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Abstract

Multimodel multiprocessors provide both shared memory and message passing primitivesto the
user for efficient communication. Inamultiuser machine, trand ation permits machine resourcesto be
virtualized and protection permits usersto beisolated. The challengeinamultiuser multiprocessor is
to providetrand ation and protection sufficient for general -purpose computing without compromising
communi cation performance, parti cul arly theperformanceof communication between parall el threads
belonging to the same computation. FUGU is a proposed architecture that integrates trandation and
protection with a set of communication mechanisms originaly designed for high performance on a
single-user, physically-addressed, large-scale, multimodel multiprocessor.

Communicationin FUGU isbased on the mechanismsof the Alewifemachine[1]. Themechanisms
are shared memory with hardware cache coherence, user-level message sends and receives, and a
user-controlled DMA facility integrated with messages for bulk transfers. This paper presentsadesign
that integrates translation and protection with these communi cation mechanisms. Three components
of the design are novel. First, we propose maintaining TLB coherence as a side-effect of cache
coherence on page table entries. Second, we describe how to permit user-launched and user-handled
messages without dedicating physical memory for buffering at the sender or at the receiver. We
propose to use a rudimentary, second, system-only network to avoid deadlock of the user-accessible
network. Third, we show how to integrate user DMA with virtual memory to permit bulk transfers
without prenegotiation and global locking of physical memory.

*This research hasbeen funded in part by NSF grant # MI1P-9012773, in part by DARPA contract # N00014-91-J-1698, and
in part by aNSF Presidential Young Investigator Award.



1 Introduction

Recent parallel processors unify support for two models of processing by providing support for shared
addressing of data and for message passing. This class of “multimodel” machines is of great interest
because it combines the best of two worlds: the efficiency of message passing, for bulk data transfer
and for combining data with synchronization, and the flexibility and convenience of shared memory for
fine-grained and dynamic computations [13]. Multiprocessors, for example Alewife [1], achieve good
performance by providing direct access to the underlying hardware. Shared-memory machines initiate
communication with ordinary, user-level load and store instructions. User-level messaging interfaces
permit user-level code to launch and to handle messages by directly manipulating the network interface
hardware.

A multiuser multiprocessor requires protection checks on accesses to hardware resources, eg. ac-
cesses to memory or to incoming messages, in order to isolate users. Trandlation on al accesses permits
providing the user with the convenient illusion of a virtual machine. Adding translation and protection
without compromising performance is a challenge. The goa of FUGU is to include hardware and soft-
ware mechanisms for translation and protection that support general-purpose, multiuser computing on
large-scale, multimodel multiprocessors while providing parallel application performance equivalent to
running on dedicated, single-user hardware.

1.1 TheProblem

The problem of trandation and protection for shared memory accesses can be solved using arelatively
straightforward application of standard virtual memory. One new problem is that of keeping the trans-
lations coherent in a scalable way. Protection for user-level messaging and translation for messages that
access memory islessclear. Current solutionsfor user-level messagesfall into three categories, none of
which is entirely satisfactory because of the impact on performance:

1. User-initiated message sends can be permitted to globally named, pre-negotiated areas of physica
memory at the receiver, for instance as remote-write operations. Tranglation and protection are
handled in analogy to virtual memory. SHRIMP [5] and bulk transfers in FLASH [15, 10] use
remote-write.

2. User-level access to the network hardware can be preserved if the machine isrigidly partitioned
and al hardware in the partition, including the network, is context switched. The CM-5 adopts
thissolution [17].

3. User-initiated transfers between memories can use explicit acknowledgements to manage sender-
side buffer space for each message. Software protocols such as IP typically use this approach.
FLASH general messages and FUNet [11] provide the acknowledgementsin hardware.

1.2 Fucu Overview

Fucu provides hardware support for three communication mechanisms. A coherent shared memory
system communicates implicitly via messages synthesized and interpreted by hardware. A user-level
messaging facility allows user-code to send messages to and handle messages from the network directly
with no buffering. Finally, a direct memory access (DMA) facility isbuilt on top of the basic messaging
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M echanism Trandation Protection

Shared memory Memory mapping. Memory mapping,
TLB coherence via PTE coherence. | page-level protection.
Short messages (compiler-generated only) GID-stamped messages.

Receive handler timeout.
Rudimentary second network.
Messages W/DMA || Uses the processor’'s TLB. (same as short messages)
Implicit frame-locking,
checked by the page cleaner

Table 1: Translation and protection for each communi cation mechanism.

facility to permit efficient bulk transfers. We propose to provide trandation and protection for each of
these communi cation mechanisms using the techniques summarized in Table 1.

Shared memory Translation and protection for shared memory is provided by memory mapping via
a single translation-lookaside buffer (TLB) per node placed at the processor. Placing the TLBs at the
processor requiresthat the page table entries (PTES) cached in the TLBs be kept consistent. We propose
to implement TLB consistency as a side effect of data cache coherence on the PTEs stored in shared
memory. FUGU cache coherence is directory-based and uses invalidation. The only required change to
support TLB consistency is to provide an adternate, software invalidation action for memory lines that
store PTEs. The aternate action invalidates the PTE cached in the TLB as well asin the main cache.

Short messages Trandlation and protection for messages is handled as follows. Trandation of node
names for messages is performed by the compiler or user-level runtime system. That is, if trandationis
required, the runtime system takesavirtual node number and looks up the physical node number for each
message sent. Protection for user messagesis enabled by adding an unforgeable process group identifier
(GID) to all messages and providing two-way demultiplexing in hardware at the receiver. Messages
intended for the currently running process at a receiver are handled at full speed while messages with
non-matching GIDs are diverted to the kernel. A timeout on message handlers protects the machine
from errant message handling code. A second, system-only, logical network allows kernel software to
deal with errant user code that floods the network by providing a channel for communicating scheduling
information and, in extreme situations, for paging. Importantly, the second network need only be
rudimentary in construction and performance because it israrely used.

Bulk transfer messages DMA for messages interacts heavily with the virtual memory system. Trans-
lation for the DMA facility is provided by the processor’'s TLB. Blocks of memory in use for DMA
are implicitly locked in memory without prenegotiation and without adding overhead to the messaging
operations. Notably, our scheme locks physical frames, an operation local to a node, rather than virtua
pages visible across the machine. Fast receive operations without prenegotiated receive buffers are made
possible by taking advantage of the explicit coherence semantics of DMA writes: the user cannot expect
to read good data until the DMA operation reports completion so blocks directed to a missing virtua
page can be quickly written to a freshly allocated physical page and then reconciled after the write but



before they are made available to the user. Protection for messages with DMA is based on GID checks,
the same as for short messages without DMA.

This paper makes three contributions by proposing three techniques for integrating translation and
protection with an efficient set of multiprocessor communication mechanisms. First, we propose main-
taining TLB coherence as a side-effect of PTE coherence. Second, we describe how to permit user
messages without dedicating physical memory for buffering at the sender or at the receiver. Third, we
show how to integrate user DMA with virtual memory to permit bulk transfers without prenegotiation
and global locking of physical memory.

Section 2 summarizes our assumptions and the programmer’s model for the system. Sections 3, 4
and 5 form the core of the paper, describing how to providetranslation and protection for shared memory,
for short messages and for long messages with DMA, respectively. Shared memory is described first
because the other systems interact closely with virtua memory. Section 6 describes the hardware we
propose to construct to evaluate FUGU. Section 7 describes related work and Section 8 concludes.

2 Programmer’s Model

This paper is chiefly concerned with two low-level abstractions and the mechanisms that connect them.
The first abstraction is the user-level instruction set architecture as seen by the compiler back-end and
the user-level part of the runtime system. The second abstraction is the raw, kernel-level instruction set
architecture of the machine. This section describes the user-level abstraction we want to achieve and the
rest of the paper describes the kernel-level hardware and runtime techniques used to implement it. The
term user-level in thiscontext refers to the protection domain. An application programmer generally will
not write programs at this level of abstraction but will instead use higher-level abstractions provided by
the compiler and runtime system [12].

The Alewife machine serves as our prototype of a single-user, multimodel multiprocessor [1, 14].
The machine consists of identical processing nodes connected via a message-passing network. FUGU
(Figure 1) isarranged similarly, although with asecond logica network. The Communicationsand Mem-
ory Management Unit (CMMU) serves to implement shared memory and serves as the network interface
for message passing. Communication between the processor and the CMMU is both implicit, vialoads
and stores that the CMMU intercepts to implement shared memory, and explicit, via memory-mapped
registers. The CMMU resides as close as possible to the main processor, in this case on the processor’s
external cache bus. FUGU also includes hardware facilities to provide translation and protection for user
communications. These facilities are referred to collectively as the User Communication Unit (UCU),
athough they are in fact integrated with either the processor or the CMMU. For instance, the UCU
includes the processor’s TLB.

2.1 Communication Models

Fucu, similar to Alewife, exports three basic communication mechanisms to user level code: a coher-
ent shared memory, a messaging interface efficient for short, processor-to-processor messages and a
DMA facility integrated with the basic message interface for long, memory-to-memory messages. This
subsection describes the user-level view of each communication mechanism.
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Figure 1. A FUGU node. The Communications and Memory Management Unit (CMMU) resides on the
processor’s external cache bus. The Tranglation Lookaside Buffer (TLB) isintegrated with the processor.
The User Communication Unit (UCU) refers to the set of hardware features that provide translation and
protection for the hardware communication facilities.

Shared memory Shared memory communication operations are initiated implicitly in response to
ordinary load/store operations. Each application has its own, private address space. Addressing is
processor-independent across the processors executing an application. This addressing mode is the
usua shared-memory model. With virtual memory, processor-independent addressing implies that the
logical translations for shared pages must be the same on al nodes.

Although the shared memory is accessed uniformly across al processors, it is non-uniform in
implementation. Consequently, programmers have two underlying sharing mechanisms to be aware of:
First, fine-grain (cache block size) renaming of locationsfor locality is provided by the caches. Second,
coarse-grain (page size) renaming is provided by thevirtual memory system. Thereisthusan opportunity
for the programmer (i.e., the compiler and user runtime system) to optimize for locality by advising the
kernel of a preferred static placement of pages and by choosing the partitioning of data within these
pages. Alternatively, locality management can be left entirely to the caching hardware and the page
migration software.

Short messages Messages are initiated and handled by explicitly communicating with the CMMU.
The CMMU component appears as a set of memory mapped registers on the processor’s externa cache
bus. CMMU registers are read and written with colored load and store instructions!, | di o and sti o,
which are presumed to bypass internal processor caches and proceed at the speed of the external cache.
Details of the interface to the FUGU CMMU are collected in Appendix A.

The message send interface consists of 16 CMMU registers that serve as awindow into the network
output queue and al aunch operation. An outgoing message is composed in the window and then
| aunch atomically commitsthe message to the network. Thefirst word of the messageisdistinguished

Such as provided by the SPARCLE processor [2] and the general SPARC architecture.



as the header and is interpreted by the hardware for routing. A minimal message can be launched from
processor registers with three instructions:

stio rheader, crmmu-out put-registers[O0]
stio rval ue, cmmu-out put-registers[1]
[ aunch

At the receive side, the processor is notified of the arrival of a packet either via polling or via
interrupts, at the option of the user code. An incoming message appears in a complementary set of 16
CMMU registers forming a window into the network input queue. The processor uses the window to
examine the incoming packet. A st or eback operation disposes of packets after they have been read.
Notethat thereceive interfaceis particularly raw: no buffering is provided beyond the CMMU’s internal
gueues. Incoming messages block the network input port and potentially the network itself until they are
examined and disposed of.

Bulk transfer messages Long messages with DMA are initiated using the same network interface as
used for short messages. The difference is that descriptors for regions of memory (begin/end address
pairs) are written into the outgoing window instead of values. Descriptors are distinguished from values
by using another colored store instruction, st desc. Single blocks are restricted to one pagein size for
reasons explained in Section 5. A block of memory could be included in a message as follows:

stio rheader, crmmu-output-registers[O0]
stio rval ue, cnmmu-out put-registers[1]
stdesc rbegin, cnmu-output-registers[2]
stdesc rend, cmu- out put - r egi st er s[ 3]
| aunch

At the receive side, a handler can invoke DMA to dispose of a message by writing descriptors for
the destination blocks of memory into athird set of CMMU registers before invoking the st or eback
operation. The DMA interfaceis examined in detail in Section 5.

2.2 Scheduling Assumptions

We will call the basic unit of computation a thread. Each thread resides in a protected address space
and has its own stack and program counter. A process is a collection of threads executing in the same
address space on a single processor. Finaly, agroup is acollection of processes coherently sharing the
same address space across several processors. Threads are scheduled by a user-level thread scheduler
and processes and groups by a kernel-level process scheduler.

We expect multiprocessorsto beused to run multiplegroupssimultaneously, asin Figure 2. Although
communication may occur between groups, as in a client-server relationship, we assume that most
communication occurs between threads of the same group. This assumption has two consequences.
First, although we provide a means for general, inter-group messaging, we will optimize for efficient
message transmission between threads in the same group (and protection domain). Second, we will
assume that the process scheduler loosely gang-schedules processes within a group. Note that this



Figure 2: Two process groups scheduled together on separate nodes of the same multiprocessor.

latter stipulationis merely for performance reasons; we do not advocate enforced space sharing or hard-
partitioning of the machine and gang-scheduling of partitions. Scheduling processes together appears to
be desirable in general for multiprocessing [3, 26, 7].

2.3 Protection Modd

User process groups should act as if they are running on a private, virtual multiprocessor. Multiple
groups can be multiplexed on the hardware without interference, except in terms of performance. The
protection model as viewed by the user can be summed up as follows:

1. Groupsare isolated from each other in separate address spaces.
2. Groups appear to have a private network for intra-group messages.

3. Inter-group messages can bereliably identified by the receiver.

In addition, there is an implicit assumption about protecting the system and other users from errant
user code:

¢ User bugs may affect performance but do not compromise the integrity of the machine.

In particular, we do not attempt to provide fair access to the network in hardware. We guarantee
forward progress to the process scheduler which in turn is expected to guarantee forward progress to
user processes. The assumption here is that in a general-purpose machine it is sufficient for a severely
mishehaving application to be detected and controlled by administrative means.

2.4 Fault Model

We currently assume that all components are reliable. The network delivers all packets correctly. The
nodes all share the same environment and administrative control, i.e., nodes are not shut down or altered
independently and network packets cannot be generated or read by an adversary. Thismodel is adequate
for alarge-scale multiprocessor as the environment it isinis generally less hostile than the environment
for anetwork of workstations.



3 Trandation and Protection for Shared Memory

This section describes our implementation of trandation and protection for shared memory, in other
wordsvirtua memory. First, we show that the general translation schemeisjustified. Next, the hardware
and software structuresfor storing translationsare explained. The page tablesare arranged so that purely
local operations can be separated from operations which might require communi cation with other nodes.
Third, we show how to piggyback translation coherence on basic cache coherence provided there exist
hooks from the coherence hardware to software.

3.1 Trandation at the Processor

In FUGU, tranglation conceptually takes place at the processor as it emits an address. Translation at the
processor means two things. First, translation at the processor is a memory model issue. Translating
addresses immediately permits complete flexibility to map pages to arbitrary locations in the machine.
Memory mapping provides aform of physical transparency by isolating the user software from the size
and layout of physical memory in the machine. In addition, memory mapping enables the operating
system to provide coarse-grain shared memory via static page distribution and dynamic page migration.
We expect the operating system to make use of these coarse-grain sharing techniques to complement
the fine-grain sharing provided by the native coherent caches. Various groups have experimented with
tradeoffs between multiple shared memory mechanisms and found page-grain sharing beneficia on
shared-memory machines without caching [22, 16, 7].

Second, trandation at the processor is an implementation issue that provides a simplification and
a complication. The simplification is that performing all translation at the processor permits the rest
of the memory system, including the hardware shared memory system, to operate in terms of physical
addresses. No translation information needsto be recognized or managed by the hardwarein the memory
system beyond the TLB. Virtual pages that are shared are mapped to physical frames of shared memory
managed by the hardware. The cache coherence directories are associated with these physical frames
so the frames must be localized (“cleaned”) before a page can be swapped out.? The complication is
that translation at the processor accelerated by a TLB introduces a coherence problem since translations
cached in the TLBs must be kept consistent.

3.2 Trandation Structures

Tranglation on memory referencesis performed using paged memory mapping, i.e., by referencing apage
table by virtual page number to find the physical page number for each memory access. The lookup is
accelerated by a TLB at the processor, as usual, so that in the common case no actual memory reference
is required to perform the trandation. In addition, in a multiprocessor, it is occasionaly important
to resolve references to local pages that miss in the TLB without incurring any potentially expensive
references to global memory. For instance, in FUGU, the DMA mechanism, described in Section 5, takes
different actions depending on whether apage isloca or remote and needs to make the determination as
quickly as possible.

2Note that translation at the processor does not necessarily restrict the system to using physically-indexed caches. For
instance, virtually-indexed caches with physical tags may be supported by recording the active cache page number in the
coherence directory associated with each memory line and permitting only one cache page per memory line to be active at a
time.
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Figure 3: Address translation procedure.

FuGu uses a variation of the page table layout used by Cox and Fowler for PLATINUM [8]. The
page tables are split into loca page tables (LPTS), stored inverted in the private, physical memory of
each processor, and a global page table (GPT), stored in distributed, shared memory. All pagesthat are
physically resident on the node (whether private or shared) are listed in the LPT. The page trandation
procedure proceeds as illustrated in Figure 3. Trandations that missin the TLB are looked up in the
LPT at the cost of a small number of references to local memory. Translations not found in the LPT
are looked up in the GPT and potentially require accesses to global memory.3 In essence, there are two
levels of page faults reported: not-in-local-memory and not-in-any-memory.

3.3 Trandation Coherencevia PTE Coherence

The problem of maintaining a coherent view of a global virtual address space across a multiprocessor
is generdly caled the TLB consistency problem [4, 23, 24]. Trandations for global pages are read
from entries in the global page table (GPTES). In FuGU, GPTES may be stored in severa places aside
from the processors' TLBs, including the main caches and the LPTs. Given that GPTES are cached in
multiple places, we want to unify the consistency mechanism for these entriesfor simplicity and in order
to minimize the number of messages required to maintain coherence. If the GPT is stored in coherent
globa memory, then the machine already provides a coherence mechanism for GPTES stored in the
main caches. We find it possible to selectively extend the cache coherence mechanism to maintain al
the tranglation information derived from the GPTES and thus provide TLB coherence as a side effect of
GPTE coherence.

Fugu's cache coherence mechanism, like Alewife, uses a directory-based invalidation protocol. A
directory isassociated with each memory linelisting all nodeswith possible cached copies of the memory
line. When an operation that requires invalidation, such as a write, occurs, the memory side launches
invalidation messages to each listed node. Each cache that receives an invalidation removes theline, if
present from the cache and replies with an acknowledgement. In the common case, these messages are
generated and interpreted in hardware, asin Figure 4.

3Both LPT and GPT accessesare accelerated by the main cache. In addition, GPT accesses can be accelerated by caching
GPT entriesin the LPT and explicitly managing the LPT asa cache.
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Figure 4. Norma invalidation is performed by hardware. Node A has cached a read copy of a memory
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Coherence for global page tables can be piggybacked on the cache coherence of the memory line
on which the GPTE resides by causing an aternate invalidation message and action to be used for that
line. The alternate invalidation message must cause any GPTE found in the TLB as well as the cache
to beinvalidated. A simple hardware mechanism that permits aternate invalidations to be added to the
cache coherence protocol is amode bit associated with each memory line that causes a trap to software
on the processor associated with the memory whenever a write is made to that memory line. Figure 5
illustrates the use of this mechanism when the mode bit is set for all GPTEs. The memory-side trap
handler then interprets the directory and sends aternate invalidation messages to the listed nodes. The
message handler at the cache side flushes the entry from the TLB and then proceeds with the cache flush,
responding to the memory side with an ordinary acknowledgement message.

Trapping to software at the memory side has been proposed for hybrid hardware/software imple-
mentations of cache coherence and for implementing special case coherence protocols [6]. Transation
coherence isacase of an alternate cache coherence protocol: thetrapisused to send aternateinvalidation
messages so that side effects may be added at the cache side. Note that hardware support for collecting
and handling read requests, collecting acknowledgement messages, etc., will all be reused to implement
the cache coherence.*

Directories for trandation coherence have generally been kept explicitly in software. PLATINUM
maintainsadirectory for each GPTE. The standard “ TLB shootdown” algorithm maintains one directory
for an entire page table [4, 23]. Maintaining directories at a grain finer than a page table isimportant to
scalahility because it generally reduces the number of nodes that must receive invalidation messages for
any giveninvalidation. FUGU maintainsadirectory for several GPTESstogether on acacheline. Lumping
GPTEstogether introduces fa se sharing over a schemethat maintains GPTE directoriesindividually, but
adds hardware support to accel erate directory maintenance. Theactual performanceof FUGU’s translation
coherence remains to be investigated.

34 Memory Protection

Protection on shared memory communication is provided by the usual memory mapping techniques.
Process groups are placed in different address spaces and individual pages may be marked inaccessible
or read-only. In terms of the taxonomy of protection mechanisms for communication discussed in
the introduction, protection by memory mapping amounts to permitting user-initiated communication
between pre-negotiated regions of physical memory.

4 Trandation and Protection for Short M essages

Providing direct accessto network i nterface hardware minimizesthe costs of communication but increases
the effort required to multiplex userson the hardware. 1naddition, the exposure of the systemto problems
caused by user bugsisgreatly increased by permitting user access to hardware and by relying on the user
to handle hardware events. The protected user-level network interface is the core of the FUGU design.

Translation for short messages is minimal and is described briefly at the beginning of the section.
Theremainder of the section describes protection for messages. Protected accessto auser-level network
interface is a specific instance of ageneral problem of protected user-level accessto any 1/0 device. We

4An alternative mechanism using more hardware could flag memory lines containing GPTEsto automatically send alternate
invalidation messagesin hardware.
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describe the mechanisms for exporting interrupts and polling to the user and then the mechanisms for
providing protected access to the network interface. Finaly we discuss how system software uses the
hardware mechanisms to implement the protection model.

41 Trandation of Node Names

Short messages are sent and received without references to memory, so translation on memory addresses
isirrelevant. However, full physical transparency for user code requires that node names be virtualized
as well as memory locations. In other words, some translation mechanism is required for the node
destination addresses written at the head of the packet. In FUGU, we currently leave this trandation to
the compiler or runtime system. As a consequence, there is minimal control over where a user process
directsits messages. We apply protection only at the receiver to detect code that launches a message to
an inappropriate destination, as described at the end of this section.

4.2 Protection for User-L evel M essages

User control over the network is a specific instance of user control over an 1/0O device. 1/0 devices
are ordinarily protected by reserving access to the operating system kernel and having the kernel check
protections on every request. Kernel-mediated access to the device can be tolerated only if the device is
relatively slow. User-level messages over fast VLS| interconnection networks must avoid the kernel >

The interface to an 1/0O device (an interconnection network, in our case) requires four features to
make the device user-level:

¢ Notification: 1/0O device operation is asynchronous and requires a mechanism for notification of
events. For networks, both interrupts and polling are desirable mechanisms, as described bel ow.
The user must have a means to disable notification in order to provide atomicity with respect to
interrupts and to select polling operation.

¢ Isolation: device eventsand incoming dataassociated withthe 1/0O device must beknown to bel ong
to the user.

¢ Permitting sharing: there must be a means to context-switch the I/O device to multiplex between
Users.

¢ Enforcing sharing: there must be a means to enforce access to shared resources. The 1/O device
and associated resources may be shared with other users and with the kernel.

An existing, simple example of user control over an 1/O device is a bit-mapped display. It makes
senseto permit direct user access to this device because the bandwidth requirements are very high. There
are no notification issues because it is an output-only device. Sharing is provided by memory-mapping
the memory associated with the display. The device is isolated by mapping it to one process a atime.
Sharing is permitted, because the device can be mapped to any process. Sharing isenforced because the
kernel controls the maps.

SNote that for our purposes, adeviceis at user-level if code running at user-level can affect hardware resources without any
checks made by the kernel. With this definition, for instance, the feature that makes an interrupt user-level is not whether the
actual code paths go through the kernel or not. Avoiding the kernel is an optimization. The key conceptsare that the interrupt
codeis user-provided and that user has control over whether or not the interrupt is signaled.
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Requirement Mechanism

Notification Kernel-delivered user interrupts.
User-controlled polling.
Isolation GID stamped on messages at sender.

Demultiplex on GID et receiver.

Permitting sharing | Atomic| aunch operation.

Buffer and relaunch.

Enforcing sharing | Receive handler timeout.

Buffer and scheduling using the second network.

Table 2: Mechanismsto permit and protect user access to the network interface.

Fucu provides means for users to control the network interface directly yet share it using the
mechanisms listed in Table 2. We address the issues of notification, isolation, permitting sharing, and
enforcing sharing for FUGU’s network interface separately below.

Notification FuGU supports both polling and interrupts on network events at user level. User
traps are delivered through the kernel, but may be disabled by the user. Two CMMU registers
support selective polling on network events and atomicity with respect to network events. The
user-trap-pendi ng and user-trap-nmask registers both contain a bit for each type of
event. The bits in user-trap- mask indicate which events should cause traps and the bits in
user - trap- pendi ng indicate which events have occurred. If the trap for an event is disabled,
the user can poll onuser -t r ap- pendi ng.

The trap enable for message input has additional functions. When message reception is disabled,
instructions that might block for network resources, e.g., shared memory loads and stores, are made
illegal and cause a kernd trap immediately. Additionally, a timeout counter counts whenever message
reception is disabled in order to enforce sharing. We describe interrupts and polling in generd in this
section and come back to the extra features of the message input enable under enforcing sharing, below.

Fucu providesboth polling andinterruptsbecause each providesthe best performanceinitsoperating
domain. Interrupts provide the lowest overhead if events are infrequent because polling checks are not
required. On theother hand, polling providesthelowest overhead in the case where an event is expected.
Consider thesevera aternate notification sequencesin Figure 6. These sequencesillustratethree possible
message receptions: using interrupts only, using interrupts with the GID check wired into the hardware,
and using polling. Polling requires that the GID check be wired into hardware. Interrupts which pass
through the kernel incur anumber of extra cycles of overhead even for the most minimal code. Interrupts
delivered directly to user level are potentially much faster but are not available on current processors.
Potentially even more expensive for interruptsis the disruption of processor state.

We provide polling to take advantage of its minimal latency in cases where the data are expected.
Such cases arise (1) in code with rigid static scheduling, (2) in code with communications phases that
exchange many messages in bursts and (3) on server nodes that handle many short messages.

An example of a server processis alock-server: aprocess on anode that maintains locks accessed
by messages. A simple experiment on a simulated Alewife machine changed the lock-handler in a
synthetic application from purely interrupt-driven operation to polling operation. This was done by
having the interrupt handler optimistically check for amessage before returning from the handler. Using
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Kernel interrupt Kernel interrupt User polling
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Figure6: Messagedelivery latency for various hardware options. Numbers are approximate cycle counts
on a SPARC processor.

interrupts alone, the throughput of the lock-server averaged one lock every 100 cycles. Switching to
polling increased the throughput to one lock serviced every 48 cycles on average. When polling, the
server avoids unnecessary copying of state information and can keep common variables in registers
across invocations of the handler.

Isolation Isolationisachieved by tagging every message with the sender’s group identifier (GID) and
disabling network access at the receiver until the tag has been verified. A G D field is defined for dl
user messages and an i nput - enabl e control bit is associated with the user network input interface.
Wheni nput - enabl e isclear, user accessesto the network input interface are illegal and cause atrap.

Because the user has direct hardware access at the sending side, we stamp the sender’s GID in the
A D field of outgoing messages by hardware to prevent forgery. This operation requires a hardware
copy of the GID to the message at the time of the | aunch operation. At the receive side, the GID
must be compared to the G D register before delivery to the user to provide isolation. We perform this
comparison in hardware to permit user polling without the overhead of akernd trap. If the GIDs match
(i.e., the messageisan intra-group message), the network receive interfaceisenabled (i nput - enabl e
is set), delivering the message directly to the processor. Thei nput - enabl e is automatically reset
when the message is disposed. If the GIDs do not match, a trap is caused to deliver the message to
the kernel to be buffered as described in Section 4.3. Also, a subset of user-generatable message types
representing remote supervisor requests are always delivered to the kernel.

The hardware stamping and checking of GIDs on intra-group messages provides the illusion of a
private network. Inter-group messages are achieved by having the kernel provide protection. An inter-
group message uses a message type that causesit to be delivered to the kernel at the receiving node. The
kernel software then applies arbitrary protection checks and, if the message passes the checks, enables
the interface by setting a i nput - enabl e control bit. The receiving user can reliably identify the
sender viathe GID in the message.

Permitting Sharing The FUGU network interface permits sharing by providing mechanismsto trans-
parently unload and reload state from the network on context switches. Context switches are invoked
by the kernel-level process scheduler and may be invoked by a user-level thread scheduler. Partialy
composed outgoing messages and any incomplete incoming message are the most significant pieces of
state.

At the sending side, the outgoi ng message window can be saved and restored at any time because the
| aunch operation atomicaly commits the outgoing message to the network. Up until the time of the
launch, the CMMU registers used to compose messages can be unloaded and reloaded as necessary.
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At thereceiving side, theinput interface can be drained by using DM A to store theincoming message
to buffer memory and then the message can be handled at alater time, as described in section 4.3 below.
Our experience with Alewife suggeststhat the network input port is not likely to be context-switched by
a user-level thread scheduler because the user message handlers will ordinarily pull the message from
the network with user interrupts disabled. Extraordinary circumstances such as page faultsin the user
handler code or preemptive switches of the process by the kernel could leave the input interface filled.

Enforcing Sharing The user network is a resource common to multiple users and to the operating
system. User code cannot be trusted to share these resources, so mechanisms for forcing sharing are
required. We enforce sharing by providing a timeout whenever the user disables interrupts and by
providing a rudimentary second network to allow the operating system to recover when users fill the
primary network. These mechanisms solve two problems described bel ow.

Thefirst problem is to assure that user handlers on the receive side actually empty the network and
that the kernel can recover control from a user that fails to empty the network. We provide a timeout
counter that counts user-mode instructions whenever network input interrupts are disabled. The counter
is zeroed either automatically when the user disposes of a message or by user request when no input
message is waiting to be handled. A kernel trap isinvoked if the timer reaches a maximum count. The
timeout period is well defined to user code and timeout traps indicate errant user code. For messages
handled by interrupt, the timeout forces the message handler to dispose of the message within atimeout
period. For polling, the timeout forces the sum of the polling period and the handling time to be less
than the timeout period. It is possible to use a less strict timeout, such as the the timedlice interrupt, to
recover control from auser handler, but our specialized timer providestheimportant advantage of atight,
carefully checked bound on the timeout period. Asapractical point, closely timing every invocation of
the message handler (as opposed to sampling with aless strict timeout) finds user bugs more rapidly and
reliably.

The second problem isto control access to the network. Access control is difficultin general without
imposing flow control on user messages in hardware. There are two components to this problem.
One is that, with only user-enforced flow control, the user can flood the network with messages faster
than receivers can handle them, stealing network resources from other users and potentially requiring
unbounded amounts of buffer space at thereceiver. The other isthat there isno mechanism at the sending
node to prevent a user process from sending arbitrary messages to any destination node.

We address access control indirectly by using the rudimentary system network to alow the operating
system to sink messages indefinitely and to communicate with the sending node’s process schedul er, as
described in section 4.3 below. The existence of therudimentary system network enables FUGU to control
user access to the network by checking messages only at the receiving side and to guarantee buffering at
the receiving side without requiring dedicated physica memory. Since the second network is required
only infrequently, it requires | ess performance and thus |less hardware than the main, user network.

4.3 Message Buffering and Scheduling in Software

Figure 7 illustrates the possible actions at the a receiving node when a message arrives. In the best
case, (1), the message GID matches the running process and the message is handled directly by the
processor. In the second case, (2), if the GID is mismatched, the message is buffered by the kernel in
private memory. In the worst case, (3), when excessive buffering is required, the rudimentary network
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Figure 7: Message reception cases.

providesa channel to send amessage to the sender’s process scheduler and, if required, allowsthekernel
to swap virtual pages to provide more space for buffering.

The process scheduler is responsible for assuring that the best case is aso the most common case.
User codeis responsiblefor handling messages in atimely fashion and for providing flow contral for its
own messages. The other rare cases exist because neither the scheduler nor the user can be considered
completely reliable.

Buffering A receiving node must deal with messages that user code cannot handle immediately. In
FUGU, the kernel aways buffers such messages at the receiver so that the sender can consider a message
delivered when the | aunch operation commits the message to the network. Ideally, messages are
buffered in local physical memory at the receiver. Unfortunately, it is difficult to bound the amount
of buffer space required and we don’'t want to devote buffering resources to what we expect to be an
infrequent case.

The solutionisto buffer incoming messagesin the sending group’svirtual memory. Virtual memory
provides an effectively unbounded buffer for incoming messages. Ordinarily, buffered messages will
be placed in a loca page aready alocated or local pages freshly alocated from the virtual memory
manager’s free list. The virtual memory manager attempts to keep a supply of free frames available for
itsown use. By using virtual memory, FUGU provides buffering in local memory when required without
locking down or pre-negotiating physical memory on the receive side.

In the extraordinary event that free local page frames are exhausted and the user network is blocked,
the rudimentary system network provides a channel for paging. Applications that perform such a poor
job of flow control that they overflow the network onto backing storage are suffering from performance
bugs. The use of virtual memory allows a graceful degradation in performance that permits debugging
for correctness separately from debugging for performance.

Buffered messages must be eventually delivered to and handled by the user. An appropriate software
architecture provides an efficient solution. If user-level handlersare written with an abstraction that hides
the hardware message storage mechanism, a compiler can generate two sets of binary handler objects
from a single source code. One binary object processes messages directly from the network interface
and the other to reads messages from the buffer in memory. Any poll for incoming messages must check
both the network interface and the buffer. Messages diverted asynchronously while a user handler is
actually running are tolerated by having the protection trap that occurs on accesses to a disabled receive
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interface emul ate accesses to the interface.

Scheduling Fucu makes it possible to rely on the kernel scheduler and the rudimentary network to
provide a gross form of flow control for errant user processes. We identify events that indicate that
problems exist and we provide a channel (the system network) for propagating this information back to
the sending node’'s kernel. Direct control over the sending processis |eft to the scheduler on the sending
node.

First, the process scheduler may be used to throttle processes that flood the network with messages.
Suppose aprocessis performing apoor job of flow control and is requiring messagesto be buffered at the
receiver. The virtual memory system can advise the system scheduler of the excessive traffic. Suppose
an incoming message has to be buffered and requires a new free page. Further suppose the allocation of
anew free page causes the number of free pages on the node to sink below a low-water threshold. This
event is detected by the kernel and causes the kernel to advise the sending node, via the system-only
network, to deschedul e the sending process and thus throttle the excess traffic.

Second, note that there is no mechanism at the sending side to prevent a user process from launching
a message to an arbitrary destination. Detection of unexpected messages is provided by kernel code
at the receiving side. Suppose a runaway user process sends an inter-group message to a non-existent
process. The message will be delivered to the kernel at the receiving node. The kernel at the receiver
can inform the kernel at the sending side which then takes appropriate action, such as terminating the
sending user processidentified by the GID in the unexpected message.

5 Trandation and Protection for Messageswith DMA

Support for bulk transfer message is provided in FUGU by DMA facilities built on top of the basic
messaging interface.  FUGU incorporates two identical DMA engines, one for transmit and one for
receive on the user network. Asdescribed briefly in Section 2, the messaging model exportsthese DMA
facilitiesdirectly to the user. Such direct access is uncommon in most hardware platforms, where access
to DMA mechanismsisrestricted to I/O devicedrivers. Not surprisingly, the use of DMA in FUGU raises
several issues which must be considered for correct operation: First, the user’s notion of memory is
confined to virtual addresses. Asaresult, virtual addresses from the user must be translated to physical
addresses for the DMA hardware. Once this translation has occurred, the resulting physical addresses
must remain valid throughout the duration of the DMA operation.

Second, the use of DMA in conjunction with cache-coherent shared memory raises questions about
the level of memory coherence which can be expected from DMA-transferred data. Thisisthe DMA-
coherence problem introduced in [14].

Third, theuse of DMA implies someform of asynchronous notification mechanism to indicate to the
user that previously requested DMA operations have completed. Idedly, al three of the above issues
should be addressed in a way which does not compromise the efficiency of direct, user-level access to
the hardware. These issues are the topic of this section.
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Figure 8: Registers associated with a network output port. Identical interfaces are used for DMA at the
input.

5.1 Trandation for DM A

This section proposes amechanism for combining fast DMA (such asintheFuGU network interface) with
virtual memory. We handle the common case in hardware and trap to software otherwise. In particular,
we consider the common case to be:

¢ Source regions are mapped to pages that are loca to the processor on which output DMA is
initiated.

¢ Dedtination regions are mapped to pages that are local to the processor on which input DMA is
initiated.

If both of these criteria are satisfied, then translation and data transfer can occur directly in hardware.
In the common case, pages are implicitly locked during the DMA transfer and unlocked after the DMA
completes, with no intervention by the operating system. Should DMA be attempted to or from non-local
pages, the we employ software trap handlers to present to the user the illusionthat DMA has occurred in
asinglerequest.

Hardware support for DMA translation First, we would like to examine the method by which the
user describes and initiates DMA requests. Section 2 discussed the user’s view of a DMA mechanism.
This consisted of an array of descriptor registers which were written with starting and ending addresses
for DMA operations. Figure 8 shows a more extended view of the registers which participatein DMA
requests. Each user-visible descriptor register is shadowed by a register which is visible only to the
kernel. In fact, these shadow registers are part of a queue of descriptors which contain al previously
gueued but pending DMA operations.

To describe a DMA operation, the user stores virtual addresses into the user-visible descriptor
registers using the st desc instruction. The st desc instruction translates a virtual address using the
processor’'s TLB or page-fault handlers, then attemptsto simultaneously write the virtual addressinto the
requested descriptor register and the physical address into the corresponding shadow register.? During
the process of the write, the physical addressis examined to seeif it represents alocal physical address.
If so, the write simply finishes. If not, then the write is synchronously faulted; these “nonlocal” faults
pass control to specia trap handlers that handle the uncommon DMA cases.

5These two pieces of information are sent on the data bus and address bus respectively. Theregister is selected by adifferent
set of bits, such asthe SPARC ASlI bits

18



Virtual addresses in the user-visible descriptor registers are not used by the DMA hardware and are
discarded as soonasaDMA request iscommitted by | aunch or st or eback. Thevirtual addressesare
present so that user-level thread schedulers and interrupt handlers can gain access to the DM A descriptor
queue by saving and restoring the state of “in-progress’” DMA descriptions. In contrast, the queue of
physical addresses (which includesthose page frames which are part of on-going DMA descriptions) are
used by the DMA mechanism. Furthermore, this entire queue is visible to the operating system. A bit
mask is available to indicate which of the queue entries contain “live” physical addresses, namely those
which are part of pending DMA operations. Addresses which are visible in this way are considered
implicitly “locked”, as are the physical page frames they reference. Although we have not yet described
what it means for a frame to be locked, notice that the set of locked frames is updated dynamically as
DMA operations are queued and subsequently finished.

Output DM A operations Givethe above hardware, we can export auniform output DMA interface to
the user. We assume that the user performs higher-level synchronization around sections of code which
are sending data through DMA. In particular, data at the source of a DMA operation is assumed to be
constant throughout the DMA description and queuing process. Changes to source data which occur
during this process are not guaranteed to be reflected in the results of the DMA.

With these semantics, we can guarantee that an output DM A operation is unaffected by two things:
¢ Attemptsto send datawhich resides in pages on remote nodes.

¢ Pagemigrationsand other changesin virtual mappingswhich occur during the course of the DMA
description process and during the period in which DMA is queued.

Both of theseissues are handled in a straightforward manner.

First, we assume that the version of the st desc instruction which is used to describe output DMA
requires only read permission to addresses that it translates. Then, any attempt by the user to describe
DMA from aremote page isinterrupted by a“nonlocal” fault, as described above. Thetrap handler can
deal withanonlocal DMA request in several ways. We assumethat user programs use messages because
they know something about where data are located and thus that nonlocal faults are unusual events. As
aresult, we usethe simplest meansto recover from anonlocal fault: the trap handler sends a messageto
the node with the data requesting that a read copy of the page be migrated to the local node. The DMA
proceeds after the pagereturns and TLB entries are updated to reflect its new location. Notethat because
message launches are atomic, system software is free to temporarily unload and then later restore the
partialy constructed message output queue in order to schedule another process or thread whilewaiting
for the page fault.

Second, for correct DMA behavior in the face of changes in virtual address mappings, we simply
guarantee that page frames which are actively queued by the DMA interface (i.e. “locked”) are not
reused until after the DMA interface has finished with them. This guarantee is sufficient, since we have
asserted that output data must not change during the description and queuing process. To accomplish
this feat, we maintain two free frame lists: one which isused for freshly freed frames, and one which is
used during page allocations. When necessary, frames are moved from the first free list to the second by
verifying that they are not locked in any output DMA queue.

Input DMA operations Similar to the output side of DMA, we wish to guarantee that an input DMA
operation is unaffected by three things:
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¢ Attemptsto receive datainto buffers which are marked read-only because they are read-shared by
multiple nodes.

¢ Attemptsto receive datainto buffers which reside on remote nodes or backing store.

¢ Page migrations and other changes in virtual mappings.

Assume that the version of the st desc instruction which is used to describe input DMA requires
write permission to the addresses that it translates. This check for write permission permits the first
situation to be flagged by the page-fault handler. Then, the first and second situations may be handled
in similar ways: a fresh frame is allocated off the free list. The st desc instruction is emulated by
writing the new physical address directly into the shadow registers. Later, when the DMA operations
have completed, we request write copies of the real pages; when they arrive, we merge the new datawith
the old, thereby logically completing the input DMA operation.

Finally, to prevent page migrations from affecting input DMA operations, we check each migration
reguest to seeif it is requesting a page which is mapped to a frame that is locked in some input DMA
queue. If so, we permit the migration, but schedule the (newly unmapped) local page frame for future
merging with data.

5.2 DMA and Cache Coherence

The use of DMA in a cache-coherent shared memory multiprocessor raises the specter of DMA coher-
ence [14]. The most genera possible DMA coherence model isthat of global coherence, in which data
in both the source and destination blocks of memory are fully coherent with respect to al processors. A
somewhat restricted DMA coherence model isthat of local coherence, which guarantees that data at the
source and destination are fully coherent with respect to local processors; this means that, if necessary,
datawill be retrieved from the cache at the source, and invalidated from the cache at the destination.

Local coherence is easier and more desirable to support in hardware for a number of reasons [14].
Furthermore, many uses of messagesinvolve separate message bufferswhich are reserved exclusively for
message traffic [13]. Thus, we propose to support locally-coherent DMA in hardware and to synthesize
global coherence with software only when required, just asin Alewife.

Block cleaning However, we also wish to support general paging, including page migration. Further,
we wish to support explicit rearrangement of shared data by the user. Both of these applications require
some form of global DMA coherence. Consequently, to assist in the synthesis of globa coherence, we
postul ate the existence of a“block cleaning mechanism” which could:

¢ Perform acollect operation before initiating output DMA, by scanning through directories in the
source block of memory and invalidating those with outstanding dirty cached copies.

¢ Performablockinvalidateoperation beforeinitiatinganinput DMA, by invalidating all outstanding
read and write copies.

In both cases, we want some form of notification when the cleaning operations have completed.
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Hardware support for block cleaning It isan open question asto whether hardware support is needed
for block cleaning, or whether software access to hardware coherence directoriesis sufficient. Thisisa
guestion that we plan to explore.

In brief, however, we would like to note that both of these operations, collect and block invalidate,
could be accel erated in hardware through the user network output interface. Such cleaning requestswould
be constructed in the output descriptor queue and queued like norma messages, with the exception of a
specia “cleaning” header. The blocks of memory to be cleaned would specified by the DMA portions
of the cleaning request. When processing a cleaning request, the output DMA mechanism would simply
scan through each of the specified cache-coherence directories, searching for directories which are not
sufficiently “clean” and sending invalidations accordingly. Synchronization for the cleaning operation
could then be provided by setting a specia cleaning synchronize bit in each directory that has been
invalidated, retaining a count of the number of directories which were cleaned, and decrementing this
count as acknowledgments return.

5.3 DMA and Notification

Thelast of thethreeissuesthat weidentified aboveisthat of notifying the user that DM A operations have
completed. We make use of hardware-generated transaction identifiers for this purpose. Conceptually,
we have two counters, called t r ans- head and trans-t ai | associated with each DMA interface.
Thet r ans- head register contains the transaction identifier for the next request to be queued; this
counter isincremented with each new DMA request. Thet rans-t ai | register holds the transaction
identifier for the DMA operation which is currently in progress; this counter is incremented whenever a
DMA request compl etes.

To handle the fact that input DMA operations are not complete from the user’s standpoint until
after outstanding merge operations have finished, we export a virtua tail pointer to the user, called
theuser-trans-tail. Under normal circumstances, thisregister ssimply tracksthet r ans-t ai |
register. On rare circumstances in which data from an input DMA must be merged with remote data,
the page-fault handler can freeze the user-trans-tail a a maximum value by writing to the
frozen-tail register.

With the above mechanism, theuser can poll for the compl etion of aparticular DM A operation by sav-
ingthetransactionidentifier at thetimethat therequestisqueued andwatchingtheuser -t rans-tai | .
To support DMA completion interrupts, we provideani nt -t r ans- i d register, which is set with the
current transaction identifier whenever a DMA operation is queued with a request for interrupt. An
interrupt is posted when theuser - trans-tai | exceedsthisvaue.

5.4 Protection for DMA

Long messages make use the same delivery mechanisms and thus the same protection mechanisms as
short messages to provide isolation between process groups. Memory accesses by DMA are protected
by memory mapping in the same manner as ordinary memory accesses. The frame locking technique
preserves the protection provided by memory mapping. Specificaly, if a process initiates a read from
(or write to) a page with DMA and then unmaps it, no other process can map and then erroneously or
maliciously write over (or read from) the page because the frame is locked until the DMA operation
completes.

21



6 TheFuGu Experimental Platform

FUuGU is an experimental architecture and provides a framework for exploring issues in multiuser mul-
tiprocessing. FUGU heavily leverages software and hardware from the Alewife machine. Most of the
functionality of FUGU described in this paper can be achieved by augmenting Alewife nodes with a
single-chip user-level communication unit, or UCU. Work on adetailed simulator based on the Alewife
binary-compatible simulator isin progress.

We intend to leverage Alewife hardware to build a prototype that we will use as a near-red-time
emulator of arFuGU system. Experiments performed on the prototypewill be used to calibrate and verify
the results obtained from the FUGU simulator.

Most of the functionality of FUGU can be implemented by adding a TLB, a rudimentary network,
and protection checking hardware to an Alewife processor node. Because we are building on top of
the existing Alewife system rather than building from scratch, some protection features that would be
straightforward to implement from scratch are difficult to provide in this prototype. Rather than add
complication to this implementation to make the protection complete, we will rely, for demonstration
purposes, on atrusted compiler and runtime system for some protection checks.

This section describes the hardware mechanisms we will actually implement and how they differ
from the architecture described in the first part of the paper.

6.1 TheUser-Level Communications Unit

The hardware mechanisms will be implemented in a single-chip UCU. The chip will be implemented
initially in an FPGA (Xilinx 4025). Figures 9 and 10 show abasic Alewife node and a FUGU node which
is an Alewife node augmented with the UCU and the rudimentary network. The UCU implements:

1. A coherent TLB.
2. Protection checks on incoming user-level messages.
3. Therudimentary second network.

4. Trandation for bulk transfer messages.

The UCU and kernel, in conjunction with compiler and runtime software, support most of the
mechanismsfor translation and protection described in Sections 3, 4 and 5. The UCU featuresto support
tranglation and protection for shared memory, short messages and bulk transfer messages are described
below.

1. Trangdlation and protection for shared memory are provided by a virtual memory system built
around the TLB implemented in the UCU. The TLB coherence mechanism proposed for FUGU can
be completely implemented with thisTLB.

2. Trandlation for short messagesis via compiler, as proposed earlier. Protection for short messages
relies on atrusted compiler for two phases of message transfer. First, the compiler is required to
stamp the GID on messages asthey are sent. Second, at the receive side, the compiler will provide
message handling code that either does not time out or that sets up atimeout counter.
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The GID on amessagesistested in hardware by the UCU at the receiver. We will aso experiment
with GID testing by low-level kernel code. The UCU protection hardware can be eliminated if the
performance is acceptable. The FPGA implementation of the UCU will allow us to change such
hardware details.

The second, rudimentary network is used chiefly to throttle incoming messages. The kernel
achieves this throttling by sending a control message to the kernel running on the sending node.
In extreme cases, the kernel can use the rudimentary network to page out buffered messages. The
UCU will include the hardware to implement the second network, as shown in Figure 10.

3. Trandationfor bulk transfersis provided by a combination of atrusted compiler and the UCU. For
space reasons, the number of blocksthat can be launched will be limited to two, each of which can
not cross a page boundary. User code will probe the UCU for address trand ations and then copy
theresulting physical addressesto the CMMU’s DMA queue. The UCU will storethe virtual page
numbers used in case the DMA queue needs to be transparently unloaded and reloaded. We will
also investigate providing the reloadabl e queue using only software.

Finally, since the DMA physica address descriptors are not al available, the page frame recycler
will have to operate by unloading any message currently under construction and waiting for any
pending DMA operations.

6.2 Differencesfrom the Fucu Architecture

The FuGu prototype hardware described above will allow most of the functionality described earlier,
but requires that some protection checks be provided by software and requires extra overhead for some
operations. The protection checks would be built into hardware in straightforward waysin a production
system. We believe that the various extra overheads will not qualitatively impact our results. The
differences between the hardware prototype and the FUGU architecture are summarized below.

¢ In the experimenta version of FUGU, protection on messages includes a GID stamp added by a
trusted compiler to al outgoing messages at a cost of potentially one extra cycle per message send.

¢ The stamped GID must be tested each time a message is received. When the GID check is done
by the UCU, no extra cycles are incurred on message receives. If donein software, however, short
message receives would cost an extra test and branch (at least 2 extra cycles).

¢ Message reception via polling either must use code guaranteed by the compiler not to time out or
must explicitly maintain a timeout counter.

¢ We enforce the restriction that DMA launches and storebacks cannot cross page boundaries,
because implementing a hardware mechanism that provides a notification when this happens
requires modifying the CMMU chip.

¢ Thepageframerecycler must wait for pending DMA operationsinstead of just checking descriptors
inthe CMMU.

o User-notification for DMA doesn’t work exactly as described in Section 5. Our implementation
will interrupt the processor even if the running process has a different GID, and the UCU or
low-level kernel code will perform the protection check.
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¢ Bulk message sends will cost severa cycles more per descriptor in our implementation that in a
completely optimized version, because trandlation is performed by software probes of the TLB.

7 Reated Work

The FUGU effort attempts to demonstrate a scalable multiprocessor which supports multimodel and
multiuser operation. It focuses on hardware and software mechanisms for protection and translation
in scal able multiprocessors that provide user-level messaging and coherent shared memory. The FUGU
effort relates to other research projects as follows.

Alewife[1] isasingle-user, multimodel multiprocessor. It hasuser-level message handling integrated
with coherent shared memory. It supports both short messages and bulk transfer (DMA) messages, with
a unified packet interface. Bulk transfer messages require the receiving processor to determine the
destination of the data. FUGU extends Alewife features for multiuser operation and uses an exokernel
operating system. In FUGU, bulk transfers require translation at the receiving processor, but do not
pre-negotiate for pages.

FLAsH [15, 10] is a multimodel machine with a microcoded, kernel-level coprocessor for message
handlingincluding shared-memory protocol messages. Bulk transfersinFLASH areintheform of remote-
writes which avoid using the receiving processor, but require pre-negotiating the sending addresses in
shared memory. For instance, there is no notion of bulk transfer between purely private memories.
They useimplicitlocking on DMA operations similar to FUGU, but |oad the message send operation and
TLB coherence agorithm with the overhead of marking and checking for pages in use in the MAGIC
chip and introduce deadlock by locking pages instead of frames. FLASH uses two networks but for a
different reason than FUGU. FLASH uses two networks for request and reply packets to avoid deadlock.
Packets can be sorted into request and reply networks because the message protocols are controlled by
thekernel-level coprocessor. FUGU mostly uses one network with mixed kernel and user traffic, but relies
on a cost-effective, rudimentary network to avoid deadl ock.

Typhoon [21] offers user-level message handling and user-level cache coherence using a second
processor dedicated to the network interface. The second processor lengthens the message latency inthe
best-case situation, although it provides concurrency in most other situations. Typhoon provides network
protection by context-switching the network in the manner of the CM-5 [17]. Context-switching the
network failsto support a client-server model of interprocess communication.

The* T [18] processor usesamemory coprocessor model aswell. * T doesnot include DMA facilities
or coherent caches and thus does not address the interaction of these features with messaging. A recent
*T paper [20] has independently proposed protection mechanisms similar to FUGU’s for short messages
and makes the same assumptions about separating performance from correctness in scheduling. Our
focus is on developing a minimal set of mechanisms that are sufficient for user-level message handling
and protection, while* T proposes aricher set of features. For instance, * T demultiplexes messagesinto
several receive queues, and the receive queues are implemented as a part of the processor register set.

SHRIMP [5] and Hamlyn [27] propose remote writes for protected user communication between
pre-negotiated and pre-locked pages.

Recent work on parallel processing on networks of workstations seeks to identify mechanisms to
accelerate communication while retaining protection. Work by Thekkath and others at the University
of Washington [25] advocates remote memory access to pre-negotiated buffers as a mechanism to
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accel erate communication while retaining protection. Similarly, Hybrid Deposit [19] proposes hardware
to interpret messages as operations on pre-negotiated buffer areas. FUGU’s approach isto add protection
while maintai ning existing, well-defined user-level communi cation mechanismsand efficient, distributed
shared memory.

The J-machine multicomputer [9] provides two levels of network priorities, user-level access to
the network hardware and the ability to relaunch incoming messages from memory transparently. The
J-machineis a single-user machine with no support for shared memory or DMA on messages.

The CM-5 multicomputer provides multiuser multiprocessing by rigidly partitioning its network and
context switching entire partitions[17]. It does not support shared memory.

8 Conclusion

M ultiprocessors which integrate hardware support for message passing and shared memory are of great
interest because they combine the best of two worlds: the efficiency of message passing, when commu-
nications patterns can be statically determined, and the flexibility and convenience of shared memory
for fine-grained and dynamic computations. Providing translation and protection mechanisms required
to make such multiprocessors suitable for genera -purpose use without compromising performance is a
challenge.

This paper has proposed a multiprocessor architecture which integrates translation and protection
with cache-coherent shared memory, user-level message passing and user-level DMA on messages.
We have described techniques that retain direct, user-level access to the underlying communications
network and hardware DMA mechanisms without compromising the integrity of the machine as a
whole. Architectures such as FUGU bring us one step closer to the vision of scalable multiprocessors as
genera -purpose, multiuser machines.
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Instruction Description

[dio CWU-Rs, Rd Load from CMMU register.

stio Rs, CWMJ Rd Storeto CMMU register, including output queue.

st desc Ra, R, CVWJDd Store to CMMU output queue.

[ aunch(i) Rd Launch packet; this Idio returns the head pointer for
the DMA channdl.

storeback(i) Skip, Rd Discard/storeback input packet; Idio returns head
pointer.

uei Enable user traps.

udi Disable user traps.

Table 3. Network instructions and operations

Appendix A

The basic architecture for FUGU was shown in Figure 1 and places the network interface outside the
main processor on the second-level cache bus. The CMMU is accessed using alternate-space loads and
stores that bypass the on-chip cache. Operationsthat communicate with the CMMU arelistedin Table 3
and CMMU registers are depicted in Figure 11. Events reported by the CMMU to the processor are
tabulated in Table 4.

Several features not described in the body of the text are included here for completeness. The
space- avai | abl e register contains the count of doublewords available for writing in a network
output queue. A space-available event is constructed from this count by adding a space- r equest
count and signaling an event when there are more than space- r equest doublewords available. The
user-software-trap event is intended to signal that network messages have been diverted to a memory
buffer. An efficient message send/receive loop can be constructed by polling space-request, user-
networ k-input and user-software-trap simultaneously.
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User-visible registers Kernel-only registers

Visible

Output :Snern_alt
DMA interface, Registers escriptor
replicated twice: (virtual) - Queues

(physical)
1. User output
2. User storeback Desc len/
u

desc bitv ARRNRNN ) — [Im D-queue bitv

trans—head i
ser-trans—tail E I trans—tai
int-trans—id frozen—tail

(for storeback)

: space-available
Output interface { space-required E

timeout/network
m%mlork E ‘sovf. control
. Window 0 input—enable
Input interface

window len  ————

User trap/polling

control user-trap—enable O — GID

user—trap—mask I M trap—mask
user—trap—pending I M trap—pending

Figure 11: CMMU registers.

Trap Event that it signals
user-networ k-input Incoming message on the user network input port with a matching GID.
user-space-available | Morethan space- r equest wordsavailable at the user network output port.
user-DMA-done user-trans-tail =int-trans-id for the user DMA channels. One

each for input and output.
user-software-trap Trap intended to signal input data available in a memory buffer.

mismatch-input Incoming user message with a mismatched GID or system header on the user
input port.

networ k-ti meout User network input queue stalled morethant i neout - count cycles.

DMA-done trans-tail =int-trans-id for each DMA channel. One per DMA
channel for atotal of four.

TLB-refill-fault TLB miss.

nonlocal -fault st desc instruction referencing remote memory.

protection-fault Reference to a protected page.

Table 4: Events associated the communication mechanismsin FUGu. Thefirst four types correspond to
the user traps.
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