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Abstract

This paper discusses our experience with fine-grain synchroniza-
tion for a variant of the preconditioned conjugate gradient method.
This algorithm represents a large class of algorithms that have been
widely used but traditionally difficult to implement efficiently on
vector and parallel machines. Through a series of experiments
conducted using a simulator of a distributed shared-memory multi-
processor, this paper addresses two major questions related to fine-
grain synchronization in the context of this application. First, what
is the overall impact of fine-grain synchronization on performance?
Second, what are the individual contributions of the following three
mechanisms typically provided to support fine-grain synchroniza-
tion: language-level support, full-empty bits for compact storage
and communication of synchronization state, and efficient processor
operations on the state bits?

Our experiments indicate that fine-grain synchronization im-
proves overall performance by a factor of 3.7 on 16 processorsusing
the largest problem size we could simulate; we project that a signif-
icant performance advantage will be sustained for larger problem
sizes. We also show that the bulk of the performance advantage for
this application can be attributed to exposing increased parallelism
through language-level expression of fine-grain synchronization. A
smaller fraction relies on a compact implementation of synchro-
nization state, while an even smaller fraction results from efficient
full-empty bit operations.

1 Introduction

This paper describes an in-depth investigation of the impact of fine-
grain synchronization in MIMD machines on the performance of
the preconditioned conjugate gradient method. The method uses
the modified incomplete Cholesky factorization of the coefficient
matrix to form the preconditioner (we will henceforth refer to this
application as MICCG3D). An application study of this sort is
important because it tells architects not only how programmers will
use the mechanisms provided in parallel machines, but also the
relative usefulness of various mechanisms provided in the system
as evidenced by their impact on end application performance.

One of the challenges in such a design methodology lies in
finding appropriate applications which will provide meaningful in-
formation concerning a specific set of mechanisms. The problem of
finding an application that is both important and suitable for inves-
tigating fine-grain synchronization is particularly difficult because

most parallel application studies for MIMD multiprocessors have
focused on problems that are uninteresting from the standpoint of
synchronization. One of the reasons for this lack of benchmarks is
the lack of machines that support fine-grain synchronization. The
MICCG3D application meets our criteria because it is an important
application with challenging synchronization requirements.

Our investigation of fine-grain synchronization has two major
aspects. First, we investigate how fine-grain synchronization can be
gainfully employed in MICCG3D and determine quantitatively the
resulting performance benefits. We analyze the benefits both with
a fixed problem size and when problem size is scaled with machine
size. Our study uses a simulator of Alewife, a distributed mem-
ory multiprocessor that provides hardware support for the shared-
memory abstraction [1]. Our first result is that applications for
which synchronization is challenging do exist. Furthermore, im-
plementations on MIMD machines can achieve good performance
by employing fine-grain synchronization.

Second, through a sequence of experiments, we try to un-
derstand exactly where the “muscle” of fine-grain synchroniza-
tion lies. A common conception of fine-grain synchronization –
one which has contributed to the preference for coarse-grain ap-
proaches – has been that its success relies on efficient,but expensive,
hardware-supported synchronization primitives. We demonstrate
that the most significant contributions of fine-grain synchroniza-
tion for MICCG3D do not rely on hardware acceleration; rather,
they arise from the expressiveness and flexibility of language-level
support.

The rest of this paper proceeds as follows. Section 2 discusses
the different styles of synchronization, and identifies the levels of
support for fine-grain synchronization that machines can provide.
Section 3 describes the MICCG3D application and motivates the
need for fine-grain synchronization by discussing why MICCG3D
is difficult to parallelize. Section 4 discusses how we actually
parallelize MICCG3D using coarse- and fine-grain synchroniza-
tion. Section 5 describes our experimental environment. Section 6
presents our results and discusses their significance. Finally, Sec-
tion 7 summarizes our work and makes some concluding remarks.

2 Synchronization

Synchronization in shared-memory MIMD multiprocessors ensures
correctness by enforcing two conditions: read-after-write data de-
pendency and mutual exclusion. Read-after-write data dependency
is a contract between a producer and a consumer of shared data. It



ensures that a consumer reads a value only after it has been written
by a producer. Mutual exclusion enforces atomicity. When a data
object is accessed by multiple threads, mutual exclusion allows the
accessesof a specific thread to proceedwithout intervening accesses
by the other threads. Because the MICCG3D application uses the
producer-consumer style of synchronization, the rest of this paper
will only address read-after-write data dependency.

A coarse-grain solution to enforcing read-after-write data de-
pendency is barrier synchronization. Barriers are typically used
in programs involving several phases of computation where the
values produced by one phase are required in the computation of
subsequent phases. Parallelism is realized within a single phase,
but between phases, a barrier is imposed which requires that all
work from one phase be completed before the next phase is begun.
Under the producer-consumer model, this means that all the con-
sumers in the system must wait for all the producers at a common
synchronization point. In contrast, a fine-grain solution provides
synchronization at the data level. Instead of waiting on all the pro-
ducers, fine-grain synchronization allows a consumer to wait only
for the data that it is trying to consume. Once the needed data
is made available by the producer(s), the consumer is allowed to
continue processing.

Fine-grain synchronization provides two primary benefits over
coarse-grain synchronization.

� Unnecessary waiting is avoided because a consumer waits
only for the data it needs.

� Global communication is eliminated because consumers com-
municate only with those producers upon which they depend.

The significance of the first benefit is that parallelism is not artifi-
cially limited. Barriers impose false dependencies and thus inhibit
parallelism because of unnecessarywaiting. The significanceof the
second benefit is that each fine-grain synchronization operation is
much less costly than a barrier. This means that synchronizations
can occur more frequently without incurring significant overhead.

It is important to emphasize that these benefits are manifested
by the expressivenessof fine-grain synchronization; they will be felt
regardless of the underlying hardware implementation. This obser-
vation is important because it underscores the fact that fine-grain
expression of synchronization and the implementation of synchro-
nization primitives are orthogonal issues.

In this paper, we identify three mechanisms to supportfine-grain
synchronization. They are:

� Language-level support for the expression of fine-grain syn-
chronization.

� Memory hardware support to compactly store synchroniza-
tion state.

� Processorhardware support to operate efficiently on synchro-
nization state.

The first component of support provides the programmer with a
means to express synchronization at a fine granularity resulting in
increased parallelism. Another attractive consequence is simpler,
more elegant code [3]. The second component of support addresses
the fact that an application using fine-grain synchronization will

need a large synchronization name space. Providing special syn-
chronization state can lead to an efficient implementation from the
standpoint of the memory system. We refer to this benefit as mem-
ory efficiency. Finally, the last component of support addresses the
fact that synchronizations will occur frequently. Therefore, sup-
port for the manipulation of synchronization objects can reduce the
number of processor cycles incurred. We refer to this benefit as
cycle efficiency.

3 Preconditioned Conjugate Gradient

The Conjugate Gradient (CG) algorithm is a semi-iterative method
for solving a system of linear algebraic equations expressed in ma-
trix notation asAx = b. The rate of convergence of the CG method
can be improved substantially by preconditioning the system of
equations with a matrix K�1 and then applying the CG method to
the preconditioned system. The idea is to choose a preconditioner
such that K�1A is close to the identity matrix I [5].

Since the operations in the basic CG method consist of vector
updates, inner products, and sparse matrix-vector multiplies, effi-
cient parallel versions of the algorithm have been demonstrated on
many vector machines and MIMD multiprocessors [4, 6]. Precondi-
tioned CG methods, however, have not enjoyedthe same success. In
many of the most popular preconditioning techniques, the precon-
ditioner steps involve recurrence relations which do not vectorize or
parallelize easily. Algorithmic solutions have been proposed which
use different preconditioning techniques to obtain better parallel
performance [8, 11, 13, 14]; however, these approaches commonly
suffer from reduced convergence rates. Also, some of these algo-
rithms target a specific number of processors and are too complex
to generalize to arbitrary machine configurations.

In this paper, we study the preconditioned CG method known
as the Modified Incomplete Cholesky Factorization Conjugate Gra-
dient in 3-Dimensions (MICCG3D). Although our study centers
around a particular implementation, the general problem being ad-
dressed involves increasing parallel performance through the recur-
rence relations in the preconditioner steps, a problem that is com-
mon to almost all preconditioned iterative methods. Therefore, our
solution using fine-grain synchronization has general consequences
for the large number of algorithms that MICCG3D represents.

3.1 MICCG3D

MICCG3D is a preconditioned conjugate gradient method that as-
sumes the coefficient matrix A in the systemAx = b is sparse, and
symmetric positive definite (SPD). Such a matrix commonly arises
from the discretization of elliptic partial differential equations. In
this paper, we use MICCG3D to solve Laplace’s equation in three
dimensions.

Discretizing Laplace’s equation in three dimensions using a
standard 7-point discretization results in a SPD coefficient matrix
A that has 7 non-zero diagonals; all other elements are zero. Since
matrixA is symmetric, we can write A = L+diag(A)+LT where
L is a lower triangular matrix. Using the incomplete Cholesky
factorization method, we obtain an approximate L-U factorization
of matrix A which we denote asK . K can be computed as follows
and is given in [13].

K = (L+D)D�1(D + LT ) (1)
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Vector Operation Cycles %
Vector Update 10589 6.17
Sparse Matrix-Vector Multiply 56099 32.7
Inner Product 6212 3.62
Vector Update 9295 5.41
Vector Update 9288 5.41
Solver 74058 43.1
Inner Product 6212 3.62

Table 1: Cycle breakdown of one iteration of MICCG3D.

In this expression,L is the same lower triangular matrix mentioned
above, and D is a diagonal matrix which can be easily computed
from matrix A (see [13]). Since K is an approximate factorization
of A, we use K�1 as the preconditioning matrix and apply the
conjugate gradient method to the preconditioned system.

As mentioned earlier, the challenge of MICCG3D lies in paral-
lelizing the vector solution step involving the preconditioner (which
we shall refer to as the “solver operation”). Table 1 shows a cycle
breakdown for one iteration of MICCG3D on a problem size of
8�8�8,where the problem size nx�ny�nz signifies the degree
of discretization in the x, y, and z dimensions, respectively. The
numbers were acquired from a single processor simulation of the
Alewife machine which will be described in Section 5. Notice the
solver is the most costly vector operation. If poor parallel perfor-
mance is suffered in this part of the application, the potential parallel
performance of the entire application will be severely limited.

3.2 Parallelization Issues

MICCG3D is difficult to parallelize because the recurrence relations
in the solver operation impose data dependencies which are numer-
ous and complex. The solver computes wi, the residual vector in
the preconditioned system. wi is given by

wi = K�1b�K�1Axi

= K�1ri (2)

where xi is the solution vector of the current iteration step and
ri = b � Axi is the residual vector in the original system without
preconditioning. Although K�1 is the preconditioner, actually
calculating it is infeasible because it is the inverse of a sparse matrix
(and thus will be dense). Therefore, instead of solving equation 2,
we solve

Kwi = ri (3)

Since we have the factorization of K as the product of a lower
triangular matrix and an upper triangular matrix (equation 1), we
can solve for wi by first employing back substitution followed by
forward substitution. As an example, the backward substitution
step can be expressed as follows.

wi = (ri� li�1;2wi�1� li�nx ;3wi�nx� li�nxny ;4wi�nxny )=li;1
(4)

whereL is the lower triangular factor inK and li;j is the ith element
in the jth non-zero diagonal away from the center diagonal in matrix
L. Because of the recurrence in w, it is not possible to perform the
entire backward substitution step in parallel. A similar problem
exists for the forward substitution step. The dependencies imposed
by the recurrence relation in equation 4 result in what is known
as “wavefront computation.” This form of computation derives

Computational
    Wavefront
Moving in this
      Direction

nx

ny

nz

Figure 1: Computational wavefront at an instant in time. nx ,
ny , and nz denote the discretization degree in the x, y, and z
dimensions, respectively.

Machine Peak Vector Inner Sparse 2-Term
MFlops Update Product MxV Recur

CRAY-1 160 46 75 54 10
CRAY-2 1951 71 88 77 8.5
CRAY X-MP 941 166 166 178 5.7
CYBER 205 400 200 100 100 2.9
ETA-10P 333 167 83.3 83.3 1.6
IBM 3090 800 21 29 27 6.5
NEC SX/2 1300 548 905 843 21
Alliant FX/80 188 17.1 30.5 16.8 3

Table 2: Performance of vector operations in MICCG3D on vector
machines. The last column is for the solution of a 2-term recurrence
relation.

its name from the fact that the solutions which can be computed
in parallel at any instant in time form a wavefront in the solution
space which propagates forward as time elapses. Figure 1 shows a
snapshot of the wavefront in the three-dimensional solution space
of MICCG3D.

Wavefront computation in MICCG3D is difficult to parallelize
for two reasons. First, the parallelism is not uniform. While there is
sufficient parallelism in the middle of the computation, there is very
little parallelism at the beginning and the end of the computation.
Second, the dependencies exist across all three spatial dimensions.
That is, an element can be computed only if all the elements to
the left of it, behind it, and below it have been computed. Conse-
quently, it is impossible to choose any cartesian axis in the solution
space along which to partition work for the different processors and
simultaneously avoid heavy dependencies.

The difficulty in performing computations involving recurrence
relations is well known. Table 2 shows performance numbers on
some vector computers as presented in [4]. The first column of
numbers shows the absolute peak floating point performance of the
machine. The remaining columns give the maximum performance
in MFlops on each of the four vector operations that appear in
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Figure 2: Coarse-grain parallel implementation of the solver op-
eration for 4 processors. Similarly shaded blocks are computed in
parallel. Pi denotes processor i, and k is the number of computa-
tional blocks in the x-dimension.

MICCG3D. Notice how performance degrades for recurrence rela-
tions as compared to the other vector operations. Although only
results for 2-term recurrence relations are given, the general trends
apply to the solver operation in MICCG3D (which involves a 3-term
recurrence relation).

4 Parallel Implementation

In this section, we discuss two ways of parallelizing MICCG3D.
One uses coarse-grain barrier synchronization and the other uses
fine-grain data-level synchronization. Since we will study these
implementations side-by-side in Section 6, it is important that they
are in some sense a fair comparison. We believe our two implemen-
tations present a fair comparison based on the fact that both require
equal programming effort. We do not claim that either implemen-
tation is the best that can be done; however, we are confident that
they are both reasonable implementations.

4.1 Coarse-Grain MICCG3D

In the coarse-grain approach, we partition the solution space along
the z dimension and assign nz=P contiguous planes in the solu-
tion space to each processor, where P is the number of processors.
To maximize physical locality of data reference, we ensure that
all planes assigned to a processor are allocated in that processor’s
local memory. For this partitioning of the data, communication
occurs only in the sparse matrix-vector multiply and solver opera-
tions. Furthermore, communication occurs only between adjacent
processors and only when computing elements in the solution space
which reside in planes at partition boundaries.

Barriers are placed in between vector operations to ensure that
results are fully completed before being used in subsequentcompu-
tation. For all but the solver operation, this is sufficient to guarantee
correctness. Dependencies arising from the recurrence relation in
the solver require further use of barriers. Computation in the solver
is further sectioned into k parts along the x dimension. Each pro-
cessor computes all the results in one block and enters a barrier
before it is allowed to move on to the next block. Dependencies
between blocks across processors must be enforced by staggering
the computation. This process is illustrated in Figure 2 on an ex-
ample that has been partitioned for four processors with k equal to
four. The blocks that are computed in parallel between barriers are
filled with the same hash pattern. Staggering the blocks results in a
staircase-like propagation of computation.

Notice this scheme suffers from limited parallelism. At the
beginning of the solver operation, when processor P0 computes its
first block, processors P1, P2, and P3 must remain idle. After the
first barrier, P0 moves on to its second block, but only P1 is allowed
to start computing; P2 and P3 are still idle, and so on. Not until P0
is on its 4th block are all processors busy (note the same problem
occurs at the end of the solver operation). The degree to which
parallelism is limited depends on the value of k. The larger k is,
the finer the grain of data associated with each synchronization and
thus the smaller the amount of serialization. For all the simulations
reported in Section 6, we used k = P .

To find an upper bound on speedup in the solver computation,
we observe that sequential execution time is proportional to kP ,
the total number of blocks. Parallel execution time is proportional
to the number of blocks per processor, k, added to the number of
intervals between barriers each processor spends idling, P � 1.
Taking the ratio of sequential to parallel execution time gives the
upper bound on speedup.

Supper =
kP

k + P � 1
(5)

Notice this is only an upperbound because it ignores the overhead of
barrier operations which becomes more significant as k increases.

4.2 Fine-Grain MICCG3D

Like the coarse-grain implementation, each processor is assigned
nz=P planes partitioned along the z dimension; however, in the
fine-grain implementation, these planes are not contiguous. In-
stead, processors are allocated planes modulo P . This scheme is
illustrated in Figure 3. Notice that compared to the coarse-grain im-
plementation, this partitioning scheme results in substantially more
communication in the sparse matrix-vector multiply and solver op-
erations because the computation of every element in the solution
space depends on a value belonging to a remote processor.

Synchronization is done at the word-level using fine-grain syn-
chronization. The need for barriers is completely eliminated ex-
cept in the inner product where an implicit barrier occurs in the
accumulate of all the individual scalar multiplies. Word-level syn-
chronization automatically enforces the recurrence dependencies in
the solver operation. In the fine-grain version of the solver, each
processor can compute results as fast as possible. If a thread tries
to read a value that has not yet been computed, the semantics of
the data-level synchronization force that thread of execution to stop
and wait until the value becomes available. Therefore, processors
never wait unnecessarily.
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Figure 3: Fine-grain parallel implementation of the solver operation
for 4 processors. nx, ny , and nz denote the discretization degree
in the x, y, and z dimensions, respectively.

For this implementation, the theoretical speedup is linear (i.e.,
Supper = P ).

5 Implementation Environment

The results we report in Section 6 are in the context of the Alewife
Machine. Alewife consists of a scalable number of homogeneous
processing nodes connected in a 2-D mesh topology. The network
channels are bidirectional; end-around connections do not exist
at the edges of the network. Each Alewife node consists of a
32-bit RISC processor, a floating point unit, 64K bytes of cache
memory, 8M bytes of dynamic RAM, and a network routing chip.
Although the memory is distributed across processors, a shared-
memory abstraction is implemented in hardware which includes
support for maintaining cache coherence.

Alewife supports the fine-grain synchronization capabilities de-
scribed in Section 2. At the language level, L-structure and J-
structure constructs allow the expression of synchronization at
data-level granularity. L-structures enforce mutual exclusion and
J-structures provide producer-consumersynchronization(a detailed
discussion on language-level support for fine-grain synchronization
in Alewife appears in [7]). Memory efficiency and cycle efficiency
as discussed in Section 2 are facilitated by full-empty bits in the
memory hardware and fast operations on full-empty bits in the pro-
cessor hardware, respectively.

Alewife facilitates memory efficiency by allocating a full-empty
bit for every word in memory. Each full-empty bit acts as a dedicated
hardware synchronization variable. The memory efficiency benefit
has two consequences. First, the memory overhead for synchroniza-
tion objects is low. Without full-empty bits, a programmer would
have to explicitly allocate extra memory for every synchronization
variable. Second, memory efficiency reduces communication. A
synchronized data access on Alewife brings both the datum and the
synchronization variable to the processor in one memory system
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Figure 4: Coarse-grain and fine-grain speedups on MICCG3D.
Problem Size = 16� 16� 16.

transaction. If the datum and synchronization variable were stored
in separate memory locations, two memory transactions would be
needed.

Alewife facilitates cycle efficiency by providing special pro-
cessor hardware that enables the manipulation of a full-empty bit
simultaneously with the load or store of its associated data. Thus,
a synchronized data access costs no more than a normal load or
store. Without hardware support, a synchronized access would take
at least three instructions: one to access the full-empty bit, another
to test the bit, and a third to access the datum. Alewife uses the
result of full-empty tests to conditionally trap the processor. This
trapping mechanism is used to identify exceptional cases such as
failed synchronizations so they can be handled by software trap
handlers. This approach provides efficient hardware support for
successful synchronization operations, but relegates the processing
of failed synchronizations to less efficient software handlers. The
philosophy driving this approach is that successful synchronization
operations will be the common case when using fine-grain synchro-
nization.

In Section 6, we will compare the importance of cycle efficiency,
memory efficiency, and the benefit of increased parallelism offered
by language-level support.

6 Results

Simulation results were obtained for both the coarse-grain and fine-
grain implementations on 1, 4, and 16 processor Alewife configu-
rations. A problem size of 16� 16� 16 was used.

Figure 4 shows the speedups calculated by normalizing execu-
tion times against the uniprocessor execution time of the coarse-
grain implementation. We see that the fine-grain implementation
does consistently better than the coarse-grain implementation. The
difference in performance can be predominantly attributed to the
solver operation. To show this graphically, we recorded a syn-
chronization trace of both solver implementations in Figure 5. 16
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processors are shown executing the solver on a 16� 16� 16 prob-
lem size. Black bars represent useful work and the interspersed
white space signifies waiting for synchronization. In the fine-grain
trace, failed J-structure references (which we will refer to as “JREF
misses”) are traced by a cross appearing above the bar line of
the processor that experienced the event. After every JREF miss,
processors idle until the desired value is filled by a producer. Com-
paring the amount of idle time (white space)between the two traces,
we see that the coarse-grain implementation waits much more than
the fine-grain implementation. (Notice that the two time axes are on
different scales; the coarse-grain trace is approximately four times
longer than the fine-grain trace).

Table 3 shows a cycle breakdown of the 16� 16� 16 problem
size simulation for both implementations. There are three sources of
overhead: waiting for the memory system labeled “cache”, waiting
for JREFs labeled “JREF”, and waiting at barriers. Barrier overhead
is split into two components. The first, “Bar Time,” is the number
of cycles from when the last thread enters the barrier until the last
thread leaves the barrier. The second is “Bar Skew” which is the
number of cycles from when the first thread arrives at the barrier
until the last thread arrives at the barrier. “Bar Time” is a measure
of the cost of the barrier operation after all threads have arrived,
and “Bar Skew” is a measure of skew between the runtimes of
the threads. Both are totals across all barriers averaged for each
processor.

In the next three sections, we discuss each of these sources of
overhead and their significance. In particular, we try to extrapolate
the behavior as problem size and machine size are increased beyond
what we are able to simulate in a reasonable amount of time.

6.1 Memory System Overhead

The overhead of the memory system is consistently one of the
smallest overheads in Table 3, and we expect the effect of the
memory system to be even less at larger problem sizes. In the coarse-
grain implementation, the number of remote accesses will grow
with the surface area of each processor partition while the number
of local accesses will grow with the volume. Thus, as problem
size is increased, the overall cost of memory system overhead will
decrease. In the fine-grain implementation, a new J-structure is
allocated on each iteration thereby bypassing the need to reset the
J-structure in between iterations. This results in no data reuse. In
a real implementation, J-structures will be reset between iterations
and reused thus giving rise to better cache performance. Moreover,
becauseof the static nature of the computation, we expectvery naive
prefetching to be effective in hiding most of the memory latency in
both implementations.

6.2 Controlling J-Structure Synchronization Overhead

In the fine-grain implementation of the solver, processor Pi con-
sumes values produced by processor Pi�1. We expect the number
of JREF misses to be related to how far producers and consumers
on neighboring processors are apart in their computations. If pro-
ducers are well ahead of their consumers, then we expect very few
JREF misses. If, however, values are consumed immediately after
they are produced, then there is a much greater chance for JREF
misses. The significance of this observation is that JREF miss rate
is not dependent on the problem size; rather, it depends only on the

relative computational progress neighboring processors make with
respect to one another.

This intuition is supported by the simulation results reported
in Figure 6. We ran simulations on 4 and 16 processors while
varying the problem size and recorded the JREF miss rates under
two different failed synchronization policies which we call spinning
and backoff. When spinning on a JREF miss, the processor waiting
for the JREF continually spins on the missing value. Once the value
gets filled by the producer, the consumer immediately reads it and
continues computing. This policy allows consumers to consume
values very close to when they are produced. In the backoff policy,
whenever a processor encounters a failed JREF, it idles for a fixed
number of cycles before retrying the read. Backoff allows the
producer to make computational progress ahead of the consumer.
Figure 6 verifies that backoff achieves a dramatically lower JREF
miss rate and also confirms that for non-trivial problem sizes, the
miss rate is constant with respect to problem size. Along with a
lower JREF miss rate, backoff has the added benefit of reducing
false sharing effects in the cache.

6.3 Barrier Overhead

The most serious barrier overhead reported in Table 3 appears in the
coarse-grain implementation of the solver where barriers are used
to enforce the dependencies caused by the recurrence relations. To
better understand how this overhead effects performance as a func-
tion of problem size and machine size, we rederive the theoretical
speedup in the coarse-grain solver operation, equation 5, to include
barrier overhead. With barrier overhead (but still ignoring com-
munication costs), the time to execute the solver in parallel, Tpar ,
is

Tpar =
Tseq
Supper

+BnB (6)

whereTseq is the sequential execution time,Supper is the theoretical
solver speedup, B is the average cost of a barrier synchronization
(includes skew), and nB is the number of barriers encountered per
processor. Using equation 5, we get

Tpar =
Tseq(k + P � 1)

kP
+B(k + P � 1) (7)

where we have used nB = k + P � 1 by recognizing that nB is
equivalent to the number of blocks encountered by each processor
as discussed in Section 4.1. The solver speedup including barrier
overhead S(k; P ) = Tseq=Tpar is

S(k; P ) =
Tseq

Tseq(k+P�1)
kP

+ B(k + P � 1)

=
�

kP

k+ P � 1

��
Tseq

Tseq + BkP

�
(8)

From Figure 2, we see that the run-length between barriers is propor-
tional to a single block of computation. If we define this run-length
as rl, then we can express Tseq as Tseq = rlkP since there are kP
blocks in total. Therefore, we can rewrite equation 8 as

S(k;P ) =
�

kP

k + P � 1

��
rl

rl + B

�
(9)

Equation 9 is the product of the ideal theoretical solver speedup and
the overhead of a barrier operation in comparison to the average
run-length between barriers. Notice that both these terms cannot be
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Figure 5: Traces in the solver operation of MICCG3D. Problem size = 16 � 16 � 16. Bar lines show useful work, and white space shows
waiting for synchronization. Crosses indicate JREF misses. The staircase shape is the signature of the back and forward substitution steps.

Coarse-Grain MICCG3D.
Processors Total Cache % JREF % Bar Time % Bar Skew %

1 6943004 568540 8.19 N/A N/A 17921 0.258 0 0.0
4 2769725 85157 3.07 N/A N/A 73799 2.66 946855 34.19
16 2428515 179888 7.41 N/A N/A 945195 38.92 735474 30.28

Fine-Grain MICCG3D.
Processors Total Cache % JREF % Bar Time % Bar Skew %

1 6831696 472287 6.91 0 0.0 1270 0.019 0 0.0
4 2328728 305456 13.12 111627 4.79 11636 0.50 57288 2.46
16 662230 65929 9.96 36301 11.55 12496 1.89 68996 10.42

Table 3: Cycle breakdown for simulations. Problem size = 16� 16� 16. “Cache” is waiting on the memory system, “JREF” is waiting on
failed J-structure references, “Bar Time” is the cost of all the barriers (without skew), and “Bar Skew” is the total skew between the runtimes
of the threads at all the barriers.
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Figure 7: Barrier overhead as a function of block size for 16 proces-
sors. Block size is given by nx�ny�nz where nx, ny , andnz are
the number of elements in one block in the x, y, and z dimensions,
respectively.

optimized simultaneously. Making k large increases the theoretical
speedup term; however, it reduces the run-length between barriers,
rl , which makes the barrier overheadB more significant. Similarly,
decreasing k helps the overhead term but lowers the theoretical
speedup term.

To understand how barrier overhead behaves for large problem
sizes, we simulated one block of computation in the solver on a 16
processor Alewife machine. Observing the barrier overhead for a
single block is equivalent to looking at the total barrier overhead for
a problem size that is a factor kP larger since there are kP blocks
in the entire coarse-grain solver operation (see Section 4.1). Even
for modest values of P and k, simulating the largest feasible block
size is in fact equivalent to looking at fairly large problem sizes.
The result of this experiment appears in Figure 7 which shows the
average barrier operation cost (appearing as “BAR TIME”) and the
average skew in thread runtimes (appearing as “BAR SKEW”) for
various block sizes. Since the cost of a barrier operation depends
only on the number of processors, it is constant with respect to
block size and is trivial for most block sizes. Skew, however, is a
significant source of overhead even at the largest block sizes sim-
ulated (roughly 30%). We have observed that skew in MICCG3D
is due to nonuniform cache hit rates and network latency across the
machine and not due to load imbalance.

We draw two conclusions from Figure 7. First, the barrier
overhead of 68% reported for our 16 processor simulation in Table 3
is pessimistic and is due to the fact that we can only simulate small
problem sizes. Second, although we expect better performance
as problem size is scaled, synchronization overhead will still be
significant at large problem sizes.

6.4 Evaluating Support for Fine-Grain Synchronization

Our results thus far indicate that an implementation of MICCG3D
that uses fine-grain synchronization performs better than an im-
plementation that uses coarse-grain synchronization. We will now
investigate the causes of this difference. In particular, we investi-
gate the impact of cycle efficiency and memory efficiency provided
by the Alewife implementation of fine-grain synchronization (dis-
cussed in Sections 2 and 5).

To understand the effect of cycle efficiency, we simulated a
16 � 16 � 16 problem size on 4 and 16 processors, varying the
cost of a successful JREF between 1 cycle and 21 cycles. This was
accomplished by artificially introducing stall cycles immediately
before each JREF. The results of these simulations appear in Figure 8
and show the effect on both the solver operation in isolation and on
one entire MICCG3D iteration. As we can see, increasing the cost
of a successful JREF does not dramatically impact overall runtime.
We simulated the cost out to 21 cycles only to show extreme effects.
We expect any realistic JREF implementation to cost less than 10
cycles. Notice the 4 processor simulation is more sensitive to
the cost of a successful JREF than the 16 processor simulation
(exhibited by a steeper slope). This is because for a fixed problem
size, there are more JREFs in the critical path of execution for
smaller machine sizes; thus, a greater increase in execution time
will result from a given increase in the cost of each JREF.

The degree to which performance is affected by the cost of a
successful JREF depends on the frequency of JREFs. The more
frequent JREFs are, the greater the effect increasing successful
JREF cost will have. For MICCG3D on 16 processors, we have
observed frequencies of approximately 1 JREF every 80 cycles. We
were surprised to find such a low JREF frequency.

The frequency of JREFs is determined by three factors: the
amount of computation between JREFs, the amount of waiting on
the memory system between JREFs, and the amount of waiting on
failed synchronizations between JREFs. For this particular appli-
cation, computation between JREFs is minimal, but for each JREF,
at least one remote data value needs to be fetched; this cost is sig-
nificant. Waiting on failed synchronization attempts also lowers
the JREF rate significantly. This effect tends to be greater on large
machines since the number of failed JREF attempts increases with
more processors. We expect greater synchronization failure rates
to be a trend as machine size grows; therefore, on larger machines,
it will be more difficult to sustain high JREF rates.

The effect of memory efficiency can be measuredby implement-
ing J-structures with explicit synchronization variables for each J-
structure element in place of the full-empty bits. This doubles the
memory requirement and forces two memory transactions to occur
for each JREF. We performed this modification to the solver opera-
tion and compared its performance with the original full-empty bit
implementation of J-structures in simulations of 4 and 16 proces-
sors on 16 � 16 � 16 and 32 � 32 � 32 problem sizes each. The
results of this experiment appear in Figure 9.

In the left graph of Figure 9, we compare execution times.
For each machine size and problem size, there is a group of three
bars. The “H” bar (for Hardware) uses the Alewife support for J-
structures. The “S1” bar (for Software1) uses explicit synchroniza-
tion variables for each J-structure element, and “S2” (for Software2)
uses the same J-structure implementation as “S1” except the cache
size has been doubled from 64K bytes to 128K bytes. All three
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Figure 8: Effect of increasing successfulJREF cost in both the solver operation and an entire MICCG3D iteration. Problem size = 16�16�16.
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bars in the group have been normalized against the “H” execution
time; the normalizing constant in raw cycles appears directly above
each group (the units are in thousands of cycles). We see that the
software version consistently runs about 35% slower. Notice that
doubling the cache size does not help, indicating that the difference
in performance is not due to cache pollution from the extra synchro-
nization variables in the software version. This is expected because
in MICCG3D, the producer-consumer computation exhibits very
little data reuse. In fact, all cache misses to J-structures are cold
start misses.

In the right graph of Figure 9, the synchronization and cache
overhead components for each of the simulations appearing on the
left graph are shown. Again, times have been normalized against the
hardware time in each group of three, and the normalizing constant
appears over each group. Notice that indeed, cache overhead is
significantly higher in the software versions. In general, the JREF
overhead for the software versions goes up as well. This is because
in order for the backoff mechanism (discussed in Section 6.2) to be
effective for the software implementations, the backoff time needs
to be increased. This change in JREF overhead is most pronounced
in the 16 processor, 16 � 16 � 16 problem size simulation. In
this simulation, because of the relatively small problem size for the
relatively large machinesize, total execution time is very short. This
means the JREF overhead is dominated by the JREF misses which
occur at the beginning and end of the back and forward substitution
steps. In these phases of the solver step, JREF misses are frequent,
so the increase in backoff time for the software implementation has
a significant impact on total JREF overhead. For more realistic
problem sizes, this “JREF cold start” effect will not be significant
and instead, we should see a “steady state” JREF overhead. This
trend is already visible in the 4 processor 32� 32� 32 simulation.
Since the JREF miss rate is independent of problem size (shown in
Section 6.2), the asymptotic overhead for real problem sizes will be
dominated by the cache overhead.

6.5 Interpreting the Fine-Grain Performance Gains

The discussion in the previous section examined in detail the impact
of two components of support for fine-grain synchronization on
application performance, those two which involve hardware-level
support. In this section, we consider the essential results of this
study and relate it to the importance of language-level support.

We collect data from earlier parts of the paper to show the
increase in performance of the MICCG3D application as the com-
ponents of support for fine-grain synchronization are added incre-
mentally. Figure 10 shows normalized execution times for the
16 � 16 � 16 problem size of MICCG3D. Two sets of data are
shown, one for 4 processors and one for 16 processors. In each
set, bar I shows the execution time of MICCG3D implemented
with coarse-grain barriers. Bar II shows the execution time when
J-structure style synchronization is used; however, the J-structures
are implemented purely in software without the benefit of cycle
efficiency and memory efficiency. Bar III shows the execution time
when the J-structures are supported by full-empty bits that can be
accessed in 5 cycles thus providing memory efficiency (but not cycle
efficiency). Finally, bar IV shows the addition of cycle efficiency
by allowing single cycle access to full-empty bits (i.e., full Alewife
support for fine-grain synchronization).

The impact of cycle efficiency is quantified by the difference in
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Figure 10: Benefits of the fine-grain implementation added incre-
mentally. Bar I uses only coarse-grain expression, bar II allows
fine-grain expression, bar III allows fine-grain expression with full-
empty bit support, and bar IV allows fine-grain expression with
full-empty bits and fast bit operations.

execution times between bars III and IV. In both sets of data, this
performance gain is small, on the order of 10%. The impact of
memory efficiency is quantified by the difference between bars II
and III, and indicates a more significant performance improvement
of about 40%. But by far the largest gain in performance comes
from increased parallelism due to the expressiveness of fine-grain
synchronization as quantified by the difference between bars I and
II. The two sets of data together also show that as machine size
is scaled, fine-grain expression of synchronization becomes even
more critical in improving application performance in comparison
to memory and cycle efficiency. Notice that 16 processors is still a
very modest machine size. With further machine scaling, we expect
that the sharp difference in performance gains observed for the 16
processor data set will be even more pronounced.

There are two issues which help define the bounds within which
this conclusion is valid. First, we recognize that this discussion has
only considered machine scaling on a fixed problem size. This is
important if we are interested in running a given problem as fast as
possible. What if we are interested in scaling problem size while
keeping machine size fixed? We expect that a larger problem size
will improve the execution time of the coarse-grain implementation
more than the fine-grain implementation, so the dramatic difference
between bars I and II should decrease with problem size scaling.
The question is, how much will it decrease? Recall from Section 6.3
that even for fairly large problem sizes, barrier overhead will re-
main significant due to skew in the runtimes of threads. Therefore,
we predict that limited parallelism will remain a problem in the
MICCG3D application and fine-grain expression of synchroniza-
tion will continue to be important.

Second, we recognize that the importance of memory and cy-
cle efficiency ultimately depends on the frequency of JREFs (recall
the discussion in Section 6.4). JREF frequency is determined by
the amount of computation, memory system latency, and synchro-

10



nization failure latency between every JREF. Therefore, the JREF
frequency can be increased by employing the following optimiza-
tions. More aggressive compiler optimizations can reduce the cost
of the computation, prefetching can reduce the overhead of the
memory system, and multithreading combined with fast context
switching can hide the latency of synchronization failures. The
extent to which these optimizations will influence the importance
of memory and cycle efficiency relative to fine-grain expression
requires further study.

7 Summary

Previous application studies have dealt with problems which do not
present a challenge for synchronization. To obtain a better under-
standing of what the synchronization needs of programmers will
be, a more comprehensive look into how applications synchronize
is needed. MICCG3D, a preconditioned conjugate gradient algo-
rithm using the incomplete Cholesky factorization of the coefficient
matrix as a preconditioner, is an application for which synchro-
nization is a challenging problem. It is an important application
having received much attention in previous work [8, 11, 13, 14],
and it represents a larger class of preconditioned iterative methods
which have traditionally been hard to parallelize. By implement-
ing MICCG3D using both a coarse- and fine-grain approach, we
have discovered that the application benefits greatly from fine-grain
synchronization.

In problem sizes that we simulated, we observe that the imple-
mentation using fine-grain synchronization executed 3.7 times faster
than the coarse-grain implementation on a 16 processor Alewife ma-
chine. Since JREF overhead does not depend on problem size, we
expect the fine-grain version to maintain its performance as problem
size is scaled. Although the barrier overhead in the coarse-grain
implementation will improve as problem size is scaled, simulations
show that skew in the runtimes of threads will remain significant for
realistic problem sizes. Fundamentally, this is due to the fact that
an increase in problem size only affects an increase in run-length
between barriers that is kP times smaller. Even for modest machine
sizes, and especially for large machines, we expect run-lengths to
be small enough on realistic problem sizes that skew at the barriers
will remain significant. Therefore, we anticipate that the fine-grain
implementation will sustain a significant performance advantage
over the coarse-grain implementation at large problem sizes.

After evaluating the performance of MICCG3D implemented
with both coarse- and fine-grain synchronization, we extended our
study to understand how fine-grain synchronization achieves its
performance advantage. First, we identified three components of
support for fine-grain synchronization and enumerated the benefits
they provide for applications: increased parallelism through ex-
pressiveness, cycle efficiency, and memory efficiency. Next, we
ascertained the degree to which each of these benefits were respon-
sible for the performance gains we observed in the fine-grain imple-
mentation of MICCG3D. Our conclusion is that for the MICCG3D
application, cycle efficiency has the least impact while memory ef-
ficiency provides a more significant 40% increase in performance.
But by far the most important benefit for MICCG3D is the abil-
ity to increase parallelism by expressing synchronization at a fine
granularity. By employing optimizations to reduce the cost of the
computation, memory system, and synchronization failures, we ex-
pect the contributions of memory and cycle efficiency to become

more significant, but further study is needed to quantify this effect.
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