How Can We Compute with Arrays of Nanostructures?

Michael Biafore

MIT Lab for Computer Science
Email: biafore@mit.edu

3 Aug 1994
Contents 5.1
1 Imntroduction 3 5.9
1.1 Purpose of this document 3
1.2 Map of this document 3
5.3
2 The era of easy down-scaling is ending 4
2.1 Silicon MOS devices probably cannot be 5.4
scaled much below gate lengths of 0.1p. . 4

2.2 As the number of gates increases, current
architectures will have too many long in-
terconnections 4

2.3 Scaling analysis points to cellular automata 5

3 Cellular automata are computers that bear
some resemblance to physical systems...but

unfortunately not enough 6
3.1 What do we mean by a cellular automaton? 6
3.2 The problem of screening 6

4 Few-body automata are computers whose
form is derived from the form of physical

interactions 8
4.1 The generic form of nanometer-scale com-
putation 8
4.2 A more restricted, but tractable form . . . 8
4.3 Few-body Automata 8
4.4 Physical implementation of Few-body Au-
tomatao oo 10
4.4.1 Few-body Automata operate in a
two-phase cycle 10
4.4.2 Few-body Automata can avoid the
problem of screening 10
4.5 Few-body Automata can be computation
universalo 12
4.5.1 The importance of computation
universality 12
4.5.2 The importance of not requiring
too many states 12

5 How shall we know a promising nanostruc-
ture when we see it? 14

There must be localized physical states
that can represent binary logical states. . 14
It must be possible to transport the local-
ized physical states without changing the
part that represents the logical state. . . . 14
The localized physical states must interact
via a potential which is not too long-ranged. 14
The effect of the interaction on the part
of the physical state used to represent the
logical state must correspond to a deter-
ministic Few-body rule. 14

Example: How to make a Few-body Au-

tomaton from magnetic bubbles 16
6.1 Bubbles are localized physical states that
can represent binary values 16
6.2 Bubbles can be moved without corrupting
the binary values they represent 16
6.3 Bubbles interact via a short-range potential 16
6.4 Can a Few-body rule be implemented? . . 16
6.5 Making the Few-body vertex from Bubble
Logic. o 18
7 Conclusions 20

1 Introduction

1.1 Purpose of this document

In part, the goal of the Ultra Program is to extract useful
computation from nanometer-scale effects. To accomplish
this goal, those of us who are computer scientists must
communicate clearly to those of you who are chemists and
device physicists precisely what kinds of “computational
primitives” you need to obtain from a nanoscale structure
before we can contemplate using it as a building block for
ultra-dense, ultra-fast computation.

One such computational primitive is widely known—
the three-terminal, transistor-like element. In this report,
I describe a new computational primitive—the Few-body
Automaton—which is the building block for a special kind
of cellular automaton. Like the three-terminal element, it
1s powerful enough to form the basis of the most general-
purpose computation. Unlike the three-terminal element,
which traces its origin to macroscopic switch mechanisms,
few-body automata take their inspiration from the very
N-body scattering diagrams that can, in principle, be
used to describe many nanometer-scale phenomena. My
hope in giving them this form is based on the following
expectation:

Computer scientists can lighten the burden on
the device designers who are trying to build use-
ful computational primitives from nanometer-
scale effects by finding new ways to compute
with computational primitives that already re-
semble nanometer-scale effects as closely as pos-

sible.

My objective is to explain what this Few-body compu-
tational primitive is—but in just enough detail that you
can decide for yourself whether or not it is possible to
apply 1t to nanoscale structures that fall within your own
domain of expertise.

1.2 Map of this document

I begin by reviewing some well-known scaling arguments
that lead one to believe that nanometer-scale devices and
cellular-automaton-like architectures are a natural match.

In Section 3, I explain why—despite these scaling
arguments—conventional cellular automata are not a vi-
able architecture for very dense arrays of nanostructures,
where the nanostructures interact directly with one an-
other; rather than through wires. In Section 4, I show
how, starting with the physical form of these interactions
between nanostructures, we arrive at the notion of Few-
body Automata.

In Sections 4.4 and 4.5, I explain the operation of Few-
body automata and establish the fact that they retain the
ability to perform general-purpose computation.

The presentation of the Few-body Automaton prim-
itive concludes with Section b, How shall we know a
promising nanostructure when we see it7 In that sec-
tion, I give four criteria that determine whether or not
the Few-body Automaton approach is likely to be of use
for your particular nanometer-scale structure.

Finally, I close with a concrete example that illustrates,
step-by-step, how one might go about using a famil-
iar, old, jurassic-scale phenomenon—magnetic bubbles—
to make a computer based on the Few-body Automaton.

2 The era of easy down-scaling is
ending

The era in which silicon MOSFETs are steadily scaled
down will probably end in the next 10-20 years. Combi-
natorial analyses of how the number of interconnections
scale with the number of gates indicate that as circuit
density increases, the most natural architectures have the
characteristics of a cellular automaton.

In this section we review some scaling arguments first
made by R. T. Bate[2, 3, 4, 16], D. K. Ferry[14, 15] and
others[7, 21, 35]. These scaling arguments strongly sug-
gest that the most natural architecture for nanometer-
scale devices should have only local interconnections, as
does a cellular automaton.

Actually, two kinds of limits to the continued down-
scaling of device dimensions are apparent:

o limits to scaling individual MOS devices, and

e limits imposed by the proliferation of long intercon-
nections.

2.1 Silicon MOS devices probably cannot

be scaled much below gate lengths of
0.1u.

The scaling of individual MOS devices is limited by the
range of achievable materials properties. In order to
maintain reliability in the face of thermal fluctuations
and manufacturing variations, operating voltages must be
kept above a certain minimum, Vi,i,. Unfortunately, since
the range of achievable dielectric constants is limited, as
one continues to operate progressively smaller devices at
Vinin, one inevitably produces larger electric fields within
the device. As these fields increase, the physical assump-
tions on which the logical operation of a MOS-type device
is based will eventually break down, and the scaled device
becomes computationally useless.

Because improved materials (and the ingenuity of de-
signers) play some role, it is impossible to give a precise
limit to the scaling of MOS devices. But a number of
careful analyses[9, 30, 19, 4] suggest that channel lengths
below about 0.1 would require techniques so extraor-
dinary as to be uneconomical. In an effort to continue
miniaturization past this point, the Ultra program seeks
to investigate novel, nanometer-scale devices based on
qualitatively different physical principles[31, 23].

2.2 As the number of gates increases,
current architectures will have too
many long interconnections

The second barrier to continued downscaling, the problem
of interconnections, 1s not fundamentally a physical limit,
but an architectural one. Combinatorial analyses[10] have
shown that current architectures produce a distribution
of wire lengths containing so many long wires that their
clock speed would ultimately be limited by 7r¢, the time
required to charge or discharge the longest wires. How-
ever, the length of the longest wires is not a reliable met-
ric. If an architecture required only a few long wires,
special techniques could alleviate the delays. A better in-
dicator of the limiting clock speed of a circuit is based on
the average length (I} of its wires.

The average length can be related to a simple archi-
tectural property, the so-called Rent exponent[15], which
characterizes how the number P of input/output ports
required by a circuit scales with the number of gates G
For a wide variety of circuits, P has been found to follow
“Rent’s rule”:

(2.1)

where k is a constant and the Rent exponent p is typically
between 1/2 and 1.

Consider the architectural assumptions that lead to
those two extremal cases. If every gate had its own
connection to the outside world, then clearly we would
be in the p = 1 limit. At the other extreme, in a
two-dimensional array of gates with area A oc GG, only
nearest neighbors are connected, so input/output ports
only occur along the perimeter, and therefore the two-
dimensional array has a Rent exponent p = 1/2. Current
architectures for gate arrays exhibit Rent exponents of
p ~ 0.6-0.7 [33, 26, 8]. Because p is an exponent, this
excess over the ideal limit p = 1/2 becomes significant for
large enough arrays.

The Rent exponent can be related to the average wire
length, which in turn limits the maximum speed of the
system. Donath[10, 13] has shown that the average wire
length (I} depends on the gate count GG and the Rent
exponent p as'

P =kG’

Gr=3

m~{¢

where ¢g is a constant. Modeling a wire as a transmission
line with resistance R and capacitance C' per unit length
yields a simple diffusion equation with solutions charac-
terized by a time delay Trc ~ (I)2. This time scale then
sets the scale for the maximum clock speed.

itp>1/2

if p<1/2 (2:2)

L Actually, for p exactly equal to 1/2, Donath finds (I} ~ log G,
but the distinction is insignificant for our purposes.

nm?%/bit

Area of a Stored Bit

10" — .
10°L ¢
107
107k

107 F

107 F

2-I | | | |

¢ Magnetic disk o
Optical disk +]
Semiconductor o 4

10
1960 1970 1980 1990 2000

Year

Figure 1: If we are to continue the historical trend of the
past trend and the roadmap established by the Semiconductor
Industry Association (SIA) for the next 30 years, then we must
find physical representations for bits that have characteristic
scale 10 nm.

2.3 Scaling analysis points to cellular au-
tomata

Letting & = p — 1/2, we see from (2.2) that if 4 > 0, then
TRe ~ G?° eventually diverges as the circuit complexity
G grows. As the size GG of the circuit increases, the maxi-
mum system speed decreases. However, we could prevent
interconnection delays from limiting overall system speed
if we were able to achieve p < 1/2. By eq. (2.2), this cor-
responds to the case of fixed interconnect length. This is
the line of reasoning that has led many device physicists
to consider modes of computing that require only short
local interconnections; that is, cellular automata.

2010 2020

E=ANCEANGE=ANG
E=AGGEA A =
EAGEAGCEA =

Figure 2: We would like to find a way to arrange nanostruc-
tures so that their physical couplings (bold arrows) to nearby
cells can be used to implement a general-purpose cellular au-
tomaton (cells shown as squares).

3 Cellular automata are comput-
ers that bear some resemblance
to physical systems...but unfor-
tunately not enough

Despite the scaling arguments of the previous section,
conventional cellular automata cannot be used, unmod-
ified, as an architecture for nanometer-scale computa-
tion. Their principal defect is that they do not take
into account the fact that real physical interactions are
not nearest-neighbor-only. As a consequence of this de-
fect, physical implementations of conventional cellular
automata do not leave us any way to control which
nanostructure-cells affect one another, nor do they give
us any control we require over when the cells affect one
another.

3.1 What do we mean by a cellular au-

tomaton?

Almost all references to cellular automata are in fact ref-
erences not to tangible systems, but to abstract models—
mathematical cellular automata (CA). A mathematical
cellular automaton is a discrete dynamical system char-
acterized by

e a discrete space composed of “cells”,
e a discrete set of states for the cells, and

e a deterministic “rule” U for updating the state of
each cell at discrete time steps.

Mathematical CA resemble physical systems in so far
as the cells are uniformly arranged in space and the CA
rule—the discrete analog of a physical law—is applied
uniformly everywhere.

To distinguish this mathematical abstraction from ac-
tual implementations, where nanostructures play the role
of the cells, we will call any real or imagined physical
implementation of a mathematical cellular automaton a
physical cellular automaton.

A mathematical CA operates as shown in the space-
time diagram of Fig. 3. The state of each cell at time
to + 1 depends on its own state and the states of its
neighbors at time ¢5. In a mathematical CA, this de-
pendency 1is specified by fiat—we simply stipulate that
a§+1 = f(aﬁ, a§+1’ aﬁ—l)'

In a physical CA, however, the state of a cell depends
on the states of its neighbors according to the physical
interactions that couple them. Consequently, it is not

within our power to specify an arbitrary dependence. If
a physical CA fails to achieve precisely the dependence
of the desired mathematical CA, it will fail to compute
the same thing as the mathematical CA.

Unfortunately, this is precisely the predicament we face
if we naively try to translate a mathematical CA into a
physical one. The reason, as first noted by R. Landauer,
is simply that

Real particles have an interaction that falls off
with distance, but is not all that selective, and is
not limited to nearest neighbors or next nearest

neighbors[25].

3.2 The problem of screening
At the heart of the predicament lie two problems:

e lack of control over which cells affect one another,
and
e lack of control over when cells affect one another.

As it turns out, both of these problems can be solved
if only we can gain some ability to screen the interactions
between cells.

The need to control screening is evident from Fig. 4.
Suppose we are trying to implement a two-dimensional
mathematical CA in which the next state of each cell is
supposed to be influenced only by its four nearest neigh-
bors. In the corresponding physical CA (Fig. 4), we will
be unable to implement the intended mathematical CA
unless we are able to screen the interactions, which almost
always persist beyond nearest-neighbors.

Instead, the result will be an irregular, stochastic dy-
namics with randomly fluctuating neighbors (Fig. 5), a
system whose prospects for producing useful computation
are considerably dimmer.

Furthermore, the ability to selectively screen interac-
tions between cells would permit us to enforce the third
property of CA—discrete time evolution—by screening a
cell from even the influence of its nearest neighbors except
at discrete times.

In the next section we show one technique for acquiring
the ability to screen interactions: We define a new class
of cellular automata whose form incorporates Landauer’s
observation that real interactions do not abruptly vanish
beyond the nearest neighbors. The new class of physical
cellular automata are called Few-body Automata.

Figure 3: The space-time evolution of a one-dimensional cellular automaton with nearest neighbor interactions.

=\ == @(\}X@

e e\ =
=\ =\ =\ =
=\ =\ =\ =

Figure 4: In the absence of effective screening, cells outside the neighborhood of the mathematical CA may, in the corresponding
physical CA| have a non-negligible effect (wavy arrow) on the states of cells, thereby corrupting the computation.

Figure 5: In the mathematical CA, the screening problem manifests itself as an unintended and uncontrollable addition (bold
arrow) to the neighborhood of a cell, an addition that, even worse, comes and goes at random times.

4 Few-body automata are com-
puters whose form is derived
from the form of physical inter-
actions

We need to replace conventional CA with a new computa-
tional primitive that more closely resembles the physical
interactions present at nanometer scales. By construc-
tion, few-body automata satisfy this requirement.

In this section, we briefly explain how, starting from a
very general picture of nanometer-scale interactions, we
arrive at the notion of few-body automata.

4.1 The generic form of nanometer-scale

computation

In any scheme for performing digital computation, the
“bits” of the computation must be encoded in some phys-
ical quantity. For example, in MOSFET technology, bits
are encoded by collections of charge carriers that raise
or lower voltage levels on conductors. To compute at
nanometer scales, the bits must be represented by some
nanometer-sized entity. The bit-encoding entity might,
for example, be a single electron tunneling through a
Coulomb-blockade array, a soliton traveling along a poly-
acetylene molecule, or any localized state passing, bucket-
brigade-like through an array of fixed nanostructures.

Computation occurs when the physical quantities rep-
resenting the bits interact. In a MOSFET], the collection
of charge carriers on the gate interacts with the collec-
tions of charge carriers on the source and drain by creat-
ing a connection between source and drain, a connection
created when charge carriers on the gate and in the chan-
nel interact via the Coulomb interaction. Generalizing,
we obtain a picture (Fig. 6) of the generic nanometer-
scale computation as a process in which some localized,
nanometer-scale entities affect the information-encoding
portion of one anothers state.

4.2 A morerestricted, but tractable form

For the most general class of interactions, nothing more
specific than Fig. 6 can be deduced about the form of
nanometer-scale computation. However, if we restrict
ourselves to what are known in scattering theory as reg-
ular interactions[34], then we can further decompose the
shaded blob of Fig. 6 into a composition of several few-
body interactions, as in Fig. 7.

This decomposition is permissible only if the inter-
actions among the bit-encoding entities satisfies certain
“regularity conditions”. Pairwise interactions among N

bodies have been shown[12, 22] to be regular if the pair-
wise interactions satisfy the conditions

li Vi) = 0, @
and
lim r*T<V;;(r) = 0. (4.2)

r— 00

In essence, these regularity conditions ensure that there is
some finite time before and after the interaction beyond
which time it is mathematically valid to consider the bit-
encoding entities as effectively non-interacting[34, p.26].

Surprisingly, some quite pedestrian interactions fail
to satisfy these conditions—for instance, the unscreened
Coulomb interaction. And there are some interactions
which satisfy them easily, like the screened Coulomb in-
teraction.

4.3 Few-body Automata

Few-body automata can only be defined when the rele-
vant interactions are regular in the sense of Eqgs. (4.1-
4.2), and henceforth we consider only such interactions.
We arrive at the notion of a Few-body Automaton by
discretizing the times and places where the interactions
of Fig. 7 occur. In one dimension, the resulting pattern
of interactions in space-time is shown in Fig. 8. Note
that interactions occur in pairs, so this is an example of
a 2-body automaton.

Mathematically, the form of few-body automata is the
same as that of lattice gases, which have found wide appli-
cation in the numerical simulation of hydrodynamics[18,
17, 11]. Physically, Fig. 8 represents a process in which
pairs of bit-encoding entities—particles—approach one
another closely enough that they affect each others state
and then diverge from the region where the interaction
took place until they approach another particle closely
enough to affect its state, whereupon the cycle repeats.

To clarify how Few-body Automata evolve in time, in
the next section I describe the physical implementation
of a 4-body automaton in two dimensions.

2

Figure 6: Generic computational process with six input states and six output states.

Badd

Figure 7: Computational process with six input states and six output states when all interactions are regular.

\/{ EK/E/\%){\%F
Kt T

5 b db o .

X

Figure 8: The 2-body automaton that results from discretizing space-time events that involve regular interactions.

4.4 Physical implementation of Few-
body Automata

Unlike conventional CA, in which the bit-encoding enti-
ties always remain in the cells, in a few-body automaton
they must shuttle back and forth between two “clustering
locations”. In return for this added complexity, however,
we gain enough control over which bit-encoding entities
interact to extract useful computation from real nanos-
tructures.

In two dimensions, the natural generalization of the
one-dimensional 2-body automaton in Fig. 8 is the 4-body
automaton of Fig. 9. One possible geometric form that
the corresponding physical automaton might take in the
zy-plane is shown schematically in Fig. 10. The dynamics
is given by a simple two-phase cycle.

4.4.1 Few-body Automata operate in a two-
phase cycle

In the first part of the cycle, four bit-encoding entities
converge, forming clusters at the vertices labeled S;. For
example, in Fig. 10(a), four bit-encoding entities, with
information-bearing states «, 3, v and é are shown con-
verging to form a cluster at a vertex marked S;. Else-
where in the few-body automaton, other groups of bit-
encoding entities are simultaneously converging on other
vertices marked S;. Since, by hypothesis, all relevant in-
teractions are regular, the information-bearing states are
unchanged until the cluster has formed.

Once the cluster has formed, interactions among the
bit-encoding entities change their information-bearing
states according to the rule given by the scattering matrix

Sl : (aaﬁa%é) I (O/aﬁla'y/a(y)'

After S7 has “updated” their states, the bit-encoding en-
tities exit the cluster, each heading for one of four differ-
ent Sy clusters (Fig. 10(b)). In the Sy clusters they will
participate in a similar process with three new partners.
Once the information-bearing states of the bit-encoding
entities have again been modifed, they exit the S5 clus-
ters and again converge on the locations of the S clusters,
thus completing the two-phase cycle.

As we will see in Section 4.5, it 1s possible to make
a general-purpose computer even for certain very simple
scattering rules S7 and Ss.

(4.3)

4.4.2 Few-body Automata can avoid the prob-
lem of screening

Because the separation D of the clustering locations—
unlike the intrinsic range of the physical interactions be-

10

tween bit-encoding entities—is under our control, we have
an opportunity to avoid the screening problem of Section
3.2. In particular, we want to choose D large enough
that we can neglect all the effects on the information-
bearing states of a bit-encoding entity in one cluster that
are caused by its interactions with bit-encoding entities
in other clusters.

The essential goal in defining few-body automata has
been to find a compromise between the physical form of
interactions that nature gives and the computational need
to maintain some control over when and where the in-
formation processing takes place. But before we can be
sure we have found a satisfactory compromise, we have to
make sure we have not gone so far that we have given up
the ability to perform the kind of general-purpose compu-
tation. In the next section, we will see that, fortunately,
we have not.

Figure 9: Mathematical few-body automaton with 2 x 2 cluster neighborhoods. Clusters where S; operates are shown as blue
squares; clusters where S; operates are green; the individual cells of the automaton are shown as dotted boxes.

NN NSNS
\/\/N NN

NN N
WA @\ RZE N

NN NN

Figure 10: Physical few-body automaton showing flow of the bit-encoding entities at (a) odd time steps, (b)even time steps.

11

4.5 Few-body Automata can be compu-
tation universal

Despite the fact that the definition of Few-body Au-
tomata was dictated almost entirely by the form of
nanometer-scale interactions, they can efficiently com-
pute the same functions any computer can.

4.5.1 The importance of computation universal-

ity

In defining few-body cellular automata in the previous
two sections, we have ignored the fact that eventually we
want to program these automata to compute. By forcing
few-body automata to mimic the form of nanometer-scale
interactions, have we inadvertently made it difficult, or
even 1mpossible, to use them as a computer? The answer,
fortunately 1s “No”.

In theoretical computer science, there is a kind of hall-
mark for computation. Mechanisms which possess the
hallmark can compute anything that any computer can
(although it may take a long time to do so), while those
that do not have it are demonstrably incapable of per-
forming certain computational tasks. The hallmark is
known as computation universality.

Almost a decade ago, Margolus[27] showed (by con-
structing an example) that a kind of automaton called
‘partitioning’, or ‘lattice-gas automata’ could attain com-
putation universality. Since one can easily show[5] that
the computational properties of Few-body Automata are
isomorphic to those of lattice-gas automata, it follows im-
mediately that Few-body Automata can attain the hall-
mark of universal computation.

4.5.2 The importance of not requiring too many
states

We eventually want to use few-body automata as an ar-
chitecture for turning arrays of nanostructures into com-
puters, and we expect that individual nanostructures will
often have only a limited repertoire of accessible states.
Consequently, in addition to making sure that Few-body
Automata can be computation-universal, we must also
make sure that they do not attain their computation uni-
versality at the expense of requiring an impossibly large
number of states per cell.

For the case of 4-body automata in two dimensions, the
“billiard ball” cellular automaton (Margolus[27]), a cellu-
lar automaton version of Fredkin’s billiard ball model,
requires just two states (that is, one bit) per cell, and is
computation universal.

12

The billiard ball rule on the 2x2 clusters is shown in
Fig. 11. In the figure, black squares represent a bit value
of 1. In this particular case the rule S; that operates on
the clusters during the odd time steps and the rule S
for even time steps are the equal; that is, the four in-
puts values of a 2x2 cluster are mapped to the same four
output values regardless of whether the transformation
occurs during an even or odd time step.

If the 1s bits are regarded as the billiard balls and the
0Os bits as empty space, this rule inherits its computation-
universality from Fredkin’s billiard ball model, in which
the wires of a digital circuit are represented by streams
of infinitely-hard, finite-diameter billiard balls. The pres-
ence of a billiard in a particular stream stands for a binary
signal value 1, its absence a binary value 0. Where two or
more streams cross, a collision will occur if both streams
contain a ball and the finite-impact collision will displace
the trajectory of both balls. If no collision occurs, the
trajectories are unperturbed.

This dependence of the output streams on input
streams 1s called a collision gate. It has been shown that
a Fredkin gate can be constructed from collision gates.
Since any boolean gate can be constructed from Fred-
kin gates, the computation-universality of this 4-body au-
tomaton follows.

For the case of 2-body automata, I have shown
elsewhere[6] that computation universality can be at-
tained in one dimension with fewer than six bits per cell.
In two dimensions, 2-body automata can be computation-
universal with just two bits per cell.

Consequently, we can rely on Few-body Automata to
perform the most general computation possible even when
the bit-encoding entities can take on only a few states.

The simple Few-body rule of Fig. 11 therefore consti-
tutes an example of a computational primitive—distinct
from the familiar three-terminal behavior—that can serve
as an alternative target for designers of nanometer-scale
devices.

|

l

l

|

HEEFED
B ™ % s

..

Figure 11: The transition table for the billiard ball CA.

UL |[UR UL’| UR’
LL |LR LU’ | LR’

LR
LL

URT 4
uL -

o——— LR’
LR —
UR
uL

Figure 12: The output of the lower-right cell (LR/) is a simple Boolean function of the binary input values (LR,LL,UR,UL) of
the four cells in the cluster. Here it is written as a composition of AND and NOT functions.

13

5 How shall we know a promising
nanostructure when we see 1t?

Which nanostructures will be easiest to develop into the
Few-body Automaton primitive?

5.1 There must be localized physical

states that can represent binary log-
ical states.

The most basic requirement is that we 1dentify some phys-
ical states (shown schematically in Fig. 13) that can repre-
sent the binary data—the 1s and Os—of our computation.
The entities used to represent binary values should be as
small as possible. However, they must also be long-lived,
stable states since attempting to encode data in physi-
cally unstable states demands elaborate error-correction
that can quickly negate any gains in density.

The range of entities suitable for representing binary
data is very large. Whereas in larger devices macroscopic
currents or voltage levels represent the data, at nanome-
ter scales one might contemplate taking a single electron
in a Coulomb blockade array[l, 24] to represent the bi-
nary value 1 and the absence of an electron as repre-
senting binary value 0. Similarly, others have proposed
to encode binary data in solitons propagating along 7-
conjugated polyenes [7], or as magnetic flux quanta propa-
gating through arrays of coupled Josephson junctions[20].

5.2 It must be possible to transport

the localized physical states without
changing the part that represents the
logical state.

We must be able to do more than just store the data reli-
ably. Even if we aspire “only” to make ultra-dense mem-
ories, and not full-fledged computers, the entities repre-
senting our data must be able to move without corrupting
the data they represent. That 1s, as shown schematically
in Fig. 14, whatever physics governs the dynamics of our
bit-carrying entity must permit it to propagate without
disturbing that part of the state « that represents the
data.

The distance over which the information-bearing states
« must propagate freely is determined by the intercell
separation D of the few-body automaton (recall Fig. 8).

14

5.3 The localized physical states must in-
teract via a potential which is not too
long-ranged.

The previous two conditions must be met by any nanos-
If
we further hope to fashion the nanostructure array into
a Few-body Automaton, the information-bearing entities

tructure array before it can be used as a memory.

must interact with one another via a potential that sat-
isfies the regularity conditions Eqgs. (4.1-4.2).

As depicted in Fig. 15 there must be some interac-
tion S between the information-bearing entities—shown
with incoming states («,8,7v,4) and outgoing states
(o, 3',%',¢"). The interaction must become strong
enough as the information-bearing entities approach one
another to affect their information-bearing states. In ad-
dition, as the entities part company, the interaction must
grow weak rapidly enough that what occurs at one inter-
action vertex (recall Fig. 10) has a negligible effect on the
outcome at a neighboring vertex a distance D away.

5.4 The effect of the interaction on the

part of the physical state used to rep-
resent the logical state must corre-
spond to a deterministic Few-body
rule.

Even after we have decided which physical entities will
carry the information, and which of their states will cor-
respond to Os and 1s, we still have some control over what
will occur at the locus of each interaction vertex. Among
the “levers” remaining at our disposal are the ability to
constrain interactions at each vertex (labeled Sy or Sz in
Fig. 10) by imposing boundary conditions and external
fields.

The final requirement is by far the most challenging.
Using only these levers it must be possible to arrange
matters in such a way that the net effect of the interac-
tion among information-bearing entities is that a given set
of input states always produces the same output states.
That is, we must be able to harness the native physi-
cal interactions between the information-bearing states
in such a way as to synthesize some deterministic few-
body rule, such as the billiard-ball rule depicted in Fig.
11. Of course, the most desirable rules to synthesize are
the computation-universal ones since they permit us to
perform general-purpose computation in the nanostruc-
ture array.

In the next section, we walk through a detailed exam-
ple of how these four requirements guide us in designing
a computation-universal few-body automaton in a well-
known technology—magnetic bubbles.

3 1

Figure 13: Localized physical states o and £ must be associated in some way with binary logical states 0 and 1.

0 a

Figure 14: The localized physical states o that are associated with binary values must be able to propagate without changing
that value.

& Y

a’ P
Figure 15: It must be possible to arrange the external fields and boundary conditions in such a way that, when the information-

bearing entities approach one another closely, they modify one another’s states. For example, the incident states o, 8,y and
6 affect one another according to rule S and emerge in states o', 8’, 4’ and ¢’

15

6 Example: How to make a Few-
body Automaton from mag-
netic bubbles

Magnetic bubbles satisfy the first three criteria in a
straightforward manner.

6.1 Bubbles are localized physical states

that can represent binary values

As shown in Fig. 16, the binary value 1 is represented by
the presence of a bubble domain (bottom of figure), while
the absence of a bubble represents binary value 0.

For appropriate values of the anisotropy energy in the
plane of the magnetic film, and the static external mag-
netic field perpendicular to the plane, the bubbles are
known to be quite stable.

6.2 Bubbles can be moved without cor-
rupting the binary values they repre-
sent

In the absence of time-dependent magnetic fields, the
bubbles remain at rest. They can be moved by providing
the material in which they reside with an overlay of pat-
terned high-permeability material (e.g. Permalloy) and
immersing the bubble film in a rotating in-plane mag-
netic field. As the field lines up with an elongated part of
the permalloy overlay, it concentrates the magnetic field
lines, creating a potential gradient and resultant net force

on a bubble.

The so-called T'I-bar propagation pattern of permalloy
overlays in Fig. 17 shows how the information-bearing
state, the bubble, can be transported from one point
to another so that it arrives in a predictable number of
time steps. Since the T'/-bar configuration neither spon-
taneously generate nor destroys bubbles, both the state
representing binary value 1 and that representing 0 are
faithfully propagated.

Bidirectional propagation (Fig. 18) is achieved by com-
bining a T'I-bar pattern with its mirror image. The direc-
tion of the rotating in-plane field is shown at lower right,
and the direction of bubble propagation along the tracks
is indicated by the arrows.

With the bidirectional tracks, can get the
information-bearing entities—the bubbles—into and out
of a few-body vertex (shaded region in Fig. 19).

we

16

6.3 Bubbles interact via a short-range
potential

Two bubbles interact via the magnetic dipole-dipole inter-
action. Since a bubble domain in the binary 1 state feels
a repulsive force in the presence of another domain in the
1 state, but not when the neighboring domain is in the 0
(no bubble) state, the requirement that the information-
bearing entities be able to physically sense one another’s
logical state is also met.

Therefore, the first three criteria given in the previous
section are trivially met by magnetic bubbles with the
usual identification of a bubble with binary value 1. But
what, if anything, can be done to implement a Few-body
Automaton rule?

6.4 Can a Few-body rule be
mented?

imple-

The last criterion states that we must be able to use
the remaining “levers”, boundary conditions and exter-
nal fields, in such a way that the shaded few-body ver-
tex in Fig. 19 causes the bubbles to execute a particular
Few-body Automaton rule. In the next section, we ob-
serve that the computation-universal rule of Fig. 11 can
be implemented using bubble logic circuits found in the
literature.

Figure 16: A bubble represents binary value 1, the absence of
a bubble value 0.

H ITJ)TITIT
]

Tty o <
] SYSTIN GO 2
TTTT SEIRNS
S R o
T1'7'T XY L

H \\/\'\ /’/\ /
3K R AL

Figure 17: T'I-bar track formed by permalloy conductors pro-
vides unidirectional propagation of the bubbles without chang-

H

Figure 19: Can we replace the shaded “?” with some pattern
of permalloy in such a way that it has the same 4-input/4-
output logical function as the universal billiard ball rule of
Fig. 117

ing their information-bearing state (i.e., their existence).

B PR P
IIIT

Figure 18: A double T'I-bar track provides bidirectional prop-
agation. Arrows show the directions in which bubbles prop-
agate. The in-plane field H rotates counter-clockwise, as in
Fig. 17

17

6.5 Making the Few-body vertex from
Bubble Logic

In principle, any logical function can be synthesized from
bubble logic, but is it possible to make a compact few-
body vertex for some computation-universal rule using

bubble logic?

Most of the work done on magnetic bubble technology
has focused on designing memory, but a few papers on
magnetic bubble logic appeared. Perhaps the simplest
example of how the dipole-dipole repulsion between bub-
bles can be harnessed to produce logical functionality is
the Bubble Idler shown in Fig. 20. It operates on a pair
of bubbles incident sequentially along the left track.

The permalloy pattern is arranged so that an isolated
bubble propagates left to right up to the junction, then
downward along the vertical track. As the the in-plane
field rotates, the first bubble (if present) is captured inside
the 4-cycle just below the horizontal TI-bar track. The
second bubble is then deflected—that 1s, continues on the
horizontal track—because due to i1ts repulsive interaction
with the bubble trapped in the idler. Simultaneously, the
repulsive interaction frees the bubble trapped in the idler.

Similarly, Sandfort and Burke[32] have designed an
overlay pattern (Fig. 21) that performs both a logical
AND and a logical XOR on its inputs. From elemen-
tary circuit theory[28], it is known that from these two
functions any Boolean function can be constructed.

Therefore, 1t is evident that, at least in principle, we
can find some pattern of permalloy overlays at the ver-
tex that will yield any desired Few-body Automaton rule
S (Fig.23). Since, in particular, we can synthesize the
computation-universal Few-body rule of Fig. 11, this con-
cludes the construction of a Few-body Automaton in
which magnetic bubbles are the bit-encoding entities.

The simplicity of the Few-body rule suggests that, with
some ingenuity, a much more compact realization may be
possible. If, for example, the vertex can be realized in a
region 10nm on a side, then at a clock-rate of 1MHz it
should be possible to perform more than 10'* bit opera-
tions per second on a lemxlcm array.

18

Figure 20: Bubble idler. The first bubble incident from the
left 1s temporarily trapped in the circle of four permalloy con-
ductors (bottom center). The second bubble incident from
the left 1s prevented from making the right angle by its repul-
sive interaction with the trapped bubble. Simultaneously, the
trapped bubble is freed, and along the downward track.

\//\/ A W V\\"\\’ %’ W R N
/‘{;;v v%:'\\'\ ’\f/;v \»&\\

Aand B— I%B N5 IS
g R S R o
K <> X 2o

—— AXxorB
I_I |

s :
@ x /(\ A OX
F Q H \)}\/ v\:\/\ /\f/;v \/%\:/%

A and B g\,k‘ ’%} R ’{;/f}./
/‘,{;/ v\{\:}\ .

Figure 21: The AND/XOR logic gate of Sandfort and N . O H
Burke[32]. \)%’\\,\\ "{Z},
l L L L Figure 23: Permalloy circuit of a Few-Body cellular automaton

I that uses magnetic bubbles.

Figure 22: The flip-flop of A. J. Perneski[29].

19

7 Conclusions

I have described a new computational primitive—the
Few-body Automaton—whose form is derived from the
form of N-body scattering events. Because their form is
derived from the same N-body scattering diagrams used
to describe nanometer-scale physics, this computational
primitive may be easier to realize in practice for certain
nanometer-scale structures.

Like the best-known computational primitive, the
three-terminal element, the Few-body Automaton is pow-
erful enough to form the basis of the most general-purpose
computation. But it offers designers of nanometer-scale
devices the possibility of a different route to extracting
useful computational behavior from their structures.

Device designers who want to get some idea of whether
or not the Few-body Automaton architecture can be fruit-
fully applied to their particular nanometer-scale structure
should look for three properties:

e The structure must support localized physical states
that can represent binary logical states,

e It must be possible to transport the localized physical
states without changing the part that represents the
logical state, and

e The localized physical states must interact via a po-
tential which is not too long-ranged (as specified by
Egs. 4.1 and 4.2).

Once these three properties are plausibly attainable,
the time is ripe for a collaboration between the device
designer and CA researchers aimed at overcoming the
most significant remaining obstacle to extracting useful
computation from arrays of the device, namely that

e The effect of the interactions within isolated clusters
of a few such localized physical states must corre-
spond to some computation-universal Few-body Au-
tomaton rule.

References

[1] AvERIN, D. V. and LikHarev, K. K., “Single
Electronics: A Correlated Transfer of Single Elec-
trons and Cooper Pairs in Systems of Small Tun-
nel Junctions”, In Mesoscopic Pheomena in Solids

(Altschuler, B. L., Lee, P. A., and Webb, R. A., eds.),
173 (1991).

[2] BaTE, R. T., “The future of microstructure tech-
nology”, Superlattices and Microstructures 2, 9-11

(November 1986).

[3] BaTE, R. T., “Nanoelectronics”, Solid State Tech-
nology 32, 101-108 (1989).

20

[4] BaTE, R. T., FRAZIER, G. A., FRENSLEY, W. R.,
LEE, J. W., and REED, M. A., “Prospects for
quantum integrated circuits”, In Quantum Well and
Superlattice Physics (Dohler, Gottfried H., ed.), 26—
34 (1987).

[5] BIAFORE, MICHAEL, Few-body Automata: A

methodology for extracting computation from phys-
ical interactions, PhD thesis, MIT (1993).

[6] BiaAFORE, MICHAEL, “Universal computation in

few-body automata”, Complex Systems 7, 221-239
(1993).

[7] CARTER, F. L., “The Molecular Device Computer:

Point of Departure for Large Scale Cellular Au-
tomata”, Physica 10D, 175-194 (1984).

[8] CuiBa, T.,
(1975).

IEEE Trans. on Comput. C-27, 319

[9] DENNARD, R. H., “Physical Limits to VLSI Tech-
nology Using Silicon MOSFETS”, Physica B 117,
39-43 (1983).

DonaTH, W. E., “Placement and Average Intercon-
nection Lengths of Computer Logic”, IEEE Trans.
on Circ. and Sys. CAS-26, 272-276 (1979).

DoorLEN, G. D., Lattice Gas Methods for PDE’s,
North-Holland, Amsterdam (1989).

Fappeev, L. D., Mathematical Aspects of the
Three-body Problem in Quantum Scattering Theory,
Israel Program for Scientific Translations (1965).

Ferry, D. K., “Two-Dimensional Automata in
VLSI”, In Submicron Integrated Circuits (Watts,
R. K., ed.), 377-413 (1988).

[14] FERrRY, D. K., AKERs, L. A., and GREENEICH,
E. W., Ultra Large Scale Integrated Microelectron-
ics, Prentice-Hall (1988).

[15] FERRY, D. K. and PoroDp, W., “Interconnections
and Architecture for Ensembles of Microstructures”,
Superlattices and Microstructures 2, 41 (1986).

FrazIER, G., Interconnections and Architecture
for Ensembles of Microstructures, Technical Report

4769644, U.S. Patent, (1988).

[16]

FriscH, U., HASSLACHER, B., and POMEAU,
YVES, “Lattice-Gas Automata for the Navier-Stokes
Equation”, Physical Review Letters 56, 1505-1508
(1986).

[18]

HarDY, J., Pazzis, O. DE, and POMEAU, YVES,
“Molecular dynamics of a classical lattice gas: Trans-
port properties and time correlation functions”,

Physical Review A 13, 1949-1960 (1976).

Harr, P. A. H., Hor, T. VAN’T, and KLAASEN,
F. M., TEEE J. Solid-State Circuits SC-14, 343
(1979).

Havakawa, Hisao, “Josephson computer technol-
ogy”, Physics Today 39, 46-52 (March 1986).

HeiLMEIER, G. H., Microelectronics: End of the
Beginning or Beginning of the End?, In Proceedings,
2-5, TEDM, (1984).

Hepp, K., “On the Quantum Mechanical N-body
Problem”, Helvetica Physica Acta 42, 425-458
(1969).

Kirk, W. P. and REED, M. A. Nanostructures

and Mesoscopic Systems, Academic Press (1991).

Kuzmin, L. S., DELSING, P., and CLAESON,
T., “Single-Electron Charging Effects in One-
Dimensional Arrays of Ultrasmall Tunnel Junc-
tions”, Physical Review Letters 62, 2539 (1989).

LanDAUER, R., “Computation and Physics:
Wheeler’s Meaning Circuit?”, Foundations of

Physics 16, 551-564 (1986).

LanpMaNn, B. S. and Russo, R. L., IEEE Trans.
on Comput. C-20, 1469 (1970).

MARGOLUS, NORMAN, “Physics-like models of com-
putation”, Physica D 10, 81-95 (1984).

MUKHOPADHYAY, AMAR, Recent Developments in
Switching Theory, Academic Press (1971).

PERNESKI, A. J., “Propogation of Cylindrical Do-
mains in Orthoferrites”, IEEE Transactions on Mag-

netics MAG-5, 554-557 (September 1969).

Prince, J. L.
Springer (1980).

Very Large Scale Integration,

REED, M. A. and Kirk, W. P., Nanostructure
Physics and Fabrication, Academic Press (1989).

SANDFORT, R. M. and BURKE, E. R., “Logic Func-
tions for Magnetic Bubble Devices”, IEEE Trans-
actions on Magnetics MAG-T, 358-361 (September
1971).

STRINY, K. M., “Assembly Techniques and Pack-
aging of VLSI Devices”, In VLSI Technology (Sze,
S. M., ed.), chapter 13, 26-34 (1988).

21

[34] TaYLOR, J. R., Scattering Theory, Academic Press

(1972).

[35] WEISBUCH, C. and VINTER, B., Quantum Semicon-

ductor Structures: Fundamentals and Applications,

Academic Press (1991).

