1], was im-
plemented by making minor modi�cations to LSI Logic's existing SPARC processor [19],
without a�ecting the speed of the processor. This processor has been running in our
laboratory since March 1992.

� We evaluate the e�cacy of our implementation by showing the performance of several ap-
plications running on a detailed Alewife simulator. We compare coarse-grained (barrier)
and �ne-grained implementations of these applications. In addition, we evaluate the ad-
vantage of the Alewife hardware support as compared to a pure software implementation.
In several applications we studied, the hardware support provided a performance gain of
30%{50% over the pure software approach.

� To our knowledge, this is the �rst paper to empirically quantify the performance of a
system that makes a careful tradeo� between hardware and software support for �ne-grain
synchronization.

The rest of this paper is organized as follows. Section 2 describes our general approach for
implementing �ne-grain synchronization. Section 3 discusses programming language support.
Section 4 describes the Alewife implementation. Section 5 contains some preliminary exper-
imental data supporting the proposition that �ne-grain synchronization can be implemented
reasonably at low cost. Section 6 describes related work and Section 7 concludes the paper.

2 A Low-Cost Approach to Fine-Grain Synchronization

We argue that an e�cient implementation of �ne-grain synchronization must cover all levels of
a computer system:

� It must be possible to express �ne-grain parallelism and synchronization conveniently at
the language level.

3

� Synchronization at the word level implies that there is at least one bit of extra synchro-
nization information associated with each word, the full/empty bit. This memory cost
would ideally be only one bit per word.

� The cost of a synchronizing operation that does not need to wait should be small; ideally
no more expensive than an ordinary memory operation. Full/empty bits have the added
advantage that both data and synchronization information can be accessed simultaneously.

� On synchronization failure, a decision must be made to either busy-wait until the data
is available, or to block and switch to another task. This process must either occur
infrequently, or not take very long.

If a synchronizing read or write to a data word does not have to wait to access or modify the
data, we say that the operation succeeds. If it fails, the thread issuing the request cannot continue
until the data becomes available or modi�able. The major premise behind our implementation
approach is that most synchronizing reads will succeed. There are several reasons why we expect
this to be the case:

1. The compiler or runtime system can often schedule consumers after producers.

2. A common use of producer/consumer arrays is to have a loop that operates on each element
in turn. In this case, if a synchronization failure occurs the consumer will have to wait.
Thus the consumer will fall behind the producer and future failures are less likely to occur.

3. In the case of dynamic partitioning, synchronizing reads and writes often occur on the
same processor and so will succeed.

4. And, of course, with �ne-grain synchronization a thread has to wait only for data on which
it actually depends.

In Section 5 we provide some empirical evidence that synchronization failures are relatively
infrequent. For the applications we studied, the failure rates were less than 7%. In Section 4
we will show how this assumption of success allows us to implement �ne-grain synchronization
e�ciently with little hardware support. First, however, we discuss some of the language issues
in using �ne-grain synchronization.

3 Programming Language Issues

It is desirable that �ne-grain parallelism and synchronization be expressible at the language
level. We take the position that the programmer will specify which parts of a program may be
executed in parallel. This does not preclude a compilation phase that converts sequential to
parallel code. It is up to the system to decide which parts to actually execute in parallel and to
handle proper synchronization. There are two ways a programmer may express parallelism in a
program: control parallelism and data-level parallelism. It is natural to associate synchronization
with each style.

4

3.1 Data-Level Parallelism

Data-level parallelism expresses the application of some function to all or some elements of an
aggregate data object, such as an array. Data-level parallelism is often expressed using parallel
do-loops. Synchronization within a parallel do-loop can be either coarse or �ne-grain. For
producer-consumer synchronization, coarse-grain synchronization involves placing a barrier at
the end of the loop. Elements of the aggregate are written by threads using ordinary stores. At
the end, each thread waits for all to complete. The values can then be accessed with ordinary
reads. Alternatively, in the case of mutual-exclusion locks, coarse-grain synchronization will
associate a lock with a large chunk of data.

Fine-grain data-level synchronization is expressed using data structures with accessors
that implicitly synchronize. We call these structures J-structure and L-structure arrays. A
J-structure is a data structure for producer-consumer style synchronization inspired by I-
structures [4]. A J-structure is like an array, but each element has additional state: full or
empty. The initial state of a J-structure element is empty. A reader of an element waits until
the element's state is full before returning the value. A writer of a J-structure element writes
a value, sets the state to full, and releases any waiting readers. An error is signalled if a write
is attempted on a full element. The di�erence between J-structures and I-structures is that,
to enable e�cient memory allocation and good cache performance, J-structure elements can be
reset to an empty state.

L-structures are arrays of \lock-able" elements that support three operations: a locking
read, a non-locking peek, and a synchronizing write. A locking read waits until an element is
full before emptying it (i.e., locking it) and returning the value. A peek also waits until the
element is full, but then returns the value without emptying the element. A synchronizing write
stores a value to an empty element, and sets it to full, releasing any waiters. As for J-structures,
an error is signalled if the location is already full. An L-structure therefore allows mutually
exclusive access to each of its elements. The synchronizing L-structure reads and writes can be
used to implement M-structures [5]. However, L-structures are di�erent from M-structures in
that they allow multiple non-locking readers, and a store to a full element signals an error1.

3.2 Control Parallelism

Using control parallelism, a programmer speci�es that a given expression X may be executed in
parallel with the current thread. In our system this behavior is speci�ed by wrapping future

around an expression or statement X . Synchronization between these threads is implicit and
occurs when the current thread demands, or touches, the value of X . The programmer does not
have to explicitly specify each point in the program where a value is being touched. A touch
implicitly occurs anytime a value is used in an ALU operation or as a pointer to be dereferenced,
but not when a value is returned from a procedure or passed as an argument to a procedure.
Storing a value into a data structure also does not touch the value.

1As with M-structures, it is possible to implement pairwise producer-consumer synchronization using L-
structures: producers use synchronizing writes and consumers use locking reads. This can be viewed as an
optimization of J-structures to avoid having to reset them when there is only a single consumer for each value
produced.

5

In Alewife, the future keyword does not necessarily cause a new runtime thread to be
created, together with the consequent overhead. The system must, however, ensure that the
current thread and X can be executed concurrently if necessary (e.g., to avoid deadlock). We
call this behavior, where a new thread is created at runtime only for deadlock avoidance or
load-balancing purposes, lazy task creation [15].

Using future provides a form of �ne-grain synchronization because synchronization can
occur between the producer and consumers of an arbitrary expression, e.g., a procedure call can
start executing while some of its arguments are still being computed.

The Alewife system currently supports two programming languages: Mul-T [13], a parallel
Lisp language, and Semi-C. Semi-C [10] is a parallel C-like language with extensions for express-
ing parallel execution. Both Mul-T and Semi-C support control-level and data-level parallelism
as described in this section.

4 Alewife Implementation

Existing multiprocessor systems have supported �ne-grain synchronization in di�erent ways
ranging from a complete hardware implementation to doing it all in software. Good engineering
practice suggests that it is cost-e�ective to provide hardware support for the common case and
handle other cases in software. We argued in Section 2 that the common case is a successful
synchronization. Accordingly, we provide hardware for automatic detection of failure, leaving
the actual handling of the failure case to software. Doing so allows us to leave an e�cient CPU
pipeline and register set in place, thus retaining good single-thread performance.

We outline the hardware and software mechanisms necessary to support our language primi-
tives for �ne-grain synchronization. To implement data-level parallelism, we need to synchronize
at the level of individual memory words. References to L-structures and J-structures are exam-
ples of �ne-grain synchronizing loads and stores. Such an operation reads or writes a data word
while testing and/or setting a synchronization condition. In the event of success this operation
should to take no longer than a normal load or store. In the event of failure, the processor traps.

To implement control parallelism we need to know when a value produced by a future

expression is being touched. This might happen anytime a value is used as an argument to
an ALU operation or dereferenced as a pointer. Since these operations are very frequent, the
touching operation should take no longer than an ordinary ALU operation, load, or store. The
processor traps if the value being touched is not ready.

4.1 Hardware Support

Full/empty bits are used to represent the state of synchronized data in J- and L-structures.
A full/empty bit is referenced and/or modi�ed by a set of special load and store instructions.
References to values that are being computed in parallel as a result of future are detected
through tagged add and subtract instructions as well as misaligned memory reference traps.
In this paper, we will concentrate on the implementation of J- and L-structures for �ne-grain,
data-level parallelism.

6

4.1.1 Hardware Support for J- and L-Structures

References and assignments to J- and L-structures use the following special load, store, and
swap instructions, depending on whether detection through traps is desired or not:

LDN Read location.
LDEN Read location and set to empty.
LDT Read location if full, else trap.
LDET Read location and set to empty if full, else trap.
STN Write location.
STFN Write location and set to full.
STT Write location if empty, else trap.
STFT Write location and set to full if empty, else trap.
SWAPN Swap location and register.
SWAPEN Swap location with register and set to full.
SWAPT Swap location with register if empty, else trap.
SWAPET Swap location with register if full, else trap.

In addition to possible trapping behavior, each of these instructions sets a condition code to
the state of the full/empty bit at the time the instruction starts execution. The compiler has
a choice to use traps or tests of this condition code. When a trap occurs, the trap handling
software decides what action to take as described later in this section.

4.1.2 Hardware Support for Futures

In order to implement futures e�ciently, \full/empty bits" are needed in registers as well as in
memory. These are implemented by treating the low bit of a pointer as a one-bit tag. When
a new thread is created to compute the value of a future object, a pointer to a placeholder is
returned immediately. This pointer has the low bit set while all other data objects have the
low bit clear. When a touching operation is performed on a register with the low bit set, a trap
occurs. The trap handling is much like that for J- and L-structures. When the new thread has
computed its value, that value is stored in the placeholder object. In addition, the trap handler
alters the contents of the register that caused the trap to contain the new value so that the next
reference to that value will not trap.

This mechanism eliminates the cost of checking for placeholders with almost no additional
hardware cost. If the touching action is the dereferencing of a pointer, a misaligned address trap
occurs just as in SPARC. If the touching operation is an arithmetic operation a tagged add or
subtract is used. We made only two small modi�cations to support this placeholder checking in
Sparcle:

1. The SPARC tagged add and subtract instructions were supplemented with versions that
only look at the low bit, instead of the low two bits.

2. When these new instructions trap, they vector to a handler speci�c to the register contain-
ing the placeholder.2 The trap vector dispatch for misaligned address traps was modi�ed
in the same way.

2motivated by [9]

7

4.2 Implementation of J- and L-Structures

We now describe in more detail the implementation of J- and L-structures, and present machine
code for synchronously reading and writing these structures. These synchronization structures
provide for data-dependency and mutual-exclusion, and are primitives upon which other syn-
chronization operations can be built. The cycle counts presented below represent the cost of the
actual code, assuming cache hits.

Failed synchronizations are handled entirely in software. As previously described, failure
is detected in hardware, and the trap dispatch mechanism passes control to the appropriate
handler. Handling failure completely in software is our biggest saving in complexity because
blocking a thread is a complex operation. In contrast, machines that support blocking in hard-
ware pay an enormous hardware cost. For example, Monsoon [16] implements special I-structure
boards to queue failed synchronizations in hardware.

Even though we expect successful synchronizations to be the common case, we would like to
handle failed synchronizations as e�ciently as possible. In Section 4.3 we describe how we use
several methods to reduce the overhead of handling failed synchronizations in software. Both the
compiler and runtime system collaborate to make handling failed synchronizations as e�cient
as possible.

4.2.1 J-structures

J-structures were described in Section 3. Recall that each J-structure element has a full or empty
state associated with it. It is natural to use full/empty bits to represent that state. Allocating
a J-structure is implemented by allocating a block of memory with the full/empty bit for each
word set to empty. Resetting a J-structure element involves setting the full/empty bit for that
element to empty.

Implementing a J-structure read is also straightforward: it is a memory read which traps if
the full/empty bit is empty. It is implemented with a single instruction:

ldt (r1),r2 ; r1 points to J-structure location

If the full/empty bit is empty, the reading thread may need to suspend execution and queue
itself on a wait queue associated with the empty element. Where should this queue be stored?
A possible implementation is to represent each J-structure element with two memory locations,
one for the value of the element and the other for a queue of waiters. However, this would double
the memory requirement of J-structures.

An alternative is to use a single memory location for both the value and the wait queue,
since they never need to be present at the same time. A problem with this approach is that
we need to associate two bits of synchronization state with each J-structure element: whether
the element is full or empty, and whether the wait queue is locked or not. Other architectures
have solved this problem by having multiple state bits per memory location [3, 16]. Instead of
providing additional hardware support, we take a di�erent approach.

Like SPARC, Sparcle supports an atomic register-memory swap operation. Since the writer
of a J-structure element knows that the element is empty before it does the write, it can use the
atomic swap to synchronize access to the wait queue. With this approach, a single full/empty

8

move $0,r3 ; set up swap register

swapt r3,(r1) ; swap zero with J-structure location,

trap if full

cmp $-1,r3 ; check if queue is empty.

beq,a %done ; branch if no waiters to wake up.

stft r2,(r1) ; write value and set to full

(in delay slot).

:

<wake up waiters and store value>

:

%done

Figure 1: Machine code implementing a J-structure write. r1 contains the address of the J-structure

location to be written to, and r2 contains the value to be written. -1 is the end of queue marker and 0

in an empty location means that the queue is locked.

−10

0

0

0

0

<queue ptr>

0

648111

Empty, no waiters

Wait queue locked

Empty, waiter(s)

Wait queue locked

Full, valid value

J−structure
read fails

J−structure
write occurs

Time

swapt r2, (r1)

swapt r2, (r1)

stn <queue ptr>, (r1)

stft $64811, (r1)

move $0, r2

move $0, r2 present

Figure 2: Reading and writing a J-structure slot. r1 contains a pointer to the J-structure slot. The

possible states of a J-structure slot are illustrated here.

bit is su�cient for each J-structure element. A writer needs to check explicitly for waiters before
doing the write.

Using atomic swap and full/empty bits, the machine code in Figure 1 implements a J-
structure write. Compared with the hardware approach, this implementation costs an extra
move, swap, compare and branch to check for waiters. However, we believe that the reduction
in hardware complexity is worth the extra instructions. Figure 2 gives a scenario of accesses to a
J-structure location under this implementation and illustrates the possible states of a J-structure
slot.

4.2.2 L-structures

The implementation of L-structures is similar to that of J-structures. The main di�erences are
that L-structure elements are initialized to full with some initial value, and an L-structure read

9

; r1 points to L-structure location

move $-1,r2 ; empty queue

swapet r2,(r1) ; store null queue and get value if full,

else trap

Figure 3: Machine code implementing an L-structure read.

Action Instructions Cycles

Array read 1 2
write 1 3

J-structure read 1 2
write 5 10
reset 1 3

L-structure read 2 5
write 5 10
peek 1 2

Table 1: Summary of fast-path costs of J-structure and L-structure operations, compared with normal

array operations.

of an element sets the associated full/empty bit to empty and the element to the null queue.
An L-structure read is therefore implemented as in Figure 3. In Sparcle, this takes three extra
cycles compared to a normal read. An L-structure peek, which is non-locking, is implemented
in the same way as a J-structure read.

On an L-structure write, there may be multiple readers requesting mutually exclusive access
to the L-structure slot. Therefore, it might make sense to release only one reader instead of all
readers. On the other hand, a potential problem arises if the released reader remains descheduled
for some signi�cant length of time after being released. It is not clear what method of releasing
waiters is best, and our current implementation releases all waiters.

Table 1 summarizes the instruction and cycle counts of J-structure and L-structure operations
for the case where no waiting is needed on reads and no waiters are present on writes. In Sparcle,
as in the LSI Logic SPARC, normal reads take two cycles and normal writes take three cycles,
assuming cache hits. A locking read is considered a write and thus takes three cycles.

4.3 Handling Failed Synchronizations in Software

Due to full/empty bits and signalling failures via traps, successful synchronizations incur very
little overhead, as described in the previous section. For failed synchronizations, we provide just
enough hardware support to rapidly dispatch processor execution to a trap handler. We describe
here how trap handler software handles failed synchronizations with e�ciency comparable to a
hardware implementation.

A failed synchronization implies that the synchronizing thread has to wait until the synchro-
nization condition is satis�ed. There are two fundamental ways for a thread to wait: polling

10

and blocking. Polling involves repeatedly checking the value of a memory location, returning
control to the waiting thread when the location changes to the desired value. No special hard-
ware support is needed to aid in polling. Once the trap handler has determined the memory
location to poll, it can poll on behalf of the synchronizing thread by using non-trapping memory
instructions, and return control to the thread when the synchronization condition is satis�ed.

Blocking is more expensive because of the need to save and restore registers. The scheduler
may also need to be invoked. Saving and restoring registers is particularly expensive in Sparcle
because loads take two cycles and stores three. If all user registers need to be saved and restored,
the cost of blocking can be several hundred cycles, more or less, depending on cache hits.

We reduce the blocking cost in two ways. First, if the thread actually needs to be saved into
memory, the compiler communicates the number of live registers to save to the trap handler via
otherwise unused bits in the trapping instruction. This information can signi�cantly reduce the
blocking overhead by reducing the number of registers that need to be saved. [14] describes how
the cost of blocking can be reduced to less than 100 cycles on a processor with single-cycle loads
and stores and with information on live registers. Second, since Sparcle has multiple hardware
contexts, we can block a thread without saving and restoring registers by disabling the context
on which the thread is executing. Sparcle provides instructions (NEXTF and PREVF) to switch
to the next enabled context directly.

A common hardware approach to e�cient blocking of threads is to minimize the processor-
resident state of a thread. This is done by restricting a thread to a very small number of registers
(one or two) so that hardware can save the state of a thread and queue it on a wait queue in
a small number of cycles. We reject this approach because minimizing processor resident state
of a thread has adverse e�ects on single-thread performance. We are willing to sacri�ce some
cycles when blocking a thread for higher single-thread performance.

We do not always need to block a waiting thread. On a failed synchronization, the trap
handler is responsible for implementing the waiting algorithm that decides whether to poll or
to block the thread. Karlin et al. [11] and Lim and Agarwal [14] investigate the performance of
various waiting algorithms. They show polling for some length of time before blocking can lead
to better performance, and investigate various methods for determining how long to poll before
blocking.

Lim and Agarwal also demonstrate the performance bene�ts of choosing a waiting algorithm
tailored to the type of synchronization being performed. In our system, the compiler informs the
synchronization trap handler which waiting algorithm to execute. If there are other threads to
execute, the appropriate waiting algorithm is to block immediately for barrier synchronization,
and to poll for a while before blocking for �ne-grain producer-consumer synchronization. Since
�ne-grain synchronization leads to shorter wait times, this reduces the probability that a waiting
thread gets blocked.

The compiler passes information on the synchronization type and the number of live registers
to the trap handler in otherwise unused bits in the trapping machine instruction. The overhead
to dispatch to an appropriate type-speci�c handler is about 11 cycles: recalling that failed
synchronizations are signalled via traps in Sparcle, it takes 4 cycles from the time the trap
is taken to the time the trap handler begins execution. To access the compiler-passed type
information, the trap handler reads the trapping instruction, then masks and shifts the relevant
bits to dispatch to the correct waiting routine directly. This dispatch can be done in 7 cycles.

11

Our current implementation takes 10 cycles because of an additional check for the case when
the compiler neglects to specify this information.

To control hardware complexity, thread scheduling is also done entirely in software. Once
a thread is blocked, it is placed on a software queue associated with the failed synchronization
condition. When the condition is satis�ed, the thread is placed on the queue of runnable tasks at
the processor on which it last ran. A distributed thread scheduler that runs on all idle processors
checks these queues to reschedule runnable tasks.

4.4 An Open Problem with Fine-Grain Synchronization

When the memory containing synchronized data must be re-used, several problems arise. There
are two issues:

1. How do we know when the consumers have �nished reading synchronized data so that its
memory can be re-used?

2. What is the cost of resetting the state of the synchronization structure?

One way to determine when memory can be re-used is for the consumers to meet at a barrier
when �nished, just as the producers do. In fact, it can be arranged so that there is only one
barrier shared by the producers of one structure and consumers of another. For coarse-grain
synchronization there is very little state to reset so there is not much cost involved.

For �ne-grain synchronization a barrier could be used to reset synchronization structures.
In many cases it is possible to amortize the cost of the barrier by resetting many structures at
once. In many cases the compiler can tell when a J-structure can be re-used, in others a garbage
collector can be used to avoid doing barrier synchronizations. Although the cost of resetting a
full/empty bit is small compared to the computation likely to be done on each element, and the
resetting can be done in parallel, this issue needs to be addressed in future work on �ne-grain
synchronization.

5 Performance Results

To evaluate the performance of �ne-grain synchronization in our system, we monitored the
performance of several applications, each synchronized in coarse-grain and �ne-grain styles.
This section will discuss in detail two of these applications and refer to two others that provide
supplementary data to our main results. The measurements were acquired on an accurate
cycle-by-cycle simulator of the Alewife machine. The simulator was con�gured to simulate a
64-processor machine in an 8� 8 mesh topology.

Our data o�ers three main results. First, we show that �ne-grain data-level synchronization
provided by J-structures results in improved end-application execution time over coarse-grain
barriers. Next, we present data to support our earlier claim that in an application that uses
�ne-grain synchronization, successful synchronization operations are the common case. Finally,
we investigate the bene�ts of the hardware support in Alewife for �ne-grain synchronization by
showing that application performance is signi�cantly improved when full/empty bits are used
to implement the �ne-grain synchronization primitives.

12

5.1 Applications

Our performance results were acquired from an in-depth study of two applications used to nu-
merically solve partial di�erential equations: the SOR (Jacobi with Successive Over-Relaxation)
algorithm, and a variant of the preconditioned conjugate gradient algorithm known asMICCG

(Modi�ed Incomplete Cholesky Conjugate Gradient). In addition, we provide synchronization
fault rates for two other applications: Multigrid, a solver using Jacobi iterations on grids of
varying granularity to enhance convergence. The other is Gamteb, a photon transport simula-
tion based on the Monte Carlo method from the Los Alamos National Laboratory. TheGamteb

code was originally written in Id and was ported to Semi-C.

In SOR, the algorithm was used to solve Poisson's equation on a two-dimensional grid of
size 32� 32 (unless otherwise stated), and consists of a series of Jacobi iterations on �xed-size
grids. At each iteration, the new value for each grid point is a function of the current value for
that grid point and the values of its four nearest neighbors.

MICCG solved Laplace's equation on a three-dimensional grid of size 16� 16� 16 (unless
otherwise stated). Preconditioning adds to the basic conjugate gradient iteration a back substi-
tution and forward substitution step which we refer to as the \solver operation." Traditionally,
this operation has been di�cult to parallelize. The di�culty lies in the solution of a 3-term
recurrence expression, a computation that involves complex data-dependencies.

5.1.1 SOR

In SOR, the 2-D grid is block partitioned into subgrids in the obvious way, and a thread is
assigned to each subgrid. The threads are mapped on to the processor mesh such that data
communication is always to neighboring processors during each Jacobi iteration. This leads to
load-balanced threads.

In the coarse-grain implementation, a barrier is placed between each Jacobi iteration. The
barrier implementation is based on combining trees and is highly optimized for the Alewife
machine. A barrier incurs a small latency3 of 20 �sec on 64 processors [12]. By comparison,
typical software implementations (e.g. Intel DELTA and iPSC/860, Kendall Square KSR1) take
well over 400 �sec.

In the �ne-grain implementation, borders of each subgrid are implemented as J-structures.
Thus �ne-grain synchronization occurs between nearest neighbors through the J-structures. At
each iteration, each thread �rst writes its border elements to the border J-structures of its
neighbors. It then proceeds to compute the solutions for all elements internal to its subgrid.
After all internal elements have been computed, the border elements are computed using J-
structures that contain the border values of its neighbors. This allows the communication of
border elements between neighboring processors to be overlapped with computation of internal
elements, reducing the probability of failed synchronizations.

3This is measured as the time between successive barriers with null computation in between barriers.

13

 Ideal
� � Fine-Grain
� � Coarse-Grain

|
0

|
16

|
32

|
48

|
64

|0.0

|5.0

|10.0

|15.0

|20.0

|25.0

|30.0

|0 |16 |32 |48 |64

| 0.0

| 5.0

| 10.0

| 15.0

| 20.0

| 25.0

| 30.0

 SOR

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

 Ideal
� � Fine-Grain
� � Coarse-Grain

|
0

|
4

|
8

|
12

|
16

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0

|14.0

|16.0 |0 |4 |8 |12 |16

| 0.0

| 2.0

| 4.0

| 6.0

| 8.0

| 10.0

| 12.0

| 14.0

| 16.0

 MICCG

 Number of Processors

 S
pe

ed
up

�

�

�

�

�
�

Figure 4: Speedup curves of the coarse-grain and �ne-grain implementations of SOR and MICCG.

5.1.2 MICCG

In the coarse-grain implementation ofMICCG, the data is block partitioned, and each partition
is assigned to a single thread. The data blocks and threads are statically placed such that all
communication is con�ned to nearest-neighbor processors. Wherever a phase of computation
consumes the results from another phase, a barrier is inserted to enforce the dependency. Because
of the complex data-dependencies in the solver operation, many barriers are needed to properly
sequence the computation.

In the �ne-grain implementation, the data is partitioned at a �ner granularity in order to
take advantage of the parallelism in the solver operation. While this reduces physical locality,
it is still possible to con�ne communication to nearest neighbor processors. All elements in
the global solution array are allocated as a three-dimensional J-structure. An implicit barrier,
however, is still needed to implement two dot product operations that occur in each MICCG

iteration. (For a detailed discussion of our study and implementation of MICCG, see [20]).

5.2 Measurements

A performance comparison of the coarse-grain versus �ne-grain implementations appears in
Figure 4, showing speedups for SOR and MICCG attained on 4, 16, and 64 processors. (The
speedup for 64 processors for MICCG was not attainable due to simulation limits on the
problem size). Performance is better in the �ne-grain implementation for both applications.

To account for this performance di�erence, Table 2 shows cycle breakdowns for each data
point in the speedup curves. In SOR, a cycle breakdown is shown for one iteration averaged
over 20 iterations, and in MICCG, a cycle breakdown is shown for two iterations taken from a
simulation of three iterations with the �rst iteration thrown away. Total execution time, barrier
overhead, and J-structure reference overhead are tabulated. All times are in the units of cycles.

The data in the table show that the coarse-grain implementation does worse than the �ne-
grain implementation because it incurs a higher synchronization overhead as machine size grows.

14

Coarse-Grain SOR.
P Total Barriers J-Structs
1 40378 75 N/A
4 11377 385 N/A
16 4325 933 N/A
64 2429 1114 N/A

Fine-Grain SOR.
P Total Barriers J-Structs
1 42558 N/A 1600
4 12127 N/A 800
16 4076 N/A 572
64 1807 N/A 447

Coarse-Grain MICCG.
P Total Barriers J-Structs
1 6943004 17921 N/A
4 2769725 1020654 N/A
16 2428515 1680669 N/A

Fine-Grain MICCG.
P Total Barriers J-Structs
1 6831696 1270 196882
4 2328728 68924 160847
16 662230 81492 48606

Table 2: Cycle breakdowns for SOR and MICCG. \P" = number of processors, \Total" = cycles

per iteration for SOR, and total cycles for 2 iterations in MICCG, \Barriers" = average overhead and

waiting time incurred by a barrier call, \J-structs" = average overhead and waiting time incurred by

J-structure references per processor.

Notice that as the number of processors is increased, barrier overhead in the coarse-grain im-
plementation increases. With a larger number of processors, the cost of each barrier is higher.
Moreover, since the problem size is �xed, the application becomes �ner grained. In contrast with
barriers, the cost of each �ne-grained data-level synchronization operation remains �xed as ma-
chine size is increased. Moreover, the total synchronization overhead is parallelized along with
useful computation. This trend is visible in both applications and accounts for the performance
di�erence in Figure 4 for SOR.

MICCG has the added problem that the data-dependencies in the solver operation are
complex. Enforcing these dependencies with barriers results in a large number of barriers (and
in fact, the number of barriers necessarily increases with machine size; see [20]). Because of
the
exibility that �ne-grain J-structures provides in expressing these data-dependencies, a
signi�cant reduction in synchronization overhead is attained. This accounts for the dramatic
performance di�erence in Figure 4 for MICCG.

5.2.1 Synchronization Success Rates

Another measurement of interest is the synchronization fault rate in the �ne-grain implementa-
tion, i.e, the percentage of failed synchronizations. Figure 5 shows the number of synchronization
faults as a percentage of the total number of synchronization operations for SOR andMICCG.
This data is presented for 16 and 64 processors in SOR and 4 and 16 processors in MICCG

across a range of problem sizes. Notice the low fault rates experienced.

Similar results were observed for bothMultigrid andGamteb. InMultigrid, we observed
a synchronization fault rate of 2.8% for solving a 33� 33 grid on 64 processors, and a fault rate
of 1.3% for solving a 65� 65 grid on 64 processors. In Gamteb, we observed a synchronization
fault rate of 6.6% on 16 processors. This evidence supports our claim made earlier that �ne-grain
synchronization results in successful synchronizations being the common case.

15

� � 16 processors
� � 64 processors

|
0

|
32

|
64

|
96

|
128

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0 |0 |32 |64 |96 |128

| 0.0

| 2.0

| 4.0

| 6.0

| 8.0

| 10.0

| 12.0

 SOR

 Problem Size

 M
is

s
R

at
e

(p
er

ce
nt

)

�

�

� �

�

�

�

� � 16 Processors
� � 4 Processors

|
0

|
10000

|
20000

|
30000

|
40000

|0.0

|2.0

|4.0

|6.0

|8.0

|10.0

|12.0 |0 |10000 |20000 |30000 |40000

| 0.0

| 2.0

| 4.0

| 6.0

| 8.0

| 10.0

| 12.0

 MICCG

 Problem Size

 M
is

s
R

at
e

(p
er

ce
nt

)

�

�

�
� �

�
�

� � � � �

Figure 5: J-structure reference fault rates as a function of problem size for 16 and 64 processors in SOR

and MICCG. For SOR, the problem size is the width of the grid to be relaxed. For MICCG, the

problem size is the number of J-structure elements in the solution.

5.2.2 The Importance of Hardware Support

Finally, we wanted to address the question of the value of our hardware support for �ne-grain
synchronization. To do this, we ran our simulations using two di�erent implementations of J-
structures. The �rst uses the implementation provided by Alewife as described in this paper.
The second uses an implementation without full/empty bits that explicitly allocates a word in
memory for every J-structure element. This software approach has a high memory overhead.
One way to reduce this overhead would be to pack multiple full/empty bits together (up to
32 per word in memory). However, schemes that pack full/empty bits introduce the di�culty
of �nding the word which holds the desired full/empty bit and extracting the bit with a bit
mask and shift operation. Packing full/empty bits also introduces false sharing problems in
cache-coherent multiprocessors. In the �nal version of this paper, we will explore the tradeo� of
packing full/empty bits, but for our preliminary results, we use an additional word of memory
for each synchronization variable.

The results of this study appear in Figure 6. The graphs in the �gure show a group of
three bars for each machine size simulated. The �rst bar, labeled \C" (for Coarse-grain), is the
execution time using the coarse-grain barrier implementation. The next two bars show execution
times for the �ne-grain implementation. The \S" bar (for Software) corresponds to using an
additional memory word as a synchronization variable for each J-structure element. The \H" bar
(for Hardware) corresponds to having full/empty bit support for J-structures. All three bars in
the group have been normalized against the execution time of the coarse-grain implementation;
the normalizing factor in raw cycles appears directly above the \C" bar in each group (in units
of thousands of cycles).

We see that the software implementation of J-structures runs slower than the hardware im-
plementation in both applications (with the exception of MICCG on 16 processors; more on
this shortly). This degradation in performance can be attributed to the extra communication
necessary in the software implementation. With full/empty bits, both the data and synchroniza-

16

tion variable are acquired in one memory transaction while in the software implementation, an
access takes two memory transactions. Another factor contributing to this performance degra-
dation of the software implementation is the need to explicitly check for failed synchronizations
instead of automatically signalling them via traps.

There is a question of whether cache pollution contributes to the poorer performance of the
software implementation. We veri�ed in other simulations that the e�ect of cache pollution from
increasing the working set size due to the extra word for synchronization contributes a negligible
overhead of less than 5%. In these simulations, we also found that increasing the number of
instructions for a J-structure access in the software implementation from 1 to 5 instructions
incurs an overhead of only 10%.

In MICCG, the e�ect of extra communication when full/empty bits are not provided is
consistently about 60%, while in SOR, this e�ect is a bit less and is especially small for small
machine sizes. In MICCG, it is necessary to allocate all the data in J-structures while in SOR,
it is possible to block the data and only use J-structures at the subgrid edges. Consequently,
the frequency of synchronization operations is much higher in MICCG, and the full/empty bit
optimization has a greater e�ect. Moreover, in SOR, the frequency of synchronization operations
increases with the number of processors since the perimeter-area ratio of each subgrid grows with
machine size. This explains why the full/empty bit optimization has the most e�ect in the 64
processor simulation of SOR.

Figure 6 underscores the importance of providing hardware support for e�cient �ne-grain
synchronization. In most of the simulations, we �nd that the �ne-grain implementation without
hardware support performs worse than the coarse-grain implementation. We also notice that in
SOR, the �ne-grain implementation with hardware support performs better than the coarse-
grain implementation only beyond 4 processors. This is due to the fact that in SOR, all the
threads are extremely well balanced; the bulk of the synchronization overhead in the coarse-
grain implementation of SOR comes from the cost of the barrier operation. In this case, going
to �ne-grain synchronization improves performance only when the cost of the barrier operation
becomes signi�cant, i.e. when the machine size is large. For MICCG, barriers are detrimental
mainly because they introduce lots of false dependencies in the solver operation. In this type
of application, the greatest gain of �ne-grain synchronization comes from avoiding the false
dependencies that barriers introduce. This gain can be attained regardless of how the �ne-grain
synchronization primitives are implemented. A dramatic demonstration of this is seen in the 16
processor data point ofMICCG where the �ne-grain implementation using software J-structures
does signi�cantly better than the coarse-grain implementation. Notice that this performance
gain is even greater than the gain provided by having full/empty bit support. We expect that in
applications like MICCG, the bene�t of avoiding false dependencies will become increasingly
pronounced for large machine sizes where false dependencies are particularly detrimental.

6 Related Work

The advantages of �ne-grain synchronization have been noted before, and several machines
that address this issue with varying degrees of synchronization granularity have been built or
proposed, including HEP [18], Monsoon [16], Tera [3], MDP [6], Cedar [7], Multicube [8], and
the KSR1 [17]. In fact, our language notation for �ne-grain synchronization and hardware

17

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6 |

| 0.0

| 0.2

| 0.4

| 0.6

| 0.8

| 1.0

| 1.2

| 1.4

| 1.6

 SOR

 N
o
rm

a
liz

e
d
 E

xe
cu

tio
n
 T

im
e

1
1
.4

K

C S H
4 Proc

4
.3

3
K

C S H
16 Proc

2
.4

3
K

C S H
64 Proc

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

|1.6 |

| 0.0

| 0.2

| 0.4

| 0.6

| 0.8

| 1.0

| 1.2

| 1.4

| 1.6

 MICCG

 N
o
rm

a
liz

e
d
 E

xe
cu

tio
n
 T

im
e

1
,3

5
1
K

C S H
4 Proc

1
,1

5
2
K

C S H
16 Proc

Figure 6: Normalized execution times in hardware versus software J-structures in SOR and MICCG.

\C" = Coarse-grain barriers, \S" = Software J-structures, and \H" = Hardware J-structures.

full/empty bits were inspired by the HEP. The HEP, Monsoon, and Tera support word-level
synchronization and bundle hardware support for �ne-grain synchronization with instruction-
level multithreading to hide latency. Tera provides data trap bits and a hardware retry. When
a synchronization attempt fails, the hardware is responsible for storing the request and retrying
it automatically. The hardware maintains a retry counter, which when exceeded causes a trap.
In Monsoon, a request is issued over the network to the synchronization store. On a failed
attempt, the hardware queues the request at the synchronization store. If other requests to the
same location arrive, all but one is sent back to the respective requesting node, where they are
guaranteed a waiting slot. A pointer is maintained by each waiting request to a waiter ahead in
line. Generalizing the notion of full-empty bits, Cedar provides synchronization counters with
each memory word, and supports operations on these counters in the memory hierarchy. The
MDP provides 4 bits of tag with each memory word and associates synchronization types with
certain combinations of the tag bits. The MDP traps into software on failed synchronization
attempts. The Multicube and KSR1 associate a synchronization bit with every cache line.
The implementation proposed for the Multicube used a hardware-supported mechanism for
maintaining �rst-come �rst-served queues of waiting processors.

7 Conclusions

This paper discussed how �ne-grain synchronization can be supported on a multiprocessor with-
out inordinate amounts of hardware, and described a particular implementation in the context of
the Alewife multiprocessor. We argued that e�cient �ne-grain synchronization requires support
at all levels of a multiprocessor system. Driven by the desire to control hardware complexity,
we identi�ed successful synchronizations as the common case in �ne-grain synchronization and
provided hardware support for that case. In the common case of successful synchronizations,
the system incurs very little overhead over normal non-synchronizing reads and writes. Experi-
mental results indicate that a high percentage of �ne-grain synchronization operations succeed.

18

Failed synchronizations that need to wait are detected via traps and handled entirely in software.
The trap handlers implement sophisticated waiting algorithms that rely on useful information
from the compiler to reduce the cost of waiting. The compiler communicates this information
to the trap handlers using otherwise unused bits in the instruction.

For programmability, we provide language support in parallel versions of C and T to allow a
user to specify �ne-grain synchronization in a straightforward manner. We have implemented a
number of parallel programs that utilize �ne-grain synchronization speci�ed with this language
support.

The resulting system needs very little hardware support such that we were able to implement
a processor that supports our design for �ne-grain synchronization by making minor modi�ca-
tions to the LSI Logic SPARC, an existing o�-the-shelf processor. The processor, called Sparcle,
has been fabricated and is fully functional. We have run several programs that use �ne-grain
synchronization on a single-node Sparcle testbed. Sparcle is expected to clock at 40 MHz in the
Alewife system. The memory system provides a bit for each memory word and some logic for
trapping the processor on synchronization faults. The cost of one extra bit per memory word is
small and will be even smaller in a 64-bit machine. Moreover only globally accessible memory
need to include full/empty bits. The full/empty trap logic accounts for a mere 500 gates out of
75,000 gates in the Alewife memory controller chip.

The system was analyzed by running several applications using �ne-grain and coarse-grain
synchronization on an Alewife simulator. The measurements show that, compared to barrier
synchronization, �ne-grain synchronization leads to signi�cant performance gain. In SOR, all
of the performance gain is attributed to our modest hardware support, while in MICCG, a
large fraction of the performance gain is due to the expression of �ne-grain synchronization,
and a smaller, but signi�cant (50%) gain is due to the hardware support. The experiments also
support our assumption that most potentially synchronizing operations will, in fact, not have to
wait. To be sure, not all applications will bene�t from �ne-grain synchronization, but we stress
that our design will not negatively a�ect such applications.

The preliminary evidence presented in this paper suggests that it is worth having modest
hardware support for �ne-grain synchronization. When the Alewife machine becomes available
we will be able to run more extensive experiments and come to a stronger conclusion one way
or the other.

References

[1] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz. APRIL: A Processor
Architecture for Multiprocessing. In Proceedings 17th Annual International Symposium on Computer
Architecture, pages 104{114, New York, June 1990.

[2] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor. In
Proceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic Publishers,
1991. An extended version of this paper has been submitted for publication, and appears as MIT/LCS
Memo TM-454, 1991.

[3] Gail Alverson, Robert Alverson, and David Callahan. Exploiting Heterogeneous Parallelism on a
Multithreaded Multiprocessor. In Workshop on Multithreaded Computers, Proceedings of Supercom-
puting '91. ACM Sigraph & IEEE, November 1991.

19

[4] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel Computing.
In Proceedings of the Workshop on Graph Reduction, (Springer-Verlag Lecture Notes in Computer
Science 279), September/October 1986.

[5] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-strict, Func-
tional Language with State. In Proceedings of the 5th ACM Conference on Functional Programming
Languages and Computer Architecture, August 1991.

[6] W. J. Dally et al. Architecture of a Message-Driven Processor. In Proceedings of the 14th Annual
Symposium on Computer Architecture, pages 189{196, Washington, D.C., June 1987. IEEE.

[7] Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar { A Large Scale Multiproces-
sor. In International Conference on Parallel Processing, pages 524{529, August 1983.

[8] James R. Goodman and Philip J. Woest. The Wisconsin Multicube: A New Large Scale Cache-
Coherent Multiprocessor. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 422{431, Hawaii, June 1988.

[9] Douglas Johnson. Trap Architectures for Lisp Systems. In Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, June 1990.

[10] Kirk Johnson. Semi-C Reference Manual. ALEWIFE Memo No. 20, Laboratory for Computer
Science, Massachusetts Institute of Technology, August 1991.

[11] A. Karlin, K. Li, M. Manasse, and S. Owicki. Empirical Studies of Competitive Spinning for A
Shared-Memory Multiprocessor. In Proceedings of the 13th ACM Symposium on Operating Systems
Principles, October 1991.

[12] David Kranz, Beng-Hong Lim, Kirk Johnson, John Kubiatowicz, and Anant Agarwal. Integrating
Message-Passing and Shared-Memory; Early Experience (Extended Abstract). In Proceedings of the
Second Workshop on Languages, Compilers, and Run-Time Environments for Distributed Memory
Multiprocessors, October 1992.

[13] David A. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel Lisp. In Proceedings
of SIGPLAN '89, Symposium on Programming Languages Design and Implementation, June 1989.

[14] Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in Large-Scale Mul-
tiprocessors. To appear in ACM Transactions on Computer Systems. Also available as MIT VLSI
Memo 91-632, February 1991, 1991.

[15] E. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation: A Technique for Increasing the Granularity
of Parallel Programs. IEEE Transactions on Parallel and Distributed Systems, 2(3):264{280, July
1991.

[16] G. M. Papadopoulos and D.E. Culler. Monsoon: An Explicit Token-Store Architecture. In Pro-
ceedings 17th Annual International Symposium on Computer Architecture, New York, June 1990.
IEEE.

[17] James B. Rothnie. Architecture of the KSR1 Computer System, March 1992. MIT LCS Seminar,
Cambridge, MA.

[18] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System. SPIE,
298:241{248, 1981.

[19] SPARC Architecture Manual, 1988. SUN Microsystems, Mountain View, California.

[20] Donald Yeung and Anant Agarwal. Experience with Fine-Grain Synchronization in MIMDMachines
for Preconditioned Conjugate Gradient. MIT Lab for Computer Science Tech. Memo MIT-LCS-TM-
479, MIT, Cambridge, MA 02139, October 1992.

20

