
Coordinated Resource Management
in a Replicated Object Server

Sanjay Ghemawat
Robert Gruber
James O’Toole
Liuba Shrira

Abstract

We propose several new techniques for resource manage-
ment in a replicated object server. By coordinating cache
and disk usage among the replicas, these techniques in-
crease throughput and reduce fetch latency. Cache splitting
speeds up fetches by avoiding redundant cache entries, ef-
fectively increasing the cache size. Coordinated writing
coordinates disk writes to ensure that one replica is always
available to service fetches. We investigate the performance
of a replicated server using these techniques, and we present
simulation results showing that these techniques provide
substantial performance improvements across a variety of
workloads.

1 Introduction

Traditional replicated server designs use multiple replicas to
improve system availability and reliability. Although close
communication between the replicas is required for trans-
action serialization, each replica independently manages its
cache memory and disk resources. In this paper we pro-
pose new techniques that exploit a previously overlooked
opportunity to enhance performance by having replicas co-
ordinate use of caches and disks.

Authors’ addresses: sanjay@lcs.mit.edu, gruber@lcs.mit.edu,
otoole@lcs.mit.edu, liuba@lcs.mit.edu. Laboratory of Computer Science,
Massachusetts Institute of Technology, 545 Technology Square, Cam-
bridge, MA 02139.

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136, in part by the National Sci-
ence Foundation under Grant CCR-8822158, and in part by the Department
of the Army under Contract DABT63-92-C-0012.

In a traditional replicated server, objects can reside in an
arbitrary number of replica caches. Cache splitting keeps
a segment in the main memory of one replica only and
accesses it over the network when the segment is needed
at another replica. Splitting speeds up fetches because it
increases the effective cache size. Cache splitting can also
speed up updates, because writing a modified object back to
disk often requires reading from disk the segment on which
the object resides.

Disk arms can be scheduled more efficiently if write re-
quests are accumulated and applied together, a technique
known as batching. Studies show that batching can pro-
vide significantly higher bandwidth than random access
[12]. Nevertheless, batching can substantially delay client
fetches, which might block behind batched writes [4]. Such
varying delays can substantially reduce the effectiveness of
client prefetching. Write coordination avoids this problem
by ensuring that one replica is always available to service
fetches, allowing the server to enjoy the benefits of batching
without imposing a penalty on fetches.

Although we believe that these techniques are applicable
to a variety of replicated server architectures, we explore
them here in the context of a primary-copy server in the
Thor persistent object system [8]. Thor clients fetch objects
from the server into a local cache, compute locally, and then
send any modifications to be committed at the server. As
such systems scale, they tend to become I/O bound, so
techniques for enhancing I/O latency and throughput are of
substantial interest. By shifting load from the disk to the
network and main memory, these techniques will become
increasingly more effective as network and main memory
speeds continue to improve faster than disk access times.

We simulated the operations of a multiple-client two-
replica object server using a simplified hardware model.
We evaluated the performance of two simple baseline con-
figurations and compared them to three additional configu-
rations that use combinations of our techniques. Our simu-
lation results show that our techniques provide substantial
performance improvements across a variety of workloads.

In the following sections, we introduce the basic repli-
cated object server design (Section 2) and describe the coor-
dinated resource management techniques (Section 3). We



then introduce our simulation model (Section 4), explain the
experimental workloads and test configurations (Section 5),
and present simulation results that illustrate the value of the
new techniques (Section 6). Finally, we discuss related
research (Section 7) and our conclusions (Section 8).

2 A Replicated Object Server

This section describes our “baseline” replicated object
server; an understanding of this baseline is necessary before
we can present our new techniques based on the coordina-
tion of replica resources.

The baseline is derived from our work on Thor [8], a
client-server object-oriented database system with repli-
cated object servers. Three important features of Thor that
we use in our baseline are optimistic concurrency control,
object-based architecture, and primary copy replication.

Fetching

Clients fetch objects to a local client cache as objects are
read, update objects in their cache as they are written,
and send back updated objects in a commit request to the
server. The clients and the server together execute a concur-
rency control and cache consistency protocol that ensures
all transactions are serializable and all client caches are “al-
most” up-to-date. Since we use an optimistic scheme, a
client transaction may read an out-of-date value, in which
case it will be aborted and restarted by the server when it
sends its commit request. We assume the need to abort is
detected at the server using a validation phase that does not
require any disk accesses; see [1] for the details.

Figure 1 shows the structure of the system during normal
operation. The server is implemented using a primary-
backup-witness scheme. The witness is not depicted; it is
not used in the normal case, and our techniques do not apply
to the “failover” case where the witness has taken over the
task of the backup.

Committing

Each replica has an in-memory log of committed updates.
An important point is that committing a transaction does
not require a disk write. All commit requests are sent to
the primary, which logs a commit record containing the
transaction’s updates and forwards it to the backup’s log. A
transaction is considered committed once its commit entry
is present in both logs — each machine running a replica
has an uninterruptible power supply to prevent the simulta-
neous loss of both logs. This approach to fast primary copy
commit was invented for the Harp replicated file system [9].

DiskDisk

Cache

Log

Cache

Log

Confirm
Update

BackupPrimary Log Update

ClientClient

Fetch

Client

Commit

Figure 1: Clients talking to a primary copy server.

Installing

The system uses an object-based rather than a page-based
architecture. Objects managed by the server are grouped
into segments, and each replica has a segment cache; seg-
ments are the unit of disk transfer and caching at the server
replicas. Clients, on the other hand, fetch and cache objects,
and send object updates to the primary in a commit request;
these object updates are placed in the log, and are applied
to the appropriate segments when the transaction commits;
we call this update process installation. Note that an install
may require a disk read if the segment to be updated is not
currently cached. This is in contrast with page-based sys-
tems, where entire dirty pages would be logged, in which
case an install would never require a disk read. This is an
important point, and throughout the paper we are careful
to distinguish between disk reads initiated by a client fetch
request and reads initiated by an install.

We assume the install for a transaction occurs at a replica
as soon as it knows the transaction has committed. Installs
are synchronized with fetch requests, to ensure that fetches
retrieve the current committed object state. Note that the
primary and backup are already synchronized with respect
to transaction commits (via the logging protocol) thus either
replica can be used to handle fetch requests. We discuss
this further below.

Writing

Installs modify segments in the cache, but they do not im-
mediately cause the updated segments to be written to disk.
If the updates from more than one transaction are installed
in a segment before it is written, we have saved some writ-
ing compared to a system that writes each segment as soon
as it is modified by an install; we say there has been write



absorption. Write absorption is a very important means
of reducing disk traffic; we would like to wait for as long
as possible before writing a dirty segment. However, such
waiting causes a problem: the memory space allocated to
the log can fill, requiring log truncation.

The replicas run a background process that detects when
the log is getting full, initiates a set of segment writes,
and truncates the log. The dirty segments containing the
oldest committed updates are written to disk; as these writes
complete, the tail end of the log (the entries for the updates
that are now on disk) can be discarded. This process also
of course cleans the written segments and ensures the cache
does not become entirely dirty. We assume this process
uses write batching: it writes out a large enough batch of
dirty segments to permit efficient disk arm scheduling.

Balancing

We have now described our baseline system, which we
use to discuss our new techniques. When comparing the
different schemes, we also consider a modified baseline
system that uses a form of load balancing which we call
fetch balancing: rather than sending all fetch requests to
the primary, clients can issue fetch requests to both replicas.
Each replica therefore processes some of the fetches and
performs some of the reads required. Fetch balancing is
similar to the scheme described in [6] that sends read-only
queries to the backup in a replicated relational database.

3 New Techniques

In this section we describe our techniques for coordinating
the use of cache memory and disk arms at the server replicas.
We also discuss the corresponding performance tradeoffs.

3.1 Coordinated Writing

The disadvantage of write batching is that very large read
delays will occur when a disk read is scheduled while a
large disk write is in progress. In this situation, better
read performance could be obtained by forwarding the read
request to the other replica. If the other replica is not also
performing a large write, the result will be a much shorter
read delay, in spite of the additional network roundtrip.

Ideally, read operations would never be delayed by large
disk writes; we can ensure this by ensuring that only one
replica is writing at any time. As illustrated in Figure 2,
the primary and backup replicas can perform their write
batching in an alternated schedule. A simple coordination
protocol can be carried out by the two replicas; we call this
coordinated writing.

RW RW W

RW RW

Primary

Backup

Figure 2: Coordinated writing

3.2 Cache Splitting

With autonomous cache management, there may be a high
degree of overlap between caches. The disadvantage of
having the same segments cached at both servers is that
fewer total segments of the database are in cache memory.
If we can coordinate the contents of the caches to avoid
overlap, we may be able to achieve a better overall hit rate.
This suggests the idea of cache splitting.

With cache splitting, each database segment is assigned
a designated “home” cache. In its home cache, a segment
is treated fairly by the cache replacement algorithm. In its
“foreign” cache, a segment is severely discriminated against
by the cache replacement policy. This technique will tend
to reduce the degree of cache overlap.

To benefit from cache splitting, clients should direct their
fetch requests to the home replica for the fetched segment.
When a replica installs an update, the segment should be
obtained from its home cache if it is not already cached
locally. These policies will further encourage cache seg-
regation and will usually ensure that a currently cached
segment will not be read from disk. Figure 3 illustrates
how client fetch operations are routed to the appropriate
replicas. As shown here, the primary replica preferentially
caches type A segments and the backup cache prefers type
B segments.

Disk Disk

A B
Cache Cache

A B

BackupPrimary Log Update

Confirm
Update

Log Log

ClientClient

Fetch(A)

Client

Commit Fetch(B)Fetch(B)

Figure 3: Cache splitting

When a writing transaction commits, both replicas must



perform an update installation for the modified segment.
Without cache splitting, both replicas might read the seg-
ment from disk in order to perform the installation. With
cache splitting, the segment will be read from disk at most
once, because both replicas will obtain the segment from
the segment’s home cache. (We also note that if the instal-
lation is performed in the home cache before the segment is
requested by the foreign replica, then the installation need
not be repeated. Discussion of this additional optimization
and several related techniques is postponed to future work.)

3.3 Performance Tradeoffs

This section discusses the performance tradeoffs involved
in the coordination techniques described above.

Network vs. Disk or Memory

Both of the coordination techniques we have introduced use
read forwarding to shift read operations between replicas.
Forwarding reads increases the inter-replica network load.
In addition, coordinated writing increases inter-replica net-
work load because extra messages are exchanged for coor-
dination purposes.

We believe that trading network bandwidth for improve-
ments in cache memory and disk utilization will probably
always be advantageous because network latency will gen-
erally be superior to disk latency. We do not expect network
saturation to be a limiting factor: if necessary, a dedicated
network can be used for inter-replica communication to
avoid contention with client-replica message traffic. Such
a network is also useful to improve availability.

There is one case where cache splitting could degrade
system performance. If all of the hot segments of the
database fit easily into a single replica cache, then cache
splitting will segregate these hot segments between the two
caches. As a result, installations on these segments will re-
quire one replica to read the segment from the other replica.
This will delay many installations by a network round-trip.

However, we do not expect this installation delay to af-
fect system performance. Installations are performed asyn-
chronously in our replicated object server design. There-
fore, it seems that the worst possible result of a delayed
installation is to slightly delay the initiation of a batched
disk write. This could only be important if maximum write
utilization of the disk drive were of such importance that
essentially all available disk bandwidth was being dedicated
to writing.

In general, the coordinated resource management tech-
niques we have introduced are directed towards improving
overall performance in systems where read latency is an
important concern. We believe that this is a sensible expec-
tation for future replicated object servers. We are much less
interested in workloads that use disks primarily (or only)
for writing, and believe that such workloads are also not
likely.

Write Capacity vs. Read Latency

The coordinated writing technique is intended to provide
better fetch response time, but restricts the maximum avail-
able disk write bandwidth. In particular, the worst-case
fetch response time will be much lower because no disk
reads will wait for the completion of a large write batch.
However, because only one disk is permitted to write at
a time, the maximum available write bandwidth is half as
great as in an uncoordinated system.

It seems possible that under a sufficiently write-intensive
workload a standard primary copy method could perform
better than a system using coordinated writing. If the total
disk write traffic in the primary copy method exceeds 50%
of the available disk bandwidth, then coordinating writing
could slow down the system. For a workload to utilize the
disk so heavily for writing, the disk write load must exceed
the disk read load.

If each write has a corresponding installation read, this
is not possible. Therefore, such a workload must involve
a large number of writes to “hot” segments that are always
in the cache. In serving such a workload, it seems likely
that very high write-absorption could be achieved, which
would further reduce the actual disk write load. In addition,
because write batching substantially reduces the average
cost of writing, a workload that suffers under coordinated
writing would require an extremely high write ratio. For
these reasons, we do not expect to observe such workloads
in practical large-scall systems.

4 Simulation Model

In order to study the performance of our coordination tech-
niques, we constructed and simulated a simple model of a
replicated object server system. The model highlights the
critical parameters and ignores the secondary ones. Our
intention is not to predict the actual performance of the sys-
tem but to provide insight into the relative merits of our
coordination techniques.

The model consists of a number of identical clients con-
nected by a network to a replicated database server. The
database server maintains a fixed size database that consists
of a fixed number of disk segments.

The components of the simulated model are described
below. The system parameters that control the behavior of
these components are listed in Table 1. The hardware pa-
rameters reflect to some degree our assumptions that future
processors and networks will improve significantly relative
to disk drives.

Clients

The simulated clients each contain a cpu and a local object
cache. The simulator does not model the contents of the
client cache, but is parameterized by the client cache hit



rate. The clients execute a sequence of transactions. During
each transaction, the client accesses a single object in the
database. If the object is not in the client cache, the client
fetches the object from an object server. After the client
obtains the object, it computes for some time and possibly
modifies the object. Then the client commits the transaction
by sending a message to the primary server.

After the client receives confirmation of the commit, it
immediately begins the next transaction. This simplistic
model of the clients is sufficient for our purposes because we
are investigating the performance of schemes that run at the
server and are therefore mostly interested in the workload
presented to the server. Our simulation results may not be
realistic in absolute terms: a real system would probably
support many more clients because clients would do more
fetching and computation in each transaction.

Network

The simulator models a network without contention. The
network has unrestricted bandwidth and offers a fixed mes-
sage delivery latency. We chose to ignore network con-
tention because the strategies under consideration do not
affect network traffic except between the two server repli-
cas. If network traffic between the server replicas were a
limiting factor in the performance of a replicated system,
we would expect it to be economical and feasible to pro-
vide a dedicated high-bandwidth network channel between
the replicas. Thus, we do not expect the network model to
significantly affect the results of our experiments.

Server

The primary and backup replicas service fetch and com-
mit requests from clients by reading and writing relevant
database segments that live on attached disks. Each replica
maintains an LRU cache of database segments. This cache
is used to speed up the handling of client requests.

We model concurrency control costs at the server with
a simple parameter that expresses the time required to val-
idate each transaction. Aborts are not explicitly modeled
in our system. If transactions were aborted and restarted
this would simply result in extra read traffic to the server.
Therefore a workload that generates a lot of aborts can be
simulated with a workload that generates extra reads.

We do not explicitly model the transaction log stored at
each replica. In evaluating our techniques, we expect the
only significant influence of the log on system operations to
be that the log size must be bounded. We model a bounded
log size by limiting the number of dirty segments in the
replica cache. Limiting the number of dirty segments also
restricts write absorption in our experiments and ensures
that the results are not biased by variations in write absorp-
tion.

The implementations of the various cache and disk man-
agement strategies used in our simulated server are de-

Database
Database size 100,000 segments
Segment size 4 Kbytes

Clients
Cache hit ratio 80%
Processing time per transaction 1 msec

Network
Message latency 1 msec
Processor time per network send 100 �secs

Server
Transaction validation time 5 �secs
Modification installation time 1 msec
Write when this many dirty segments 20% of cache size
Write this many segments at a time 1000

Disks
Time to read/write one segment 30 msecs
Time to write 1000 segments 4 seconds

Table 1: System Parameters

scribed in Section 5.2.

Disk

The simulator models the disk as a simple queue that han-
dles disk operations in the order of their insertion into the
disk request queue. An individual disk operation is com-
pleted in a fixed amount of time. If a large number of disk
operations are submitted together to the simulated disk, then
these operations are completed much faster than they would
if they were submitted individually.

This simplistic disk model is intended to capture the es-
sential aspect of disk drive performance that is relevant
here: when a large number of operations are outstanding,
the disk driver or scheduler can order the operations to ob-
tain approximately one-half the raw disk transfer bandwidth
available [12].

5 Experiment Setup

We designed and ran a series of experiments to evaluate
the coordination techniques presented in Section 3. We
compared the performance of several experimental config-
urations on a variety of workloads. In this section, we
describe the configurations and the workloads used in our
simulations.

5.1 Workloads

The parameters that define the workloads used in our ex-
periments are listed in Table 2. We have two types of
access patterns in our workloads — uniform and skewed.



Workload Parameters
Number of clients 2 : : : 32
Server cache size 5,000 or 25,000 segments
Access pattern Uniform or skewed
Skew parameters

Hot region size 10,000 segments
Hot access probability 90%

Write probability 10%

Table 2: Workload Parameters

Under a uniform workload, a client picks the segment to ref-
erence with uniform probability from the entire database.
Under a skewed workload, the database is partitioned into
two regions, hot and cold. A referenced segment is se-
lected uniformly from the hot region with probability hot-
access-probability and from the cold region with probabil-
ity (1 � hot-access-probability). Each client transaction
modifies the segment it references with probability write-
probability.

5.2 Experimental Configurations

This section contains a brief description of the experimental
configurations used in our simulations. All of these con-
figurations use write grouping to increase write absorption
and disk throughput.

Standard Uncoordinated

The clients send all fetch requests to the primary replica.
The backup replica is used only by the transaction protocol
to log and install updates to the database. The standard
uncoordinated configuration does not use any of the opti-
mizations discussed in Section 3.

Balanced Uncoordinated

In the balanced uncoordinated configuration, the standard
baseline configuration is augmented with random fetch bal-
ancing. Clients choose randomly between the primary and
backup replicas when sending fetch requests. We added
this configuration to our simulation suite because part of
the advantage of cache splitting is due merely to improving
load balance at the replicas.

Split Uncoordinated

Cache splitting is used to decrease the overlap between the
caches at the two replicas. The clients send a fetch request
for a segment s to the home cache for segment s.

We implement cache splitting in our simulations simply
by making one replica contain the home cache for odd-
numbered segments and the other replica contain the home
cache for even-numbered segments.

Balanced Coordinated

The clients behave as in the randomly balanced configura-
tion. The replicas use coordinated writing and read for-
warding to prevent reads from getting stuck behind large
disk writes.

Split Coordinated

This configuration combines coordinated writing and cache
splitting.

Other configurations

We simulated many other combinations of the server con-
figurations, simulation parameters, workloads, and write
policies. We found the other combinations useful in ver-
ifying our understanding of the configurations presented
above. However, we see no reason to clutter our presenta-
tion with the additional configurations. Readers interested
in obtaining the complete simulation results or the simulator
itself should contact the authors.

6 Experiments

In order to understand how the performance of the experi-
mental configurations compare to each other, we simulated
each configuration on a variety of workloads. We ran-
domly generated several transaction traces for each work-
load. Each configuration was run until there were no sig-
nificant variations in the results.

We measured transaction throughput, average fetch la-
tency, maximum fetch latency, and a variety of resource
utilization metrics. These measurements were always sam-
pled over intervals corresponding to five write-batch cycles
(i.e. both the primary and the backup replica each wrote
five batches of 1000 segments to its disk).

In the sections that follow we present some simulation
results that illustrate the relative performance achieved by
the various experimental configurations. We present these
results in terms of “read-bound” and “write-bound” work-
loads. However, the reader is cautioned to take care in in-
terpreting these terms: because all configurations perform
batched writes, the system typically moves among distinct
modes in which a particular replica uses its disk exclusively
for reading or writing. Therefore, even a “write-bound”
workload spends some portion of the time operating in a
read-only mode.

6.1 Read-Bound Workloads

We expect the effects of cache separation to be easier to
observe in read-bound workloads, so we first examine the
uniform workload with a small cache. Figure 4 shows the
throughput of the non-write-coordinated configurations for



various numbers of clients. The table accompanying the
figure shows the cache hit ratio and average fetch latency
for the eight client workload. We chose eight clients be-
cause most throughput curves start flattening out with more
clients, and the fetch latency rapidly seems unacceptably
large.

2 4 8 16 32

Number of Clients

0

50

100

150

200

T
hr

ou
gh

pu
t 

(t
ra

ns
ac

ti
on

s/
se

c)

Split Uncoordinated
Balanced Uncoordinated
Standard Uncoordinated

Metrics for eight clients
Scheme Cache Hit Avg. Latency

Split Uncoordinated 9% 164 ms
Balanced Uncoordinated 5% 224 ms
Standard Uncoordinated 5% 323 ms

Figure 4: Uniform workload in a small cache.

The split uncoordinated configuration has much better
performance than the other configurations. We expect the
cache hit ratio in split uncoordinated to be approximately
double that of the other configurations shown here. How-
ever, because the cache hit ratio is so low, the cache miss
ratio is not dropping very much in relative terms (from 95%
to about 90%). The improvement shown in Figure 4 is too
large to attribute to such a small decrease in fetch disk reads.

In fact, the improvement is due to a twofold reduction in
installation reads. In the non-splitting configurations, both
the primary and the backup replicas perform the installation
reads independently. Splitting the installation reads signif-
icantly reduces the number of disk reads required to install
updates. Note that this effect is specific to replicated ob-
ject servers because page-based systems such as file servers
typically do not require installation reads.

To maximize the effect of cache splitting in a read-bound
configuration, we examine the skewed workload in a small
cache. The small cache holds 5,000 segments and the

skewed workload makes 10,000 segments hot, so cache
splitting should roughly double the cache hit ratio from
about 45% to about 90%.

2 4 8 16 32

Number of Clients

0

200

400

600

T
hr

ou
gh

pu
t 

(t
ra

ns
ac

ti
on

s/
se

c)

Split Uncoordinated
Balanced Uncoordinated
Standard Uncoordinated

Metrics for eight clients
Scheme Cache Hit Avg. Latency

Split Uncoordinated 75% 46 ms
Balanced Uncoordinated 40% 140 ms
Standard Uncoordinated 40% 206 ms

Figure 5: Skewed workload in a small cache.

As shown in Figure 5, the split uncoordinated configu-
ration now has much higher throughput and much smaller
average fetch latency. As in Figure 4, the balanced con-
figuration performs better than the standard configuration.
However, now that the actual cache miss ratio is dropping
from about 60% to roughly 25%, we observe a large in-
crease in throughput. As before, part of the improvement is
attributable to avoiding redundant installation reads. How-
ever, now the increased cache hit ratio is a significant factor
because many fewer client fetch operations and update in-
stallations require disk access.

6.2 Write-Bound Workloads

Coordinated writing should dramatically reduce the maxi-
mum fetch latency observed by clients because fetch misses
will never wait for the completion of a large disk write.
We simulated all experimental configurations using a more
write-intensive workload. For illustration purposes, we
chose the skewed workload in a large cache. Because the
workload is skewed and each cache now holds 25,000 seg-



ments, cache hit ratios are now above 90% in all configura-
tions, and disk writes become much more significant.

2 4 8 16 32

Number of Clients

0

500

1000

1500

2000

T
hr

ou
gh

pu
t 

(t
ra

ns
ac

ti
on

s/
se

c)

Split Coordinated
Split Uncoordinated
Balanced Coordinated
Balanced Uncoordinated
Standard Uncoordinated

Metrics for eight clients
Scheme Cache Hit Latency

Avg. Max.

Split Coord. 94% 7 ms 203 ms
Split Uncoord. 94% 14 ms 4013 ms
Balanced Coord. 91% 11 ms 285 ms
Balanced Uncoord. 91% 18 ms 4054 ms
Standard Uncoord. 91% 22 ms 4159 ms

Figure 6: Skewed workload in a large cache.

Figure 6 shows the throughput of all simulated configu-
rations, the cache hit ratio, the average fetch latency, and the
maximum fetch latency. The results show that the coordi-
nated writing configuration provides much better maximum
fetch latency. We can also see an increase in throughput
due to the fact that clients are able to continue fetching and
committing transactions while the replicas write.

Figure 6 shows that cache segregation alone also offers
an improvement. This improvement is due partially to the
reduction of installation reads (as in the small cache re-
sults), but also due to a decrease in the cache miss ratio
from approximately 9% to about 6%. We can also see that
as more clients are added to the system, the value of cache
splitting appears to exceed the value of coordinated writing.
Of course, the best performing configuration is split coor-
dinated, because it benefits from the combination of both
techniques.

We also simulated these configurations using other ac-
cess patterns and a variety of write ratios. The results are

generally similar to those above. As expected, in uniform
access patterns where disk reads are more important, the
advantage of cache splitting is more significant.

7 Related work

There is a substantial body of work in the literature concern-
ing the operation of replicated servers. Recently, replicated
server design and performance have attracted much atten-
tion [9, 7, 3, 10, 2].

Previous efforts to evaluate the utilization of the com-
bined resources of both replicas has focused primarily on
improving the load balance between the primary and the
backup replica. One approach to load balancing in a repli-
cated database design is to execute read-only queries at the
backup [6]. This technique improves server throughput by
increasing processor and disk arm utilization at the backup.

A different approach to load balancing was implemented
in the Harp file system [9]. In Harp, data is statically
partitioned between file systems and each active site serves
as the primary replica for one file system and as the backup
replica for another. In a transactional system, however,
such data partitioning introduces extra distributed commits
when a single transaction accesses data in more then one
partition.

In contrast to our work, none of the above designs attempt
to provide global management of the contents of caches or
to coordinate the conduct of disk I/O operations. We are
not aware of other work in the replicated servers area that
considers the aggressive coordinated resource management
that we propose. Franklin, Carey, and Livny [5] describe a
global cache management technique in a database system.
The pioneering work of Polyzois, Bhide, and Dias [11]
studies the performance of write coordination in a mirrored
disk system.

8 Conclusion

In this paper, after presenting a baseline replicated object
server design, we proposed several new coordination tech-
niques that enable the server to utilize cache memory and
disk bandwidth more efficiently.

The cache splitting technique helps segregate cache con-
tents to avoid redundant storage of data. Client and server
operations are selectively routed to the cache that will more
likely contain the data. Cache splitting increases the ef-
fective cache size of a two-replica design and also avoids
redundant reads for update installations.

The coordinated writing technique reduces maximum
fetch latency. By always keeping one disk arm available
to service read requests, the server can offer much better
fetch latency even when a large disk write is in progress.

We built a simplified simulation model that captures im-
portant expected characteristics of future scalable replicated



object server systems. We presented simulation results that
illustrate the value of cache splitting and coordinated writ-
ing both alone and in combination. The results show that
simple coordinated resource management techniques can
offer substantial performance improvements. In particu-
lar, in systems where good fetch response time is impor-
tant, cache splitting and coordinated writing reduce both
the expected and the maximum fetch response time, while
increasing total system throughput.

Although we focused on an object-based server that uses
optimistic concurrency control and primary copy replica-
tion, we believe our techniques are general and apply to
page-based systems, to systems that use locking rather than
optimism, and to systems that use other replication tech-
niques.

References

[1] Atul Adya. A distributed commit protocol for op-
timistic concurrency control. Master’s thesis, Mas-
sachusetts Institute of Technology, February 1994.

[2] D. Agrawal and A. El Abbadi. Resilient logical
structures for efficient management of replicated data.
Technical Report TRCS 92-04, Department of Com-
puter Science, University of California,Santa Barbara,
CA 93106, 1992.

[3] A. Bhide, E. Elnozahy, and S. Morgan. A Highly
Available Network File Server. In Winter 1991
USENIX Conference. USENIX Association, January
1991.

[4] S. Carson and S. Setia. Analysis of the periodic update
write policy for disk cache. IEEE Transactions on
Sowtware Engineering, 18(1):213–226,January 1992.

[5] M. Franklin, M. Carey, , and M. Livny. Global mem-
ory management in client-server dbms architectures.
In Proceedings of 18th VLDB Conf., 1992.

[6] H. Garcia-Molina and C.A. Polyzois. Processing of
read-only queries at a remote backup. Technical Re-
port CS-TR-354-91, Department of Computer Sci-
ence, Princeton University, December 1991.

[7] H. Garcia-Molina and C.A. Polyzois. Evaluation of
remote backup algorithms for transaction processing
systems. In ACM SIGMOD International Conference
on Management of Data, pages 246–255, San Diego,
CA, June 1992.

[8] B. Liskov, M. Day, and L. Shrira. Distributed ob-
ject management in Thor. In M. Tamer Özsu, Umesh
Dayal, and Patrick Valduriez, editors, Distributed Ob-
ject Management. Morgan Kaufmann, San Mateo,
California, 1993.

[9] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp
file system. In Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles, 1991.

[10] C. Mohan, K. Treiber, and R. Obermack. Algorithms
for the management of remote backup databases for
disaster recovery. IBM Reasearch Report RJ 7885R,
IBM Almaden Research Center, San Jose, CA, June
1990.

[11] C. Polyzois, A. Bhide, and D. Dias. Disk mirroring
with alternating deferred updates. In Proceedings of
19th VLDB Conf., 1993.

[12] M. Seltzer, P. Chen, and J. Ousterhout. Disk schedul-
ing revisited. In Proceedings of Winter USENIX, 1990.


