
FUGU: Implementing Translation and Protection
in a Multiuser, Multimodel Multiprocessor

Kenneth Mackenzie, John Kubiatowicz,
Anant Agarwal and Frans Kaashoek�

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

October 24, 1994

Abstract

Multimodel multiprocessors provide both shared memory and message passing primitives to the
user for efficient communication. In a multiuser machine, translation permits machine resources to be
virtualized and protection permits users to be isolated. The challenge in a multiuser multiprocessor is
to provide translation and protection sufficient for general-purpose computing without compromising
communication performance, particularly the performance of communication between parallel threads
belonging to the same computation. FUGU is a proposed architecture that integrates translation and
protection with a set of communication mechanisms originally designed for high performance on a
single-user, physically-addressed, large-scale, multimodel multiprocessor.

Communication in FUGU is based on the mechanisms of the Alewife machine [1]. The mechanisms
are shared memory with hardware cache coherence, user-level message sends and receives, and a
user-controlledDMA facility integrated with messages for bulk transfers. This paper presents a design
that integrates translation and protection with these communication mechanisms. Three components
of the design are novel. First, we propose maintaining TLB coherence as a side-effect of cache
coherence on page table entries. Second, we describe how to permit user-launched and user-handled
messages without dedicating physical memory for buffering at the sender or at the receiver. We
propose to use a rudimentary, second, system-only network to avoid deadlock of the user-accessible
network. Third, we show how to integrate user DMA with virtual memory to permit bulk transfers
without prenegotiation and global locking of physical memory.

�This research has been funded in part by NSF grant # MIP-9012773, in part by DARPA contract # N00014-91-J-1698, and
in part by a NSF Presidential Young Investigator Award.

1

1 Introduction

Recent parallel processors unify support for two models of processing by providing support for shared
addressing of data and for message passing. This class of “multimodel” machines is of great interest
because it combines the best of two worlds: the efficiency of message passing, for bulk data transfer
and for combining data with synchronization, and the flexibility and convenience of shared memory for
fine-grained and dynamic computations [13]. Multiprocessors, for example Alewife [1], achieve good
performance by providing direct access to the underlying hardware. Shared-memory machines initiate
communication with ordinary, user-level load and store instructions. User-level messaging interfaces
permit user-level code to launch and to handle messages by directly manipulating the network interface
hardware.

A multiuser multiprocessor requires protection checks on accesses to hardware resources, e.g. ac-
cesses to memory or to incoming messages, in order to isolate users. Translation on all accesses permits
providing the user with the convenient illusion of a virtual machine. Adding translation and protection
without compromising performance is a challenge. The goal of FUGU is to include hardware and soft-
ware mechanisms for translation and protection that support general-purpose, multiuser computing on
large-scale, multimodel multiprocessors while providing parallel application performance equivalent to
running on dedicated, single-user hardware.

1.1 The Problem

The problem of translation and protection for shared memory accesses can be solved using a relatively
straightforward application of standard virtual memory. One new problem is that of keeping the trans-
lations coherent in a scalable way. Protection for user-level messaging and translation for messages that
access memory is less clear. Current solutions for user-level messages fall into three categories, none of
which is entirely satisfactory because of the impact on performance:

1. User-initiated message sends can be permitted to globally named, pre-negotiated areas of physical
memory at the receiver, for instance as remote-write operations. Translation and protection are
handled in analogy to virtual memory. SHRIMP [5] and bulk transfers in FLASH [15, 10] use
remote-write.

2. User-level access to the network hardware can be preserved if the machine is rigidly partitioned
and all hardware in the partition, including the network, is context switched. The CM-5 adopts
this solution [17].

3. User-initiated transfers between memories can use explicit acknowledgements to manage sender-
side buffer space for each message. Software protocols such as IP typically use this approach.
FLASH general messages and FUNet [11] provide the acknowledgements in hardware.

1.2 FUGU Overview

FUGU provides hardware support for three communication mechanisms. A coherent shared memory
system communicates implicitly via messages synthesized and interpreted by hardware. A user-level
messaging facility allows user-code to send messages to and handle messages from the network directly
with no buffering. Finally, a direct memory access (DMA) facility is built on top of the basic messaging

2

Mechanism Translation Protection
Shared memory Memory mapping. Memory mapping,

TLB coherence via PTE coherence. page-level protection.
Short messages (compiler-generated only) GID-stamped messages.

Receive handler timeout.
Rudimentary second network.

Messages w/DMA Uses the processor’s TLB. (same as short messages)
Implicit frame-locking,
checked by the page cleaner

Table 1: Translation and protection for each communication mechanism.

facility to permit efficient bulk transfers. We propose to provide translation and protection for each of
these communication mechanisms using the techniques summarized in Table 1.

Shared memory Translation and protection for shared memory is provided by memory mapping via
a single translation-lookaside buffer (TLB) per node placed at the processor. Placing the TLBs at the
processor requires that the page table entries (PTEs) cached in the TLBs be kept consistent. We propose
to implement TLB consistency as a side effect of data cache coherence on the PTEs stored in shared
memory. FUGU cache coherence is directory-based and uses invalidation. The only required change to
support TLB consistency is to provide an alternate, software invalidation action for memory lines that
store PTEs. The alternate action invalidates the PTE cached in the TLB as well as in the main cache.

Short messages Translation and protection for messages is handled as follows. Translation of node
names for messages is performed by the compiler or user-level runtime system. That is, if translation is
required, the runtime system takes a virtual node number and looks up the physical node number for each
message sent. Protection for user messages is enabled by adding an unforgeable process group identifier
(GID) to all messages and providing two-way demultiplexing in hardware at the receiver. Messages
intended for the currently running process at a receiver are handled at full speed while messages with
non-matching GIDs are diverted to the kernel. A timeout on message handlers protects the machine
from errant message handling code. A second, system-only, logical network allows kernel software to
deal with errant user code that floods the network by providing a channel for communicating scheduling
information and, in extreme situations, for paging. Importantly, the second network need only be
rudimentary in construction and performance because it is rarely used.

Bulk transfer messages DMA for messages interacts heavily with the virtual memory system. Trans-
lation for the DMA facility is provided by the processor’s TLB. Blocks of memory in use for DMA
are implicitly locked in memory without prenegotiation and without adding overhead to the messaging
operations. Notably, our scheme locks physical frames, an operation local to a node, rather than virtual
pages visible across the machine. Fast receive operations without prenegotiated receive buffers are made
possible by taking advantage of the explicit coherence semantics of DMA writes: the user cannot expect
to read good data until the DMA operation reports completion so blocks directed to a missing virtual
page can be quickly written to a freshly allocated physical page and then reconciled after the write but

3

before they are made available to the user. Protection for messages with DMA is based on GID checks,
the same as for short messages without DMA.

This paper makes three contributions by proposing three techniques for integrating translation and
protection with an efficient set of multiprocessor communication mechanisms. First, we propose main-
taining TLB coherence as a side-effect of PTE coherence. Second, we describe how to permit user
messages without dedicating physical memory for buffering at the sender or at the receiver. Third, we
show how to integrate user DMA with virtual memory to permit bulk transfers without prenegotiation
and global locking of physical memory.

Section 2 summarizes our assumptions and the programmer’s model for the system. Sections 3, 4
and 5 form the core of the paper, describing how to provide translation and protection for shared memory,
for short messages and for long messages with DMA, respectively. Shared memory is described first
because the other systems interact closely with virtual memory. Section 6 describes the hardware we
propose to construct to evaluate FUGU. Section 7 describes related work and Section 8 concludes.

2 Programmer’s Model

This paper is chiefly concerned with two low-level abstractions and the mechanisms that connect them.
The first abstraction is the user-level instruction set architecture as seen by the compiler back-end and
the user-level part of the runtime system. The second abstraction is the raw, kernel-level instruction set
architecture of the machine. This section describes the user-level abstraction we want to achieve and the
rest of the paper describes the kernel-level hardware and runtime techniques used to implement it. The
term user-level in this context refers to the protection domain. An application programmer generally will
not write programs at this level of abstraction but will instead use higher-level abstractions provided by
the compiler and runtime system [12].

The Alewife machine serves as our prototype of a single-user, multimodel multiprocessor [1, 14].
The machine consists of identical processing nodes connected via a message-passing network. FUGU

(Figure 1) is arranged similarly, although with a second logical network. The Communications and Mem-
ory Management Unit (CMMU) serves to implement shared memory and serves as the network interface
for message passing. Communication between the processor and the CMMU is both implicit, via loads
and stores that the CMMU intercepts to implement shared memory, and explicit, via memory-mapped
registers. The CMMU resides as close as possible to the main processor, in this case on the processor’s
external cache bus. FUGU also includes hardware facilities to provide translation and protection for user
communications. These facilities are referred to collectively as the User Communication Unit (UCU),
although they are in fact integrated with either the processor or the CMMU. For instance, the UCU
includes the processor’s TLB.

2.1 Communication Models

FUGU, similar to Alewife, exports three basic communication mechanisms to user level code: a coher-
ent shared memory, a messaging interface efficient for short, processor-to-processor messages and a
DMA facility integrated with the basic message interface for long, memory-to-memory messages. This
subsection describes the user-level view of each communication mechanism.

4

 User
Network

Rudimentary
Network

Cache CMMU
Main
Memory

Processor
(L1 cache)

TLB

UCU

Figure 1: A FUGU node. The Communications and Memory Management Unit (CMMU) resides on the
processor’s external cache bus. The Translation Lookaside Buffer (TLB) is integrated with the processor.
The User Communication Unit (UCU) refers to the set of hardware features that provide translation and
protection for the hardware communication facilities.

Shared memory Shared memory communication operations are initiated implicitly in response to
ordinary load/store operations. Each application has its own, private address space. Addressing is
processor-independent across the processors executing an application. This addressing model is the
usual shared-memory model. With virtual memory, processor-independent addressing implies that the
logical translations for shared pages must be the same on all nodes.

Although the shared memory is accessed uniformly across all processors, it is non-uniform in
implementation. Consequently, programmers have two underlying sharing mechanisms to be aware of:
First, fine-grain (cache block size) renaming of locations for locality is provided by the caches. Second,
coarse-grain (page size) renaming is provided by the virtual memory system. There is thus an opportunity
for the programmer (i.e., the compiler and user runtime system) to optimize for locality by advising the
kernel of a preferred static placement of pages and by choosing the partitioning of data within these
pages. Alternatively, locality management can be left entirely to the caching hardware and the page
migration software.

Short messages Messages are initiated and handled by explicitly communicating with the CMMU.
The CMMU component appears as a set of memory mapped registers on the processor’s external cache
bus. CMMU registers are read and written with colored load and store instructions1, ldio and stio,
which are presumed to bypass internal processor caches and proceed at the speed of the external cache.
Details of the interface to the FUGU CMMU are collected in Appendix A.

The message send interface consists of 16 CMMU registers that serve as a window into the network
output queue and a launch operation. An outgoing message is composed in the window and then
launch atomically commits the message to the network. The first word of the message is distinguished

1Such as provided by the SPARCLE processor [2] and the general SPARC architecture.

5

as the header and is interpreted by the hardware for routing. A minimal message can be launched from
processor registers with three instructions:

stio rheader, cmmu-output-registers[0]
stio rvalue, cmmu-output-registers[1]
launch

At the receive side, the processor is notified of the arrival of a packet either via polling or via
interrupts, at the option of the user code. An incoming message appears in a complementary set of 16
CMMU registers forming a window into the network input queue. The processor uses the window to
examine the incoming packet. A storeback operation disposes of packets after they have been read.
Note that the receive interface is particularly raw: no buffering is provided beyond the CMMU’s internal
queues. Incoming messages block the network input port and potentially the network itself until they are
examined and disposed of.

Bulk transfer messages Long messages with DMA are initiated using the same network interface as
used for short messages. The difference is that descriptors for regions of memory (begin/end address
pairs) are written into the outgoing window instead of values. Descriptors are distinguished from values
by using another colored store instruction, stdesc. Single blocks are restricted to one page in size for
reasons explained in Section 5. A block of memory could be included in a message as follows:

stio rheader, cmmu-output-registers[0]
stio rvalue, cmmu-output-registers[1]
stdesc rbegin, cmmu-output-registers[2]
stdesc rend, cmmu-output-registers[3]
launch

At the receive side, a handler can invoke DMA to dispose of a message by writing descriptors for
the destination blocks of memory into a third set of CMMU registers before invoking the storeback
operation. The DMA interface is examined in detail in Section 5.

2.2 Scheduling Assumptions

We will call the basic unit of computation a thread. Each thread resides in a protected address space
and has its own stack and program counter. A process is a collection of threads executing in the same
address space on a single processor. Finally, a group is a collection of processes coherently sharing the
same address space across several processors. Threads are scheduled by a user-level thread scheduler
and processes and groups by a kernel-level process scheduler.

We expect multiprocessors to be used to run multiple groups simultaneously, as in Figure 2. Although
communication may occur between groups, as in a client-server relationship, we assume that most
communication occurs between threads of the same group. This assumption has two consequences.
First, although we provide a means for general, inter-group messaging, we will optimize for efficient
message transmission between threads in the same group (and protection domain). Second, we will
assume that the process scheduler loosely gang-schedules processes within a group. Note that this

6

Figure 2: Two process groups scheduled together on separate nodes of the same multiprocessor.

latter stipulation is merely for performance reasons; we do not advocate enforced space sharing or hard-
partitioning of the machine and gang-scheduling of partitions. Scheduling processes together appears to
be desirable in general for multiprocessing [3, 26, 7].

2.3 Protection Model

User process groups should act as if they are running on a private, virtual multiprocessor. Multiple
groups can be multiplexed on the hardware without interference, except in terms of performance. The
protection model as viewed by the user can be summed up as follows:

1. Groups are isolated from each other in separate address spaces.

2. Groups appear to have a private network for intra-group messages.

3. Inter-group messages can be reliably identified by the receiver.

In addition, there is an implicit assumption about protecting the system and other users from errant
user code:

� User bugs may affect performance but do not compromise the integrity of the machine.

In particular, we do not attempt to provide fair access to the network in hardware. We guarantee
forward progress to the process scheduler which in turn is expected to guarantee forward progress to
user processes. The assumption here is that in a general-purpose machine it is sufficient for a severely
misbehaving application to be detected and controlled by administrative means.

2.4 Fault Model

We currently assume that all components are reliable. The network delivers all packets correctly. The
nodes all share the same environment and administrative control, i.e., nodes are not shut down or altered
independently and network packets cannot be generated or read by an adversary. This model is adequate
for a large-scale multiprocessor as the environment it is in is generally less hostile than the environment
for a network of workstations.

7

3 Translation and Protection for Shared Memory

This section describes our implementation of translation and protection for shared memory, in other
words virtual memory. First, we show that the general translation scheme is justified. Next, the hardware
and software structures for storing translations are explained. The page tables are arranged so that purely
local operations can be separated from operations which might require communication with other nodes.
Third, we show how to piggyback translation coherence on basic cache coherence provided there exist
hooks from the coherence hardware to software.

3.1 Translation at the Processor

In FUGU, translation conceptually takes place at the processor as it emits an address. Translation at the
processor means two things. First, translation at the processor is a memory model issue. Translating
addresses immediately permits complete flexibility to map pages to arbitrary locations in the machine.
Memory mapping provides a form of physical transparency by isolating the user software from the size
and layout of physical memory in the machine. In addition, memory mapping enables the operating
system to provide coarse-grain shared memory via static page distribution and dynamic page migration.
We expect the operating system to make use of these coarse-grain sharing techniques to complement
the fine-grain sharing provided by the native coherent caches. Various groups have experimented with
tradeoffs between multiple shared memory mechanisms and found page-grain sharing beneficial on
shared-memory machines without caching [22, 16, 7].

Second, translation at the processor is an implementation issue that provides a simplification and
a complication. The simplification is that performing all translation at the processor permits the rest
of the memory system, including the hardware shared memory system, to operate in terms of physical
addresses. No translation information needs to be recognized or managed by the hardware in the memory
system beyond the TLB. Virtual pages that are shared are mapped to physical frames of shared memory
managed by the hardware. The cache coherence directories are associated with these physical frames
so the frames must be localized (“cleaned”) before a page can be swapped out.2 The complication is
that translation at the processor accelerated by a TLB introduces a coherence problem since translations
cached in the TLBs must be kept consistent.

3.2 Translation Structures

Translation on memory references is performed using paged memory mapping, i.e., by referencing a page
table by virtual page number to find the physical page number for each memory access. The lookup is
accelerated by a TLB at the processor, as usual, so that in the common case no actual memory reference
is required to perform the translation. In addition, in a multiprocessor, it is occasionally important
to resolve references to local pages that miss in the TLB without incurring any potentially expensive
references to global memory. For instance, in FUGU, the DMA mechanism, described in Section 5, takes
different actions depending on whether a page is local or remote and needs to make the determination as
quickly as possible.

2Note that translation at the processor does not necessarily restrict the system to using physically-indexed caches. For
instance, virtually-indexed caches with physical tags may be supported by recording the active cache page number in the
coherence directory associated with each memory line and permitting only one cache page per memory line to be active at a
time.

8

Virtual
Memory
Access

Physical
Memory
Access

Reload TLB
(and possibly LPT)

Reload TLB

LPT
hit?

y

n

GPT
hit?

y

n

TLB
hit? n

y

NOT
IN LOCAL
MEMORY

NOT
IN ANY
MEMORY

Figure 3: Address translation procedure.

FUGU uses a variation of the page table layout used by Cox and Fowler for PLATINUM [8]. The
page tables are split into local page tables (LPTs), stored inverted in the private, physical memory of
each processor, and a global page table (GPT), stored in distributed, shared memory. All pages that are
physically resident on the node (whether private or shared) are listed in the LPT. The page translation
procedure proceeds as illustrated in Figure 3. Translations that miss in the TLB are looked up in the
LPT at the cost of a small number of references to local memory. Translations not found in the LPT
are looked up in the GPT and potentially require accesses to global memory.3 In essence, there are two
levels of page faults reported: not-in-local-memory and not-in-any-memory.

3.3 Translation Coherence via PTE Coherence

The problem of maintaining a coherent view of a global virtual address space across a multiprocessor
is generally called the TLB consistency problem [4, 23, 24]. Translations for global pages are read
from entries in the global page table (GPTEs). In FUGU, GPTEs may be stored in several places aside
from the processors’ TLBs, including the main caches and the LPTs. Given that GPTEs are cached in
multiple places, we want to unify the consistency mechanism for these entries for simplicity and in order
to minimize the number of messages required to maintain coherence. If the GPT is stored in coherent
global memory, then the machine already provides a coherence mechanism for GPTEs stored in the
main caches. We find it possible to selectively extend the cache coherence mechanism to maintain all
the translation information derived from the GPTEs and thus provide TLB coherence as a side effect of
GPTE coherence.

Fugu’s cache coherence mechanism, like Alewife, uses a directory-based invalidation protocol. A
directory is associated with each memory line listing all nodes with possible cached copies of the memory
line. When an operation that requires invalidation, such as a write, occurs, the memory side launches
invalidation messages to each listed node. Each cache that receives an invalidation removes the line, if
present from the cache and replies with an acknowledgement. In the common case, these messages are
generated and interpreted in hardware, as in Figure 4.

3Both LPT and GPT accesses are accelerated by the main cache. In addition, GPT accesses can be accelerated by caching
GPT entries in the LPT and explicitly managing the LPT as a cache.

9

INV

ACK
inv

cache

Cache
H/W

Memory
 H/W

Proc A Proc B

write to
normal line

Figure 4: Normal invalidation is performed by hardware. Node A has cached a read copy of a memory
line from Node B. When a write occurs, The hardware at Node B invalidates the read copy using messages
generated and interpreted by hardware.

ACK
inv

cache

Cache
H/W

Memory
 H/WALT−INV

TLB
inv

Proc BProc A

write to
marked line

Figure 5: Alternate invalidation is performed partly by software. Node A has cached a read copy of
a PTE from Node B. On a write to the PTE, Processor B is interrupted, allowing software to generate
an alternate invalidation message that Processor A interprets as an invalidation to both the TLB and the
cache.

10

Coherence for global page tables can be piggybacked on the cache coherence of the memory line
on which the GPTE resides by causing an alternate invalidation message and action to be used for that
line. The alternate invalidation message must cause any GPTE found in the TLB as well as the cache
to be invalidated. A simple hardware mechanism that permits alternate invalidations to be added to the
cache coherence protocol is a mode bit associated with each memory line that causes a trap to software
on the processor associated with the memory whenever a write is made to that memory line. Figure 5
illustrates the use of this mechanism when the mode bit is set for all GPTEs. The memory-side trap
handler then interprets the directory and sends alternate invalidation messages to the listed nodes. The
message handler at the cache side flushes the entry from the TLB and then proceeds with the cache flush,
responding to the memory side with an ordinary acknowledgement message.

Trapping to software at the memory side has been proposed for hybrid hardware/software imple-
mentations of cache coherence and for implementing special case coherence protocols [6]. Translation
coherence is a case of an alternate cache coherence protocol: the trap is used to send alternate invalidation
messages so that side effects may be added at the cache side. Note that hardware support for collecting
and handling read requests, collecting acknowledgement messages, etc., will all be reused to implement
the cache coherence.4

Directories for translation coherence have generally been kept explicitly in software. PLATINUM

maintains a directory for each GPTE. The standard “TLB shootdown” algorithm maintains one directory
for an entire page table [4, 23]. Maintaining directories at a grain finer than a page table is important to
scalability because it generally reduces the number of nodes that must receive invalidation messages for
any given invalidation. FUGU maintains a directory for several GPTEs together on a cache line. Lumping
GPTEs together introduces false sharing over a scheme that maintains GPTE directories individually, but
adds hardware support to accelerate directory maintenance. The actual performance of FUGU’s translation
coherence remains to be investigated.

3.4 Memory Protection

Protection on shared memory communication is provided by the usual memory mapping techniques.
Process groups are placed in different address spaces and individual pages may be marked inaccessible
or read-only. In terms of the taxonomy of protection mechanisms for communication discussed in
the introduction, protection by memory mapping amounts to permitting user-initiated communication
between pre-negotiated regions of physical memory.

4 Translation and Protection for Short Messages

Providing direct access to network interface hardware minimizes the costs of communication but increases
the effort required to multiplex users on the hardware. In addition, the exposure of the system to problems
caused by user bugs is greatly increased by permitting user access to hardware and by relying on the user
to handle hardware events. The protected user-level network interface is the core of the FUGU design.

Translation for short messages is minimal and is described briefly at the beginning of the section.
The remainder of the section describes protection for messages. Protected access to a user-level network
interface is a specific instance of a general problem of protected user-level access to any I/O device. We

4An alternative mechanism using more hardware could flag memory lines containing GPTEs to automatically send alternate
invalidation messages in hardware.

11

describe the mechanisms for exporting interrupts and polling to the user and then the mechanisms for
providing protected access to the network interface. Finally we discuss how system software uses the
hardware mechanisms to implement the protection model.

4.1 Translation of Node Names

Short messages are sent and received without references to memory, so translation on memory addresses
is irrelevant. However, full physical transparency for user code requires that node names be virtualized
as well as memory locations. In other words, some translation mechanism is required for the node
destination addresses written at the head of the packet. In FUGU, we currently leave this translation to
the compiler or runtime system. As a consequence, there is minimal control over where a user process
directs its messages. We apply protection only at the receiver to detect code that launches a message to
an inappropriate destination, as described at the end of this section.

4.2 Protection for User-Level Messages

User control over the network is a specific instance of user control over an I/O device. I/O devices
are ordinarily protected by reserving access to the operating system kernel and having the kernel check
protections on every request. Kernel-mediated access to the device can be tolerated only if the device is
relatively slow. User-level messages over fast VLSI interconnection networks must avoid the kernel.5

The interface to an I/O device (an interconnection network, in our case) requires four features to
make the device user-level:

� Notification: I/O device operation is asynchronous and requires a mechanism for notification of
events. For networks, both interrupts and polling are desirable mechanisms, as described below.
The user must have a means to disable notification in order to provide atomicity with respect to
interrupts and to select polling operation.

� Isolation: device events and incoming data associated with the I/O device must be known to belong
to the user.

� Permitting sharing: there must be a means to context-switch the I/O device to multiplex between
users.

� Enforcing sharing: there must be a means to enforce access to shared resources. The I/O device
and associated resources may be shared with other users and with the kernel.

An existing, simple example of user control over an I/O device is a bit-mapped display. It makes
sense to permit direct user access to this device because the bandwidth requirements are very high. There
are no notification issues because it is an output-only device. Sharing is provided by memory-mapping
the memory associated with the display. The device is isolated by mapping it to one process at a time.
Sharing is permitted, because the device can be mapped to any process. Sharing is enforced because the
kernel controls the maps.

5Note that for our purposes, a device is at user-level if code running at user-level can affect hardware resources without any
checks made by the kernel. With this definition, for instance, the feature that makes an interrupt user-level is not whether the
actual code paths go through the kernel or not. Avoiding the kernel is an optimization. The key concepts are that the interrupt
code is user-provided and that user has control over whether or not the interrupt is signaled.

12

Requirement Mechanism
Notification Kernel-delivered user interrupts.

User-controlled polling.
Isolation GID stamped on messages at sender.

Demultiplex on GID at receiver.
Permitting sharing Atomic launch operation.

Buffer and relaunch.
Enforcing sharing Receive handler timeout.

Buffer and scheduling using the second network.

Table 2: Mechanisms to permit and protect user access to the network interface.

FUGU provides means for users to control the network interface directly yet share it using the
mechanisms listed in Table 2. We address the issues of notification, isolation, permitting sharing, and
enforcing sharing for FUGU’s network interface separately below.

Notification FUGU supports both polling and interrupts on network events at user level. User
traps are delivered through the kernel, but may be disabled by the user. Two CMMU registers
support selective polling on network events and atomicity with respect to network events. The
user-trap-pending and user-trap-mask registers both contain a bit for each type of
event. The bits in user-trap-mask indicate which events should cause traps and the bits in
user-trap-pending indicate which events have occurred. If the trap for an event is disabled,
the user can poll on user-trap-pending.

The trap enable for message input has additional functions. When message reception is disabled,
instructions that might block for network resources, e.g., shared memory loads and stores, are made
illegal and cause a kernel trap immediately. Additionally, a timeout counter counts whenever message
reception is disabled in order to enforce sharing. We describe interrupts and polling in general in this
section and come back to the extra features of the message input enable under enforcing sharing, below.

FUGU provides both polling and interrupts because each provides the best performance in its operating
domain. Interrupts provide the lowest overhead if events are infrequent because polling checks are not
required. On the other hand, polling provides the lowest overhead in the case where an event is expected.
Consider the several alternate notification sequences in Figure 6. These sequences illustrate three possible
message receptions: using interrupts only, using interrupts with the GID check wired into the hardware,
and using polling. Polling requires that the GID check be wired into hardware. Interrupts which pass
through the kernel incur a number of extra cycles of overhead even for the most minimal code. Interrupts
delivered directly to user level are potentially much faster but are not available on current processors.
Potentially even more expensive for interrupts is the disruption of processor state.

We provide polling to take advantage of its minimal latency in cases where the data are expected.
Such cases arise (1) in code with rigid static scheduling, (2) in code with communications phases that
exchange many messages in bursts and (3) on server nodes that handle many short messages.

An example of a server process is a lock-server: a process on a node that maintains locks accessed
by messages. A simple experiment on a simulated Alewife machine changed the lock-handler in a
synthetic application from purely interrupt-driven operation to polling operation. This was done by
having the interrupt handler optimistically check for a message before returning from the handler. Using

13

Kernel interrupt

(6) Interrupt (6) Interrupt

(8) Jump to user (8) Jump to user

Kernel interrupt
+ H/W GID check

User polling
+ H/W GID check

(3) Check GID

Figure 6: Message delivery latency for various hardware options. Numbers are approximate cycle counts
on a SPARC processor.

interrupts alone, the throughput of the lock-server averaged one lock every 100 cycles. Switching to
polling increased the throughput to one lock serviced every 48 cycles on average. When polling, the
server avoids unnecessary copying of state information and can keep common variables in registers
across invocations of the handler.

Isolation Isolation is achieved by tagging every message with the sender’s group identifier (GID) and
disabling network access at the receiver until the tag has been verified. A GID field is defined for all
user messages and an input-enable control bit is associated with the user network input interface.
When input-enable is clear, user accesses to the network input interface are illegal and cause a trap.

Because the user has direct hardware access at the sending side, we stamp the sender’s GID in the
GID field of outgoing messages by hardware to prevent forgery. This operation requires a hardware
copy of the GID to the message at the time of the launch operation. At the receive side, the GID
must be compared to the GID register before delivery to the user to provide isolation. We perform this
comparison in hardware to permit user polling without the overhead of a kernel trap. If the GIDs match
(i.e., the message is an intra-group message), the network receive interface is enabled (input-enable
is set), delivering the message directly to the processor. The input-enable is automatically reset
when the message is disposed. If the GIDs do not match, a trap is caused to deliver the message to
the kernel to be buffered as described in Section 4.3. Also, a subset of user-generatable message types
representing remote supervisor requests are always delivered to the kernel.

The hardware stamping and checking of GIDs on intra-group messages provides the illusion of a
private network. Inter-group messages are achieved by having the kernel provide protection. An inter-
group message uses a message type that causes it to be delivered to the kernel at the receiving node. The
kernel software then applies arbitrary protection checks and, if the message passes the checks, enables
the interface by setting a input-enable control bit. The receiving user can reliably identify the
sender via the GID in the message.

Permitting Sharing The FUGU network interface permits sharing by providing mechanisms to trans-
parently unload and reload state from the network on context switches. Context switches are invoked
by the kernel-level process scheduler and may be invoked by a user-level thread scheduler. Partially
composed outgoing messages and any incomplete incoming message are the most significant pieces of
state.

At the sending side, the outgoing message window can be saved and restored at any time because the
launch operation atomically commits the outgoing message to the network. Up until the time of the
launch, the CMMU registers used to compose messages can be unloaded and reloaded as necessary.

14

At the receiving side, the input interface can be drained by using DMA to store the incoming message
to buffer memory and then the message can be handled at a later time, as described in section 4.3 below.
Our experience with Alewife suggests that the network input port is not likely to be context-switched by
a user-level thread scheduler because the user message handlers will ordinarily pull the message from
the network with user interrupts disabled. Extraordinary circumstances such as page faults in the user
handler code or preemptive switches of the process by the kernel could leave the input interface filled.

Enforcing Sharing The user network is a resource common to multiple users and to the operating
system. User code cannot be trusted to share these resources, so mechanisms for forcing sharing are
required. We enforce sharing by providing a timeout whenever the user disables interrupts and by
providing a rudimentary second network to allow the operating system to recover when users fill the
primary network. These mechanisms solve two problems described below.

The first problem is to assure that user handlers on the receive side actually empty the network and
that the kernel can recover control from a user that fails to empty the network. We provide a timeout
counter that counts user-mode instructions whenever network input interrupts are disabled. The counter
is zeroed either automatically when the user disposes of a message or by user request when no input
message is waiting to be handled. A kernel trap is invoked if the timer reaches a maximum count. The
timeout period is well defined to user code and timeout traps indicate errant user code. For messages
handled by interrupt, the timeout forces the message handler to dispose of the message within a timeout
period. For polling, the timeout forces the sum of the polling period and the handling time to be less
than the timeout period. It is possible to use a less strict timeout, such as the the timeslice interrupt, to
recover control from a user handler, but our specialized timer provides the important advantage of a tight,
carefully checked bound on the timeout period. As a practical point, closely timing every invocation of
the message handler (as opposed to sampling with a less strict timeout) finds user bugs more rapidly and
reliably.

The second problem is to control access to the network. Access control is difficult in general without
imposing flow control on user messages in hardware. There are two components to this problem.
One is that, with only user-enforced flow control, the user can flood the network with messages faster
than receivers can handle them, stealing network resources from other users and potentially requiring
unbounded amounts of buffer space at the receiver. The other is that there is no mechanism at the sending
node to prevent a user process from sending arbitrary messages to any destination node.

We address access control indirectly by using the rudimentary system network to allow the operating
system to sink messages indefinitely and to communicate with the sending node’s process scheduler, as
described in section 4.3 below. The existence of the rudimentary system network enables FUGU to control
user access to the network by checking messages only at the receiving side and to guarantee buffering at
the receiving side without requiring dedicated physical memory. Since the second network is required
only infrequently, it requires less performance and thus less hardware than the main, user network.

4.3 Message Buffering and Scheduling in Software

Figure 7 illustrates the possible actions at the a receiving node when a message arrives. In the best
case, (1), the message GID matches the running process and the message is handled directly by the
processor. In the second case, (2), if the GID is mismatched, the message is buffered by the kernel in
private memory. In the worst case, (3), when excessive buffering is required, the rudimentary network

15

Sending node

Proc Proc

Receiving node

1. direct
 delivery

2. buffer
 in
 memory

3. pageout
 and
 deschedule
 sender

Figure 7: Message reception cases.

provides a channel to send a message to the sender’s process scheduler and, if required, allows the kernel
to swap virtual pages to provide more space for buffering.

The process scheduler is responsible for assuring that the best case is also the most common case.
User code is responsible for handling messages in a timely fashion and for providing flow control for its
own messages. The other rare cases exist because neither the scheduler nor the user can be considered
completely reliable.

Buffering A receiving node must deal with messages that user code cannot handle immediately. In
FUGU, the kernel always buffers such messages at the receiver so that the sender can consider a message
delivered when the launch operation commits the message to the network. Ideally, messages are
buffered in local physical memory at the receiver. Unfortunately, it is difficult to bound the amount
of buffer space required and we don’t want to devote buffering resources to what we expect to be an
infrequent case.

The solution is to buffer incoming messages in the sending group’s virtual memory. Virtual memory
provides an effectively unbounded buffer for incoming messages. Ordinarily, buffered messages will
be placed in a local page already allocated or local pages freshly allocated from the virtual memory
manager’s free list. The virtual memory manager attempts to keep a supply of free frames available for
its own use. By using virtual memory, FUGU provides buffering in local memory when required without
locking down or pre-negotiating physical memory on the receive side.

In the extraordinary event that free local page frames are exhausted and the user network is blocked,
the rudimentary system network provides a channel for paging. Applications that perform such a poor
job of flow control that they overflow the network onto backing storage are suffering from performance
bugs. The use of virtual memory allows a graceful degradation in performance that permits debugging
for correctness separately from debugging for performance.

Buffered messages must be eventually delivered to and handled by the user. An appropriate software
architecture provides an efficient solution. If user-level handlers are written with an abstraction that hides
the hardware message storage mechanism, a compiler can generate two sets of binary handler objects
from a single source code. One binary object processes messages directly from the network interface
and the other to reads messages from the buffer in memory. Any poll for incoming messages must check
both the network interface and the buffer. Messages diverted asynchronously while a user handler is
actually running are tolerated by having the protection trap that occurs on accesses to a disabled receive

16

interface emulate accesses to the interface.

Scheduling FUGU makes it possible to rely on the kernel scheduler and the rudimentary network to
provide a gross form of flow control for errant user processes. We identify events that indicate that
problems exist and we provide a channel (the system network) for propagating this information back to
the sending node’s kernel. Direct control over the sending process is left to the scheduler on the sending
node.

First, the process scheduler may be used to throttle processes that flood the network with messages.
Suppose a process is performing a poor job of flow control and is requiring messages to be buffered at the
receiver. The virtual memory system can advise the system scheduler of the excessive traffic. Suppose
an incoming message has to be buffered and requires a new free page. Further suppose the allocation of
a new free page causes the number of free pages on the node to sink below a low-water threshold. This
event is detected by the kernel and causes the kernel to advise the sending node, via the system-only
network, to deschedule the sending process and thus throttle the excess traffic.

Second, note that there is no mechanism at the sending side to prevent a user process from launching
a message to an arbitrary destination. Detection of unexpected messages is provided by kernel code
at the receiving side. Suppose a runaway user process sends an inter-group message to a non-existent
process. The message will be delivered to the kernel at the receiving node. The kernel at the receiver
can inform the kernel at the sending side which then takes appropriate action, such as terminating the
sending user process identified by the GID in the unexpected message.

5 Translation and Protection for Messages with DMA

Support for bulk transfer message is provided in FUGU by DMA facilities built on top of the basic
messaging interface. FUGU incorporates two identical DMA engines, one for transmit and one for
receive on the user network. As described briefly in Section 2, the messaging model exports these DMA
facilities directly to the user. Such direct access is uncommon in most hardware platforms, where access
to DMA mechanisms is restricted to I/O device drivers. Not surprisingly, the use of DMA in FUGU raises
several issues which must be considered for correct operation: First, the user’s notion of memory is
confined to virtual addresses. As a result, virtual addresses from the user must be translated to physical
addresses for the DMA hardware. Once this translation has occurred, the resulting physical addresses
must remain valid throughout the duration of the DMA operation.

Second, the use of DMA in conjunction with cache-coherent shared memory raises questions about
the level of memory coherence which can be expected from DMA-transferred data. This is the DMA-
coherence problem introduced in [14].

Third, the use of DMA implies some form of asynchronous notification mechanism to indicate to the
user that previously requested DMA operations have completed. Ideally, all three of the above issues
should be addressed in a way which does not compromise the efficiency of direct, user-level access to
the hardware. These issues are the topic of this section.

17

Kernel−only registers

Internal
Descriptor
Queues
(physical)

Desc len/
desc bitv

User−visible registers

D−queue bitv

Visible
Descriptor
Registers
(virtual)

Figure 8: Registers associated with a network output port. Identical interfaces are used for DMA at the
input.

5.1 Translation for DMA

This section proposes a mechanism for combining fast DMA (such as in the FUGU network interface) with
virtual memory. We handle the common case in hardware and trap to software otherwise. In particular,
we consider the common case to be:

� Source regions are mapped to pages that are local to the processor on which output DMA is
initiated.

� Destination regions are mapped to pages that are local to the processor on which input DMA is
initiated.

If both of these criteria are satisfied, then translation and data transfer can occur directly in hardware.
In the common case, pages are implicitly locked during the DMA transfer and unlocked after the DMA
completes, with no intervention by the operating system. Should DMA be attempted to or from non-local
pages, the we employ software trap handlers to present to the user the illusion that DMA has occurred in
a single request.

Hardware support for DMA translation First, we would like to examine the method by which the
user describes and initiates DMA requests. Section 2 discussed the user’s view of a DMA mechanism.
This consisted of an array of descriptor registers which were written with starting and ending addresses
for DMA operations. Figure 8 shows a more extended view of the registers which participate in DMA
requests. Each user-visible descriptor register is shadowed by a register which is visible only to the
kernel. In fact, these shadow registers are part of a queue of descriptors which contain all previously
queued but pending DMA operations.

To describe a DMA operation, the user stores virtual addresses into the user-visible descriptor
registers using the stdesc instruction. The stdesc instruction translates a virtual address using the
processor’s TLB or page-fault handlers, then attempts to simultaneously write the virtual address into the
requested descriptor register and the physical address into the corresponding shadow register.6 During
the process of the write, the physical address is examined to see if it represents a local physical address.
If so, the write simply finishes. If not, then the write is synchronously faulted; these “nonlocal” faults
pass control to special trap handlers that handle the uncommon DMA cases.

6These two pieces of information are sent on the data bus and address bus respectively. The register is selected by a different
set of bits, such as the SPARC ASI bits

18

Virtual addresses in the user-visible descriptor registers are not used by the DMA hardware and are
discarded as soon as a DMA request is committed by launch orstoreback. The virtual addresses are
present so that user-level thread schedulers and interrupt handlers can gain access to the DMA descriptor
queue by saving and restoring the state of “in-progress” DMA descriptions. In contrast, the queue of
physical addresses (which includes those page frames which are part of on-going DMA descriptions) are
used by the DMA mechanism. Furthermore, this entire queue is visible to the operating system. A bit
mask is available to indicate which of the queue entries contain “live” physical addresses, namely those
which are part of pending DMA operations. Addresses which are visible in this way are considered
implicitly “locked”, as are the physical page frames they reference. Although we have not yet described
what it means for a frame to be locked, notice that the set of locked frames is updated dynamically as
DMA operations are queued and subsequently finished.

Output DMA operations Give the above hardware, we can export a uniform output DMA interface to
the user. We assume that the user performs higher-level synchronization around sections of code which
are sending data through DMA. In particular, data at the source of a DMA operation is assumed to be
constant throughout the DMA description and queuing process. Changes to source data which occur
during this process are not guaranteed to be reflected in the results of the DMA.

With these semantics, we can guarantee that an output DMA operation is unaffected by two things:

� Attempts to send data which resides in pages on remote nodes.

� Page migrations and other changes in virtual mappings which occur during the course of the DMA
description process and during the period in which DMA is queued.

Both of these issues are handled in a straightforward manner.

First, we assume that the version of the stdesc instruction which is used to describe output DMA
requires only read permission to addresses that it translates. Then, any attempt by the user to describe
DMA from a remote page is interrupted by a “nonlocal” fault, as described above. The trap handler can
deal with a nonlocal DMA request in several ways. We assume that user programs use messages because
they know something about where data are located and thus that nonlocal faults are unusual events. As
a result, we use the simplest means to recover from a nonlocal fault: the trap handler sends a message to
the node with the data requesting that a read copy of the page be migrated to the local node. The DMA
proceeds after the page returns and TLB entries are updated to reflect its new location. Note that because
message launches are atomic, system software is free to temporarily unload and then later restore the
partially constructed message output queue in order to schedule another process or thread while waiting
for the page fault.

Second, for correct DMA behavior in the face of changes in virtual address mappings, we simply
guarantee that page frames which are actively queued by the DMA interface (i.e. “locked”) are not
reused until after the DMA interface has finished with them. This guarantee is sufficient, since we have
asserted that output data must not change during the description and queuing process. To accomplish
this feat, we maintain two free frame lists: one which is used for freshly freed frames, and one which is
used during page allocations. When necessary, frames are moved from the first free list to the second by
verifying that they are not locked in any output DMA queue.

Input DMA operations Similar to the output side of DMA, we wish to guarantee that an input DMA
operation is unaffected by three things:

19

� Attempts to receive data into buffers which are marked read-only because they are read-shared by
multiple nodes.

� Attempts to receive data into buffers which reside on remote nodes or backing store.

� Page migrations and other changes in virtual mappings.

Assume that the version of the stdesc instruction which is used to describe input DMA requires
write permission to the addresses that it translates. This check for write permission permits the first
situation to be flagged by the page-fault handler. Then, the first and second situations may be handled
in similar ways: a fresh frame is allocated off the free list. The stdesc instruction is emulated by
writing the new physical address directly into the shadow registers. Later, when the DMA operations
have completed, we request write copies of the real pages; when they arrive, we merge the new data with
the old, thereby logically completing the input DMA operation.

Finally, to prevent page migrations from affecting input DMA operations, we check each migration
request to see if it is requesting a page which is mapped to a frame that is locked in some input DMA
queue. If so, we permit the migration, but schedule the (newly unmapped) local page frame for future
merging with data.

5.2 DMA and Cache Coherence

The use of DMA in a cache-coherent shared memory multiprocessor raises the specter of DMA coher-
ence [14]. The most general possible DMA coherence model is that of global coherence, in which data
in both the source and destination blocks of memory are fully coherent with respect to all processors. A
somewhat restricted DMA coherence model is that of local coherence, which guarantees that data at the
source and destination are fully coherent with respect to local processors; this means that, if necessary,
data will be retrieved from the cache at the source, and invalidated from the cache at the destination.

Local coherence is easier and more desirable to support in hardware for a number of reasons [14].
Furthermore, many uses of messages involve separate message buffers which are reserved exclusively for
message traffic [13]. Thus, we propose to support locally-coherent DMA in hardware and to synthesize
global coherence with software only when required, just as in Alewife.

Block cleaning However, we also wish to support general paging, including page migration. Further,
we wish to support explicit rearrangement of shared data by the user. Both of these applications require
some form of global DMA coherence. Consequently, to assist in the synthesis of global coherence, we
postulate the existence of a “block cleaning mechanism” which could:

� Perform a collect operation before initiating output DMA, by scanning through directories in the
source block of memory and invalidating those with outstanding dirty cached copies.

� Perform a block invalidate operation before initiating an input DMA, by invalidating all outstanding
read and write copies.

In both cases, we want some form of notification when the cleaning operations have completed.

20

Hardware support for block cleaning It is an open question as to whether hardware support is needed
for block cleaning, or whether software access to hardware coherence directories is sufficient. This is a
question that we plan to explore.

In brief, however, we would like to note that both of these operations, collect and block invalidate,
could be accelerated in hardware through the user network output interface. Such cleaning requests would
be constructed in the output descriptor queue and queued like normal messages, with the exception of a
special “cleaning” header. The blocks of memory to be cleaned would specified by the DMA portions
of the cleaning request. When processing a cleaning request, the output DMA mechanism would simply
scan through each of the specified cache-coherence directories, searching for directories which are not
sufficiently “clean” and sending invalidations accordingly. Synchronization for the cleaning operation
could then be provided by setting a special cleaning synchronize bit in each directory that has been
invalidated, retaining a count of the number of directories which were cleaned, and decrementing this
count as acknowledgments return.

5.3 DMA and Notification

The last of the three issues that we identified above is that of notifying the user that DMA operations have
completed. We make use of hardware-generated transaction identifiers for this purpose. Conceptually,
we have two counters, called trans-head and trans-tail associated with each DMA interface.
The trans-head register contains the transaction identifier for the next request to be queued; this
counter is incremented with each new DMA request. The trans-tail register holds the transaction
identifier for the DMA operation which is currently in progress; this counter is incremented whenever a
DMA request completes.

To handle the fact that input DMA operations are not complete from the user’s standpoint until
after outstanding merge operations have finished, we export a virtual tail pointer to the user, called
the user-trans-tail. Under normal circumstances, this register simply tracks the trans-tail
register. On rare circumstances in which data from an input DMA must be merged with remote data,
the page-fault handler can freeze the user-trans-tail at a maximum value by writing to the
frozen-tail register.

With the above mechanism, the user can poll for the completion of a particular DMA operation by sav-
ing the transaction identifier at the time that the request is queued and watching theuser-trans-tail.
To support DMA completion interrupts, we provide an int-trans-id register, which is set with the
current transaction identifier whenever a DMA operation is queued with a request for interrupt. An
interrupt is posted when the user-trans-tail exceeds this value.

5.4 Protection for DMA

Long messages make use the same delivery mechanisms and thus the same protection mechanisms as
short messages to provide isolation between process groups. Memory accesses by DMA are protected
by memory mapping in the same manner as ordinary memory accesses. The frame locking technique
preserves the protection provided by memory mapping. Specifically, if a process initiates a read from
(or write to) a page with DMA and then unmaps it, no other process can map and then erroneously or
maliciously write over (or read from) the page because the frame is locked until the DMA operation
completes.

21

6 The FUGU Experimental Platform

FUGU is an experimental architecture and provides a framework for exploring issues in multiuser mul-
tiprocessing. FUGU heavily leverages software and hardware from the Alewife machine. Most of the
functionality of FUGU described in this paper can be achieved by augmenting Alewife nodes with a
single-chip user-level communication unit, or UCU. Work on a detailed simulator based on the Alewife
binary-compatible simulator is in progress.

We intend to leverage Alewife hardware to build a prototype that we will use as a near-real-time
emulator of a FUGU system. Experiments performed on the prototype will be used to calibrate and verify
the results obtained from the FUGU simulator.

Most of the functionality of FUGU can be implemented by adding a TLB, a rudimentary network,
and protection checking hardware to an Alewife processor node. Because we are building on top of
the existing Alewife system rather than building from scratch, some protection features that would be
straightforward to implement from scratch are difficult to provide in this prototype. Rather than add
complication to this implementation to make the protection complete, we will rely, for demonstration
purposes, on a trusted compiler and runtime system for some protection checks.

This section describes the hardware mechanisms we will actually implement and how they differ
from the architecture described in the first part of the paper.

6.1 The User-Level Communications Unit

The hardware mechanisms will be implemented in a single-chip UCU. The chip will be implemented
initially in an FPGA (Xilinx 4025). Figures 9 and 10 show a basic Alewife node and a FUGU node which
is an Alewife node augmented with the UCU and the rudimentary network. The UCU implements:

1. A coherent TLB.

2. Protection checks on incoming user-level messages.

3. The rudimentary second network.

4. Translation for bulk transfer messages.

The UCU and kernel, in conjunction with compiler and runtime software, support most of the
mechanisms for translation and protection described in Sections 3, 4 and 5. The UCU features to support
translation and protection for shared memory, short messages and bulk transfer messages are described
below.

1. Translation and protection for shared memory are provided by a virtual memory system built
around the TLB implemented in the UCU. The TLB coherence mechanism proposed for FUGU can
be completely implemented with this TLB.

2. Translation for short messages is via compiler, as proposed earlier. Protection for short messages
relies on a trusted compiler for two phases of message transfer. First, the compiler is required to
stamp the GID on messages as they are sent. Second, at the receive side, the compiler will provide
message handling code that either does not time out or that sets up a timeout counter.

22

CMMU

Sparcle

FPU

cache

memory

 user
network

Figure 9: Alewife node architecture.

CMMU

Sparcle

FPU

UCU

cache

memory

system
network user

network

Figure 10: FUGU node architecture.

23

The GID on a messages is tested in hardware by the UCU at the receiver. We will also experiment
with GID testing by low-level kernel code. The UCU protection hardware can be eliminated if the
performance is acceptable. The FPGA implementation of the UCU will allow us to change such
hardware details.

The second, rudimentary network is used chiefly to throttle incoming messages. The kernel
achieves this throttling by sending a control message to the kernel running on the sending node.
In extreme cases, the kernel can use the rudimentary network to page out buffered messages. The
UCU will include the hardware to implement the second network, as shown in Figure 10.

3. Translation for bulk transfers is provided by a combination of a trusted compiler and the UCU. For
space reasons, the number of blocks that can be launched will be limited to two, each of which can
not cross a page boundary. User code will probe the UCU for address translations and then copy
the resulting physical addresses to the CMMU’s DMA queue. The UCU will store the virtual page
numbers used in case the DMA queue needs to be transparently unloaded and reloaded. We will
also investigate providing the reloadable queue using only software.

Finally, since the DMA physical address descriptors are not all available, the page frame recycler
will have to operate by unloading any message currently under construction and waiting for any
pending DMA operations.

6.2 Differences from the FUGU Architecture

The FUGU prototype hardware described above will allow most of the functionality described earlier,
but requires that some protection checks be provided by software and requires extra overhead for some
operations. The protection checks would be built into hardware in straightforward ways in a production
system. We believe that the various extra overheads will not qualitatively impact our results. The
differences between the hardware prototype and the FUGU architecture are summarized below.

� In the experimental version of FUGU, protection on messages includes a GID stamp added by a
trusted compiler to all outgoing messages at a cost of potentially one extra cycle per message send.

� The stamped GID must be tested each time a message is received. When the GID check is done
by the UCU, no extra cycles are incurred on message receives. If done in software, however, short
message receives would cost an extra test and branch (at least 2 extra cycles).

� Message reception via polling either must use code guaranteed by the compiler not to time out or
must explicitly maintain a timeout counter.

� We enforce the restriction that DMA launches and storebacks cannot cross page boundaries,
because implementing a hardware mechanism that provides a notification when this happens
requires modifying the CMMU chip.

� The page frame recycler must wait for pending DMA operations instead of just checking descriptors
in the CMMU.

� User-notification for DMA doesn’t work exactly as described in Section 5. Our implementation
will interrupt the processor even if the running process has a different GID, and the UCU or
low-level kernel code will perform the protection check.

24

� Bulk message sends will cost several cycles more per descriptor in our implementation that in a
completely optimized version, because translation is performed by software probes of the TLB.

7 Related Work

The FUGU effort attempts to demonstrate a scalable multiprocessor which supports multimodel and
multiuser operation. It focuses on hardware and software mechanisms for protection and translation
in scalable multiprocessors that provide user-level messaging and coherent shared memory. The FUGU

effort relates to other research projects as follows.

Alewife [1] is a single-user, multimodel multiprocessor. It has user-level message handling integrated
with coherent shared memory. It supports both short messages and bulk transfer (DMA) messages, with
a unified packet interface. Bulk transfer messages require the receiving processor to determine the
destination of the data. FUGU extends Alewife features for multiuser operation and uses an exokernel
operating system. In FUGU, bulk transfers require translation at the receiving processor, but do not
pre-negotiate for pages.

FLASH [15, 10] is a multimodel machine with a microcoded, kernel-level coprocessor for message
handling including shared-memory protocol messages. Bulk transfers in FLASH are in the form of remote-
writes which avoid using the receiving processor, but require pre-negotiating the sending addresses in
shared memory. For instance, there is no notion of bulk transfer between purely private memories.
They use implicit locking on DMA operations similar to FUGU, but load the message send operation and
TLB coherence algorithm with the overhead of marking and checking for pages in use in the MAGIC

chip and introduce deadlock by locking pages instead of frames. FLASH uses two networks but for a
different reason than FUGU. FLASH uses two networks for request and reply packets to avoid deadlock.
Packets can be sorted into request and reply networks because the message protocols are controlled by
the kernel-level coprocessor. FUGU mostly uses one network with mixed kernel and user traffic, but relies
on a cost-effective, rudimentary network to avoid deadlock.

Typhoon [21] offers user-level message handling and user-level cache coherence using a second
processor dedicated to the network interface. The second processor lengthens the message latency in the
best-case situation, although it provides concurrency in most other situations. Typhoon provides network
protection by context-switching the network in the manner of the CM-5 [17]. Context-switching the
network fails to support a client-server model of interprocess communication.

The *T [18] processor uses a memory coprocessor model as well. *T does not include DMA facilities
or coherent caches and thus does not address the interaction of these features with messaging. A recent
*T paper [20] has independently proposed protection mechanisms similar to FUGU’s for short messages
and makes the same assumptions about separating performance from correctness in scheduling. Our
focus is on developing a minimal set of mechanisms that are sufficient for user-level message handling
and protection, while *T proposes a richer set of features. For instance, *T demultiplexes messages into
several receive queues, and the receive queues are implemented as a part of the processor register set.

SHRIMP [5] and Hamlyn [27] propose remote writes for protected user communication between
pre-negotiated and pre-locked pages.

Recent work on parallel processing on networks of workstations seeks to identify mechanisms to
accelerate communication while retaining protection. Work by Thekkath and others at the University
of Washington [25] advocates remote memory access to pre-negotiated buffers as a mechanism to

25

accelerate communication while retaining protection. Similarly, Hybrid Deposit [19] proposes hardware
to interpret messages as operations on pre-negotiated buffer areas. FUGU’s approach is to add protection
while maintaining existing, well-defined user-level communication mechanisms and efficient, distributed
shared memory.

The J-machine multicomputer [9] provides two levels of network priorities, user-level access to
the network hardware and the ability to relaunch incoming messages from memory transparently. The
J-machine is a single-user machine with no support for shared memory or DMA on messages.

The CM-5 multicomputer provides multiuser multiprocessing by rigidly partitioning its network and
context switching entire partitions [17]. It does not support shared memory.

8 Conclusion

Multiprocessors which integrate hardware support for message passing and shared memory are of great
interest because they combine the best of two worlds: the efficiency of message passing, when commu-
nications patterns can be statically determined, and the flexibility and convenience of shared memory
for fine-grained and dynamic computations. Providing translation and protection mechanisms required
to make such multiprocessors suitable for general-purpose use without compromising performance is a
challenge.

This paper has proposed a multiprocessor architecture which integrates translation and protection
with cache-coherent shared memory, user-level message passing and user-level DMA on messages.
We have described techniques that retain direct, user-level access to the underlying communications
network and hardware DMA mechanisms without compromising the integrity of the machine as a
whole. Architectures such as FUGU bring us one step closer to the vision of scalable multiprocessors as
general-purpose, multiuser machines.

References

[1] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson, David Kranz, John Kubiatowicz, Kiyoshi
Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin, and Donald Yeung. The MIT Alewife
Machine: A Large-Scale Distributed-Memory Multiprocessor. In Proceedings of Workshop on Scalable
Shared Memory Multiprocessors. Kluwer Academic Publishers, 1991. An extended version of this paper has
been submitted for publication, and appears as MIT/LCS Memo TM-454, 1991.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, Godfrey D’Souza, and
Mike Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors. IEEE Micro, 13(3):48–61,
June 1993.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 95–109, 1991.

[4] David L. Black, Richard F. Rashid, David B. Golub, Charles R. Hill, and Robert V. Baron. Translation
Lookaside Buffer Consistency: A Software Approach. In Third International Conference on Architectural
Support for Programming Languages and Operating Systems., pages 113–122. ACM, 1989.

[5] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W. Felten, and Jonathan Sandberg.
Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In Proceedings 21st Annual
International Symposium on Computer Architecture (ISCA’94), pages 142–153, April 1994.

26

[6] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable Cache Coherence
Scheme. In Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS IV), pages 224–234. ACM, April 1991.

[7] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Scheduling and Page
Migration for Multiprocessor Compute Servers. In Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VI), pages 12–24. ACM, October 1994.

[8] A. Cox and R. Fowler. The Implementation of a Coherent Memory Abstraction on a NUMA Multiprocessor:
Experiences with PLATINUM. In Proceedings of the 12th ACM Symposium on Operating Systems Principles,
pages 32–44, December 1989. Also as a Univ. Rochester TR-263, May 1989.

[9] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent Computer. In Proceedings of the IFIP
(International Federation for Information Processing), 11th World Congress, pages 1147–1153, New York,
1989. Elsevier Science Publishing.

[10] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop Gupta. Integration of Message Passing and
Shared Memory in the Stanford FLASH Multiprocessor. In Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VI), pages 38–50. ACM, October
1994.

[11] James C. Hoe. Network Interface for Message-Passing Parallel Computation on a Workstation Cluster. In
Proceedings of Hot Interconnects II, August 1994.

[12] Wilson C. Hsieh, Kirk L. Johnson, M. Frans Kaashoek, Deborah A. Wallach, and William E. Weihl. Efficient
Implementation of High-Level Languages on User-Level Communication Architectures. MIT/LCS TR-616,
MIT, Cambridge, MA, May 1994.

[13] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim. Integrating Message-
Passing and Shared-Memory; Early Experience. In Practice and Principles of Parallel Programming (PPoPP)
1993, pages 54–63, San Diego, CA, May 1993. ACM. Also as MIT/LCS TM-478, January 1993.

[14] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multiprocessor. In Proceedings
of the International Supercomputing Conference (ISC) 1993, Tokyo, Japan, July 1993. IEEE. Also as
MIT/LCS TM-498, December 1992.

[15] Jeffrey Kuskin, David Ofelt, and Mark Heinrich et al. The Stanford FLASH Multiprocessor. In Proceedings
of the 21st Annual International Symposium on Computer Architecture (ISCA) 1994, Chicago, IL, April 1994.
IEEE.

[16] T. J. LeBlanc, B. D. Marsh, and M. L. Scott. Memory Management for Large-Scale NUMA Multiprocessors.
TR 311, Rochester, Rochester, NY, March 1989.

[17] Charles E. Leiserson, Aahil S. Abuhamdeh, and David C. Douglas et al. The Network Architecture of the
Connection Machine CM-5. In The Fourth Annual ACM Symposium on Parallel Algorithms and Architectures.
ACM, 1992.

[18] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A Multithreaded Massively Parallel Architecture. In
Proceedings of the 19th International Symposium on Computer Architecture, pages 156–167. ACM, 1992.

[19] Randy Osborne. A Hybrid Deposit Model for Low Overhead Communication in High Speed LANs. Technical
Report 94-02v3, MERL, 201 Broadway, Cambridge, MA 02139, June 1994.

[20] Gregory M. Papadopoulos, G. Andy Boughton, Robert Greiner, and Michael J. Beckerle. *T: Integrated
Building Blocks for Parallel Computing. In Supercomputing ’93, pages 624–635. IEEE, November 1993.

[21] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Memory.
In Proceedings of the 21st Annual International Symposium on Computer Architecture (ISCA) 1994, Chicago,
IL, April 1994. IEEE.

27

[22] Richard P. LaRowe, Jr. and Carla Schlatter Ellis. Page Placement Policies for NUMA Multiprocessors.
Journal of Parallel and Distributed Computing, 11:112–119, 1991.

[23] Bryan S. Rosenburg. Low-Synchronization Translation Lookaside Buffer Consistency in Large-Scale Shared-
Memory Multiprocessors. ACM Operating Systems Review, 23(5):137–146, December 1989.

[24] Patricia Jane Teller. Translation-lookaside buffer consistency in highly-parallel shard-memory multiproces-
sors. RC 16858, IBM, IBM Thomas J. Watson Research Center, Distribution Services F-11 Stormytown, PO
Bos 218, Yorktown Heights, NY 10598, May 1991. RC 16858 (no. 74685) 5/14/91.

[25] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Efficient Support for Multicomputing
on ATM Networks. UW-CSE 93-04-03, University of Washington, Seattle, WA, April 1993.

[26] Andrew Tucker. Efficient Scheduling on Multiprogrammed Shared-Memory Multiprocessors. CSL-TR
94-601, Stanford, January 1994.

[27] John Wilkes. Hamlyn — an interface for sender-based communications. Department technical report HPL-
OSR-92-13, HP Labs OS Research, November 1992.

28

Instruction Description
ldio CMMU-Rs, Rd Load from CMMU register.
stio Rs, CMMU-Rd Store to CMMU register, including output queue.
stdesc Ra, Rl, CMMU-Dd Store to CMMU output queue.
launch(i) Rd Launch packet; this ldio returns the head pointer for

the DMA channel.
storeback(i) Skip, Rd Discard/storeback input packet; ldio returns head

pointer.
uei Enable user traps.
udi Disable user traps.

Table 3: Network instructions and operations

Appendix A

The basic architecture for FUGU was shown in Figure 1 and places the network interface outside the
main processor on the second-level cache bus. The CMMU is accessed using alternate-space loads and
stores that bypass the on-chip cache. Operations that communicate with the CMMU are listed in Table 3
and CMMU registers are depicted in Figure 11. Events reported by the CMMU to the processor are
tabulated in Table 4.

Several features not described in the body of the text are included here for completeness. The
space-available register contains the count of doublewords available for writing in a network
output queue. A space-available event is constructed from this count by adding a space-request
count and signaling an event when there are more than space-request doublewords available. The
user-software-trap event is intended to signal that network messages have been diverted to a memory
buffer. An efficient message send/receive loop can be constructed by polling space-request, user-
network-input and user-software-trap simultaneously.

29

Kernel−only registersUser−visible registers

Network
Input
Window

window len

User trap/polling
control GIDuser−trap−enable

user−trap−mask

Internal
Descriptor
Queues
(physical)

D−queue bitv
Desc len/
desc bitv

Visible
Output
Registers
(virtual)

trans−head
user−trans−tail

int−trans−id

space−available
 space−required

trap−mask

trap−pendinguser−trap−pending

trans−tail

timeout/network
 sovf. control

Output interface

DMA interface,
replicated twice:

1. User output
2. User storeback

Input interface
input−enable

frozen−tail
 (for storeback)

Figure 11: CMMU registers.

Trap Event that it signals
user-network-input Incoming message on the user network input port with a matching GID.
user-space-available More than space-request words available at the user network output port.
user-DMA-done user-trans-tail = int-trans-id for the user DMA channels. One

each for input and output.
user-software-trap Trap intended to signal input data available in a memory buffer.

mismatch-input Incoming user message with a mismatched GID or system header on the user
input port.

network-timeout User network input queue stalled more than timeout-count cycles.
DMA-done trans-tail = int-trans-id for each DMA channel. One per DMA

channel for a total of four.
TLB-refill-fault TLB miss.
nonlocal-fault stdesc instruction referencing remote memory.
protection-fault Reference to a protected page.

Table 4: Events associated the communication mechanisms in FUGU. The first four types correspond to
the user traps.

30

