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Abstract

In 1990, PSPACE was shown to be identical to IP, the class of languages with interactive
proofs [18, 20]. Recently, PSPACE was again recharacterized, this time in terms of (Random)
Probabilistically Checkable Debate Systems [7, 8]. In particular, it was shown that PSPACE =
PCDS[logn; 1] = RPCDS[logn; 1]. We study the relativized behaviour of the classes de�ned
by these debate systems in comparison with the classes IP and PSPACE. For the relationships
between (R)PCDS[r(n); a(n)] and IP and (R)PCDS[r(n); a(n)] and PSPACE we determine
a natural boundary (in terms of the parameters r(n) and a(n)) separating direct-simulability and
inequality (with probability 1). In addition, we show that if 9O;EXPO = PCDS

O[logn; logn]
then P 6= PSPACE.

Keywords: Computational complexity; interactive proofs; oracles

1 Introduction and De�nitions

The notion of relativization was introduced by Baker, Gill, and Solovay [4] in an attempt to

explain the di�culty of the famous P
?
= NP question. The attachment of oracles to di�erent

classes of machines, in general, is a method for exaggerating (perhaps small) di�erences in the
computational ability of these classes. One way to lend credence to a conjectured relationship
between two complexity classes is to exhibit an oracle relative to which the conjecture holds. Thus,
the presentation of contradictory relativizations of a relationship between two complexity classes
has been a standard tool for arguing the di�culty of precisely determining that relationship. The
notion of relativization was strengthened by the consideration of random oracles [5]. In the words
of Bennett and Gill:
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: : : random oracles, by their very structurelessness, appear more benign and less likely
to distort the relations among complexity classes than the other oracles used in com-
plexity theory and recursive function theory, which are usually designed expressly to
help or frustrate some class of computations.

This led them to formulate the random oracle hypothesis [5]: the relationship between two
natural complexity classes is preserved with probability 1 under relativization by a random oracle.
In this new framework, a conjectured relationship may be supported by showing that it holds
with probability 1 relative to a random oracle. Clearly, this framework precludes the existence of
contradictory (probability 1) relativizations.

Counter-examples to the random oracle hypothesis have been demonstrated and discussed in
[12, 13, 14, 17, 19]. Recently, the random oracle hypothesis su�ered a particularly crippling blow:
the classes IP and PSPACE were shown to be equal [18, 20] despite separation with probability
1 [10, 6]. This proof that IP = PSPACE relies heavily on algebraic techniques, the cause of this
nonrelativizing behavior. The class PSPACE has recently been given a new characterization in
terms of Probabilistically Checkable Debate Systems [7, 8] also using such algebraic techniques. We
examine the relativized behaviour of IP and PSPACE in comparison with the classes de�ned by
these debate systems. We determine a natural boundary (in terms of certain parameters of the
debate systems) separating direct-simulability and inequality (with probability 1). In addition to
o�ering more evidence that these algebraic techniques do not relativize, these boundaries indicate
that this new characterization of PSPACE is essentially stronger than the characterization of
PSPACE by interactive proof systems{i.e., under relativization by a random oracle, the class of
languages recognized by these debate systems is strictly smaller than that recognized by interactive
proof systems. Finally, in the same vein as [9], we show that if 9O;EXPO = PCDSO[logn; logn]
then P 6= PSPACE.

Oracles are attached to given enumerations of machines. When we speak of CO where C is a

complexity (language) class and O an oracle, we will mean
n
L j L = L(MO

i )
o
where fMig is an

enumeration of machines such that fL(Mi)g = C.
Fix an alphabet �. Let � denote the empty word of ��. 1k denotes the concatenation of k

1's. The result of running a probabilistic Turing machine M on input x with random string R is
denoted by M [x;R]. We reserve the variable n for jxj, the length of the input in question.

De�nition 1.1 (IP) Let P be the class of interactive Turing machines ([11]). De�ne IP to be
the class of languages L for which there exists a polynomial-time probabilistic interactive Turing
machine V so that

� x 2 L ) 9P 2 P, Pr
R2coins

[(V $ P )[x;R] accepts] = 1

� x 62 L ) 8P 2 P, Pr
R2coins

[(V $ P )[x;R] accepts] <
1

3

where (V $ P )[x;R] denotes the interaction of veri�er V with prover P on input x and random
coins R.

After the de�nition of this class, it was shown that

Theorem 1.2 ([10]) 9O; coNPO 6� IPO (which implies that PSPACEO 6= IPO).

and that, in fact, the above is a probability 1 result ([6]). Then, in a remarkable breakthrough, it
was actually shown that
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Theorem 1.3 ([18, 20]) IP = PSPACE.

Recently, using the machinery of [1], Condon et. al. gave a new characterization of PSPACE
in terms of Probabilistically Checkable Debate Systems, de�ned below.

De�nition 1.4 For a function f : �� ! ��, let fhxi
def
= f(x) � x. A k-player is a function

P : �� ! �k. Two k-players, P1 and P2, de�ne an l-debate Dl(P1; P2)
def
=

lz }| {
P1hP2hP1 : : : h�i : : :ii.

De�nition 1.5 ([7, 8]) De�ne PCDS[r(n); a(n)] to be the class of languages L for which there
exists a probabilistic polynomial time Turing machine V and polynomials q and l so that

� x 2 L ) 9P1; 8P2, Pr
R2coins

h
V D(P1 ;P2)[x;R] accepts

i
= 1

� x 62 L ) 8P1; 9P2, Pr
R2coins

h
V D(P1 ;P2)[x;R] accepts

i
<

1

3

where P1 and P2 are q(n)-players, D(P1; P2) = Dl(n)(P1; P2) and, in either case, the veri�er V
uses at most O(r(n)) random bits and examines at most O(a(n)) bits of D(P1; P2), the debate
generated by the two players P1 and P2. If we change the reject criteria so that the second player
acts randomly, that is

� x 62 L ) 8P1, Pr
R2coins;P2

h
V D(P1;P2)[x;R] accepts

i
<

1

3

then we obtain the class of languages with Random Probabilistically Checkable Debate Systems [8]
which we denote RPCDS[r(n); a(n)].

As mentioned above, we have the following two theorems relating these debate systems and
PSPACE.

Theorem 1.6 ([7]) PSPACE = PCDS[poly n; poly n] = PCDS[logn; 1].

Theorem 1.7 ([8]) PSPACE = RPCDS[poly n; poly n] = RPCDS[logn; 1].

2 Relativization Results

We concentrate on the behaviour of these classes with respect to a random oracle O 2 
 = 2�
�
.

The probability measure � on 
 is de�ned by independently placing each string in the oracle with
probability 1

2 . We begin by considering the relationship between PCDS[r(n); a(n)] and PSPACE.

2.1 The Relationship between PCDS[r(n); a(n)] and PSPACE

Since we are comparing PSPACE with smaller classes we consider PSPACE to be provided with
the weak oracle-access mechanism, that is the oracle tape is a work tape.

Theorem 2.1 8O � ��;PCDSO[0; polyn] = PSPACEO.

Proof: By simulation. 2

Theorem 2.2 8k;PrO2

h
PSPACEO = PCDSO[poly n; nk]

i
= 0.
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Proof: We prove in the lemma below that with probability 1, NPO is not even contained in
PCDSO[poly n; nk]. Since 8O;NPO � PSPACEO, this shows that, with probability 1,
PCDSO[poly n; nk] and PSPACEO are di�erent.

Lemma 2.3 8k; PrO2

h
NPO � PCDSO[poly n; nk]

i
= 0.

Proof: For an oracle O, de�ne

Ô =
n
x j 8t 2 f0; : : : ; jxj � 1g ; x10t 2 O

o
:

A polynomial-time machine with access to O can e�ciently sample from Ô. If O is a random oracle,

then 8x, PrO2

h
x 2 Ô

i
= 1

2jxj
so that 8n, ExpO2


h���Ô \ �n
���i = 1. For an oracle A, de�ne

L9(A) =
n
1n j 9y 2 �n2k \A

o
:

Clearly, 8O;L9(Ô) 2 NPO. We show that PrO2

h
L9(Ô) 2 PCDSO[poly n; nk]

i
= 0. Fix an

enumeration of PCDSO[poly n; nk] veri�ers fVi j i 2 Ng. Let Vi be a veri�er of this collection
which, for n � n0, takes at most ni time, queries at most cnk debate bits and uses some �xed
polynomial, r(n), amount of randomness. For m; i 2 N, de�ne


(s)
m =

n
O 2 
 j

���Ô \ �m
��� = s

o
:

Then �(

(0)
m ) = (1 � 1

2m )
2m � 1

e
. Let n1 be large enough so that

2�ni1�2
cnk1

2n
2k
1

< 2
3 . Let n > ~n

def
=

max(n0; n1) and consider the behaviour of V O
i on 1n with an oracle O selected from 


(0)
n2k

. One of
the following three cases applies:

1. If Pr
O2
(0)

n2k

h
9P1; 8P2;PrR2coins

h
V
O;D(P1;P2)
i [1n;R] accepts

i
= 1

i
� 1

4 , then

Pr
O2


�
9P1; 8P2; Pr

R2coins

h
V
O;D(P1;P2)
i [1n;R] accepts

i
= 1 ^ 1n 62 L9(Ô)

�
�

1

4
Pr
O2


h
O 2 
(0)

n2k

i
�

1

4e
: (1)

(Recall that �(
(0)
n2k

) � 1
e
.)

2. If

Pr
O2


(0)

n2k

�
9P1; 8P2; Pr

R2coins

h
V
O;D(P1;P2)
i [1n;R] accepts

i
2 [

1

3
; 1)

�
�

1

4e
(2)

then Vi is behaving improperly, and evidently does not accept L9(Ô) for this
1
4e fraction of

oracles.

3. If Pr
O2


(0)

n2k

h
8P1; 9P2;PrR2coins

h
V
O;D(P1;P2)
i [1n;R] accepts

i
< 1

3

i
� 1� 1

2e , then we show that

this set of oracles on which Vi is successful induces a set of oracles on which Vi errs. To begin
with, we show that for any oracle O, most questions that Vi asks of O are asked on very few
random strings. Fix an oracle O. Let us consider the behaviour of Vi on a particular random

4



string R. Considering all of the possible 2cn
k

responses to Vi's cn
k queries1 to D(P1; P2) and

noting that on any one path Vi may only query ni strings of O, we have that on R there are
a total of at most ni � 2cn

k

strings of O that Vi might query. We then have that

Pr
q2�n2k

h
V O
i [1n;R] queries q

i
�
ni � 2cn

k

2n2k
:

De�ne

R(Q;O)
def
=
n
R 2 f0; 1gr(n) j 9q 2 Q; 9D � ��; V

O;D
i [1n;R]) queries q

o
:

Then

Exp
q2�n2k

[jR(fqg ; O)j] �
ni � 2r(n) � 2cn

k

2n
2k :

Invoking Markov's inequality yields

8O; Pr
q2�n2k

"
jR(fqg ; O)j �

2 � ni � 2r(n) � 2cn
k

2n2k

#
�

1

2
:

De�ne Sq
def
=

n
q1; q10; : : : ; q10jqj

o
. Then, because 8q1 6= q2 2 �2cnk ; Sq1 \ Sq2 = ; we have

that

8O; Pr
q2�n2k

"
jR(Sq; O)j >

2 � ni � 2r(n)2cn
k

2n2k

#
�

1

2
:

Now, de�ne 

(1)
m

def
=
n
O 2 
 j

���Ô \ �m
��� = 1

o
. Then �(


(1)
m ) � 1

e
. Let E(O) be the event that

8P1; 9P2;PrR2coins
h
V
O;D(P1;P2)
i [1n;R] accepts

i
< 1

3 . Then we may compute

Pr
O2


(0)

n2k
;q2�n2k

"
E(O)

^
jR(Sq; O)j <

2 � ni � 2r(n) � 2cn
k

2n2k

#
�

Pr
O2


(0)

n2k

[E(O)] + Pr
O2


(0)

n2k
;q2�n2k

"
jR(Sq; O)j <

2 � ni � 2r(n) � 2cn
k

2n
2k

#
� 1 �

(1�
1

2e
) + (1�

1

2
)� 1 �

1

4
:

When the two above events occur we can conclude that

8P1; 9P2; Pr
R2coins

h
V
O[Sq ;D(P1;P2)
i [1n;R] accepts

i
<

1

3
+
2 � ni � 2cn

k

2n2k
:

Notice that if O and q are chosen uniformly from 

(0)
m and �m, respectively, then O [ Sq is

uniform on 

(1)
m . Therefore, for n > ~n,

Pr
O2


(1)

n2k

�
8P1; 9P2; Pr

R2coins

h
V
O[Sq ;D(P1;P2)
i [1n;R] accepts

i
< 1

�
�

1

4
:

1There are at most 2cn
k

responses to Vi's queries even if Vi is adaptive (so that the i+ 1st query may depend on
the answer to the ith query).
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Since O 2 

(1)
m implies 1n 2 L9(Ô),

Pr
O2


�
8P1; 9P2 Pr

R2coins

h
V
O;D(P1;P2)
i [1n;R] accepts

i
6= 1 ^ 1n 2 L9(Ô)

�
�

1

4
�
1

e
: (3)

Let �n be the event that 9P1; 8P2; V
O;D(P1;P2)
i [1n] accepts () 1n 2 L9(Ô). From (1), (2) and

(3) it follows that for n > ~n,

Pr
O2


[�n] < 1�
1

4e
:

Furthermore, for m > ni, �n and �m are independent (or use Lemma 1 of [5]). Hence, for any Vi,

Pr
O2


h
L(V O

i ) = L9(Ô)
i

�

1Y
j=~n

Pr
O2


h
�
2l
j

i
= 0:

Finally,

Pr
O2


h
9V O

i ; L(VO
i ) = L9(Ô)

i
�
X
i

Pr
O2


h
L(V O

i ) = L9(Ô)
i
= 0

so that
Pr
O2


h
NPO � PCDSO[poly n; nk]

i
= 0:

2

Reiterating, from the fact that 8O;NPO � PSPACEO and the above lemma we have the
desired theorem. 2

2.2 The Relationship between PCDS[r(n); a(n)] and IP

Theorem 2.4 Consider the two classes IP and PCDS[polyn; nk]. We have

1. PrO2

h
IPO � PCDSO[poly n; nk]

i
= 0,

2. PrO2

h
PCDSO[poly n; nk] � IPO

i
= 0.

Proof:

1. Using Lemma 2.3 and the fact that 8O 2 
;NPO � IPO we have the desired statement.

2. This follows from [6] and the fact that 8O; coNTIMEO[n] � IPO ) coNPO � IPO.

2

2.3 The RelativizedRelationship between RPCDS[r(n); a(n)] and IP, PCDS[r(n); a(n)]

Theorem 2.5 8O; IPO = RPCDSO[polyn; poly n] = RPCDSO[0; polyn].

Proof: By simulation. 2

Consider the classes RPCDS[poly n; nk] and IP.
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PSPACEO = PCDSO[0,poly n]
=PCDSO[poly n, poly n]

IPO = RPCDSO[0, poly n]
=RPCDSO[poly n, poly n]

PCDSO[poly n, nk]

RPCDSO[poly n, nk]
⊃

≠

⊃

≠

⊃

≠

⊃

≠

≠

Figure 1: The Relativized World.

Theorem 2.6 8k;PrO2

h
RPCDSO[poly n; nk] = IPO

i
= 0.

Proof: We have that 8O;RPCDSO[poly n; nk] � PCDSO[poly; nk] so that Lemma 2.3 yields
the desired result. 2

Theorem 2.7 For a(n) = !(logn),

Pr
O2


h
PCDSO[r(n); a(n)]� RPCDSO[polyn; poly n]

i
= 0:

Proof: 8O; coNTIMEO[a(n)] � PCDSO[r(n); a(n)] but, by argument similar to that of
Lemma 2.3, one may show that

Pr
O2


h
9L 2 coNTIMEO[a(n)]�RPCDSO[poly n; polyn]

i
= 1:

2

Figure 1 shows the probability 1 relationships between these classes.

2.4 The Relationship between PCDS[r(n); a(n)] and EXPTIME

An oracle equating NP and EXP has been discovered by Heller [16].

Theorem 2.8 ([16]) 9O � �� so that EXPO = NPO.

Fortnow [9] has shown the following theorem relating the existence of an oracle equating

PCP[logn; 1] (see [1]) and EXP to the P
?
= NP question.

Theorem 2.9 ([9]) If 9O � �� so that PCPO[logn; 1] = EXPO then P 6= NP.

We prove a similar result for the class PCDS[logn; logn].

Theorem 2.10 If 9O � �� so that PCDSO[logn; logn] = EXPO then P 6= PSPACE.
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Proof: Let O be an oracle so that PCDSO[logn; logn] = EXPO. Assume, for contradiction
that P = PSPACE. Let L be a �p-complete language for EXPO. We show that L 2 PO

and conclude that PO = EXPO, which contradicts the time hierarchy theorem [15]. Let V be a
PCDSO[logn; logn] veri�er for L. We construct DO, a deterministic polynomial time machine so
that L(DO) = L. DO, given input w, writes down the entire computation tree T of V [w], answering
V [w]'s questions to O by actual questions to O and branching at those nodes where V [w] receives
debate tape answers. Notice that choice of a pair (P1; P2) determines a path in T. This path
is satisi�ed if V [w] accepts with these responses. Because V [w] uses O(logn) random bits and
receives O(logn) bits back from the debate tape, the total size of T is polynomial in jwj. T contains
no queries to O. DO would now like to determine if 9P1; 8P2, the induced path in T is satis�ed.
Fortunately, this is a PSPACE decision problem, which can be solved in polynomial time because
P = PSPACE. Hence, L 2 PO and EXPO = PO, contradicting the time hierarchy theorem. 2

3 Direction for Future Research

The discovery of simulation techniques which do not relativize (with probability 1) is astonishing.
This leads us to question the meaning of relativization in general. One would like to distill the
essential non-relativizing ingredient of these algebraic techniques. This may be done by presentation
of (perhaps contrived) complexity classes with a somehow simpler (algebraic) proof of equality which
exhibit this behaviour. Alternatively, this may be done by presentation of a new framework (perhaps
just a new oracle-access mechanism [9]), analogous to relativization, in which these techniques
behave well.
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