
Using non-interactive proofs to achieve

independence e�ciently and securely

Rosario Gennaro

Laboratory for Computer Science

Massachusetts Institute of Technology

rosario@theory.lcs.mit.edu

November 4, 1994

Abstract

Independence or simultaneous broadcast is a fundamental tool to achieve secu-
rity in fault tolerant distributed computing. It allows n players to commit to
independently chosen values. In this paper we present a constant round pro-
tocol to perform this task. Previous solutions were all O(logn) rounds. In the
process we develop a new and stronger formal de�nition from this problem.

As an example of the importance of independence in distributed protocols,
we show an attack on the Sako-Kilian election scheme presented at CRYPTO
94 made possible by the protocol failure on achieving independence. Using our
techniques we will show how to modify the scheme to make it secure.

1 Introduction

Independence is a fundamental tool to achieve security in fault tolerant distributed
protocols. In this paper we present improved results based on a careful exploitation
of the properties of non-interactive proofs [2]. In particular we will exhibit the �rst
constant round protocol for the problem of simultaneous broadcast (previous solutions
were O(log n) rounds where n is the number of processors in the system). In the
process we will develop a new and stronger formal de�nition for this problem. Finally
as a practical example of the importance of achieving independence in distributed
protocol we show an attack to the Sako-Kilian election scheme [10] made possible by
the protocol failure on achieving independence. Using our techniques we will show
how to �x this problem and make Sako-Kilian scheme secure.

1



1.1 Why independence?

The problem of independence in distributed protocols has been put forward by Chor
and Rabin in [3] and subsequently by Dolev, Dwork and Naor in [5].

Informally this means that we are looking for protocols in which two or more
parties announce some values and we want to prevent any of them to correlate in any

manner his/her own values to the values that the other parties have announced. To
explain the concept of independence let us present some motivating scenarios �rst.

Example 1 Contract bidding 1: The city of Cambridge decides to sell an estate
along the Charles River and invites potential inquirers to bid for the deal. The city
publishes a public-key encryption scheme E for interested people to send their bid.
Both Harvard University and MIT are interested in buying the estate. MIT places
its bid by sending mM = E(bM) over an insecure phone line. Harvard is tapping the
line and overhears the MIT bid. In spite of the security of the encryption scheme E,
now Harvard is able to at least tie the MIT bid, by sending over mH = mM . Even
requiring Harvard to send a di�erent cyphertext would not solve the problem since
it could still be possible to produce a cyphertext mH 6= mM that decrypts to a lower
bid.

Example 2 Coin 
ipping : n players decide to 
ip together a common and random
coin b. A way to do this would be for each player Pi to broadcast a bit bi and then
set b to be the XOR of all the broadcasted bits. This is clearly a bad idea since
the last player that broadcasts his/her bit decides the value of the coin. Similarly
having all the players commit to their bits by posting E(bi), where E is a encryption
scheme and then having them decommit, does not solve the problem either since, as
we saw in the previous example, encryption alone does not guarantee independence.
For example it could be possible for the last player after seeing E(b1); : : : ; E(bn�1) to
broadcast mn such that at decommiting time b = 0. Worse a player could decide to
not decommit his/her bit if he/she realizes that the outcome of the coin toss is not
the desired one.

Example 3 Electronic elections: In the future we may think of running elections on
the network. A possible way of doing this would be to have a center collecting the
votes sent to it in some encrypted form. However we need to make sure that casted
votes are independent, i.e., that seeing the cyphertext of one voter does not in
uence
the actions of another voter.

The examples above show that encryption is necessary to this task, but not su�cient.
The reason is that the de�nition of semantic security for cryptosystems [9] guarantees
that given a cyphertext we cannot learn anything about the corresponding cleartext.
However in distributed settings this is not enough: we want the cyphertext to be
completely useless. As pointed out in [5] independence is clearly an extension of the
concept of semantic security.

1This example has been adapted from a similar one described in [5]

2



1.2 Previous work

Chor and Rabin in [3] put forward a �rst formal de�nition for the problem of simul-

taneous broadcast: a protocol that allows n players to independently announce n bits.
Their solution requires O(log n) rounds to complete. Clearly this protocol solves the
coin 
ipping problem.

Subsequently in a very nice paper Dolev, Dwork and Naor in a quite di�erent set-
ting addressed the problem of independence in encrypted communication and zero-
knowledge proofs. They call their property non-malleability. They present non-
malleable bit commitment schemes, encryption schemes and zero-knowledge interac-
tions. In particular they solve the contract bidding problem.

1.3 Our contribution

In this paper, drawing from ideas of our predecessors, we improve on those previous
results. More in detail:

1. We describe a constant round protocol for simultaneous broadcast. In doing
that we will heavily rely on the properties of non-interactive zero-knowledge
proofs as introduced by Blum, De Santis, Micali and Persiano in [2].

2. We re�ne the de�nition of independence to a stronger one. In fact both in [3] and
in [5] they de�ne the independence property with respect to a polynomial-time
bounded observer. That is no polynomial-time Turing machine that has access
to a random sample of successful executions of the protocol is able to detect any
correlation among the committed values of the players. In particular neither the
players or the adversary are able to do so. Our de�nition instead, as we will see
shortly, propose something that we would call statistical independence, i.e., we
require that an observer of any computational power who is given a polynomial
size random sample of successful executions of the protocol will not be able to
detect any correlation among the values of the good players. A fortiori this will
be valid for the players themselves and the adversary since we assume them to
be polynomially bounded.

3. We present an attack on the Sako-Kilian election scheme presented at CRYPTO
94 [10]. The idea of using non-interactive proofs to reduce the rounds of com-
munication in a protocol is not new. For example this is what Sako and Kilian
do in their protocol. However one must be careful in the use of such a powerful
tool. We will show that their protocol fails in achieving independence between
casted votes. Using the techniques described in this paper we show how to
modify their protocol in order to achieve this fundamental property.

3



2 Non-interactive zero-knowledge proofs

Before we dive into the description of our work, let us recall the notion of zero-
knowledge proofs of knowledge without interaction. For details readers are referred
to the original paper by Blum et al. [2] on non-interactive zero-knowledge proofs and
the later one by De Santis and Persiano for the speci�c case of proofs of knowledge
[4]. In this section we will also prove a technical lemma which will be useful to us
later.

In a non-interactive proof, prover P and veri�er V share a common input x and
a random string �. P runs on those input and produces a string � and V runs on
x; �; � for some polynomial time and either accept or rejects. We call � � � the view
of the protocol.

A pair of Turing machines (P; V ) constitutes a non-interactive zero-knowledge

proof system (NIZKPS) for a language L if the following conditions are met

Completeness for all x 2 L and random strings �, V (x; �; �) accepts with proba-
bility 1.

Soundness For all x =2 L, random strings � and false proofs �0 produced by any
Turing machine P 0, V (x; �; �0) rejects with high probability (i.e., � 1� 22jxj)

Zero-knowledge There exists a probabilistic polynomial time Turing machine S
called the simulator which on input x 2 L produces a view of the protocol with
a probability distribution indistinguishable from the true one.

In [2] the authors describe a NIZKPS for the language SAT and so for allNP. In their
protocol the Prover can be a polynomial time machine provided he knows a satisfying
assignment for the formula. Protocols of this kind are called proofs of knowledge. In
that case (see [4]) the soundness condition is changed to one requiring the Prover to
know a witness of the theorem whenever he convinces the Veri�er. By "knowing a
witness" we mean as usual that there exists a knowledge extractor M which given
access to P e�ciently produces a witness.

In order to use non-interactive proofs in a distributed computing setting we have
to make sure that a faulty process really gains nothing from seeing someone else's
proof. For example if Pj publishes sj = E(b) � � where � is a NIZKP of knowledge of
the bit b, a faulty Pi could post si = sj and pretend to have published (and to know)
the same bit. In order to avoid that we are going to prove the following lemma:

Lemma 1 Given a language L, and a NIZKPS (P; V ) for L, n strings x1; : : : ; xn 2 L,
n + 1 random strings �1; : : : ; �n; �, and �i = P (xi; �i), if an algorithm A on input

xi; �i; �i; � outputs a string y 2 L and a � such that V (y; �; �) accepts with non-

negligible probability, then A knows a witness for y 2 L, i.e., there exists an algorithm

M that given access to A outputs a witness for y 2 L with non-negligible probability.

4



What the lemma basically says is that if we change the random string then proofs
relative to other random strings will be of no use to fabricate a new theorem and a
"good proof" for it. The reason this is true relies on the simulatability of NIZKP.

Sketch of Proof If algorithm A comes up with the theorem and the proof e�-
ciently given access to proofs produced by P , she could do that herself by running
the simulator instead. So we would have an e�cient algorithm convincing the Veri-
�er with non-negligible probability and according to the soundness condition, A must
know a witness of the theorem.

The lemma does not apply in the "copying" situation, because in that case the faulty
processor is choosing the reference string as well as the theorem (both equal to the
ones of the good processor) instead of picking it at random.

Notice that one of the consequences of this lemma is that access to the random
string � before the choice of the theorem y, does not help in proving false theorems.
This fact was already mentioned in the original paper [2] and will be important later.

2.1 The Fiat-Shamir heuristic

The Fiat-Shamir heuristic is a less rigorous but more e�cient way of building non-
interactive proofs. The heuristic is based on a secure hash function. When the prover
wants to create a non-interactive proof of a theorem he just run the usual interactive
protocol by himself. To do that honestly, he computes the challenges of the Veri�er at
each round by applying the hash function to his messages so far. This way he obtains
random-looking bits and still the Veri�er can check the process has been performed
correctly. There is no proof that this method performs correctly, but in practice no
attacks are known.

However also in this case we need some way to insure faulty processes cannot
correlate their proofs to good processes ones. As before the idea is to make sure the
random challenges are di�erent, and the idea would be to "personalize" the messages
that each party sends to the other one.

3 Simultaneous Broadcast

What exactly is independence? If we go back to the contract bidding example we
notice that Harvard actions are not independent from MIT's ones because Harvard is
acting based on MIT's messages.

In simultaneous broadcast we would like to have each player to behave as if the
other players were not there or, in better words, regardless of what other players
do during the protocol. If we model each player as a probabilistic Turing machines,
then the value they announce is a function of their input and internal coin tosses
and eventually of the announced values of the other ones. The key point in de�ning
independence is to avoid this functional dependence by imposing that, say, Pi commits

5



to a certain value with the same probability no matter what Pj has committed to. In
this section we will try to cast this intuition in a formal de�nition.

In the following we will refer to a quantity as negligible if it can be made smaller
than the inverse of any polynomial in a security parameter that we assume is given
as common input to all the players.

A n-party protocol is a n-tuple of probabilistic polynomial-time interactive Turing
machines (that we will call players in the following) (P1; : : : ; Pn). In our model these
processors are connected by one-to-one communication channels and each processor
has a dedicated broadcast channel. Channels are public i.e. any player can overhear
the messages sent on any channel. We assume that there is an adversary A that
decides dynamically which players corrupt and that coordinates the actions of the
corrupted players. In our model the adversary is computationally bounded: indeed
she can corrupt at most a �xed fraction of the processors and perform only polynomial
time computations. The adversary is allowed rushing i.e. messages sent at round i by
faulty processors may depend on messages sent at round i by the honest processors.
With t we denote the fault-tolerance of the protocol, that is the number of players
the adversary can corrupt.

Let's suppose without loss of generality that the value to be announced is a bit
b 2 f0; 1g. Simultaneous broadcast is a protocol composed by two parts (Commit,

Reveal) that satisfy the following requirements.

Requirement 1: Honest commitment

At the end of Commit for each player Pi there is a �xed value bi 2 f0; 1; ?g assigned
to him. In other words there exist a computationally unbounded Turing machine
that given as input a transcript of the protocol, outputs b1; : : : ; bn. If Pi follows the
protocol then bi 2 f0; 1g. We will say that Pi committed to bi

Given the previous requirement the following quantities are well de�ned: 8Pi 8r 2
f0; 1; ?gn�1 8bi 2 f0; 1g

pPi

bi;r
= Prob[Pi commits to bi given that the other players are committing to r]

When we say \given that the other players are committing to r" we mean that if rj
is the j-entry of the vector r then

� if j < i then Pj is committing to rj

� if j � i then Pj+1 is committing to rj

We can now de�ne the independence property as the second requirement that we ask
from our protocol

Requirement 2: Independence

8P 0
1
; : : : ; P 0

n probabilistic polynomial time Turing machines, 8i if P 0
i is good through-

out the protocol then 8bi 2 f0; 1g, 8r; s 2 f0; 1; ?gn�1 the following quantity

jp
P 0

i

bi;r
� p

P 0

i

bi;s
j

6



is negligible.

This formalization guarantees statistical independence of the committed values. This
is where our de�nition di�ers from the ones presented previously. In fact the de�-
nitions in [3, 5] require the values bi and r to appear independent to a probabilistic
polynomial time judge. If we assume the players to be computationally bounded this
is enough to guarantee the independence of their actions.

We insist on statistical independence because (1) it is conceptually simpler, (2) it
is a stronger requirement meaning that not only the players or the adversary, but also
no way observer, no matter what her computational power might be, will be able to
detect correlations, (3) it is not harder to achieve then \computational" independence.

Notice that we require independence only for the good players. Indeed since the
adversary coordinates the actions of the corrupted players we cannot rule out the
possibility of the values of bad players to be in some way related to each other. But
with this de�nition we are sure at least that the value of a good player is independent
with respect to those of all the other players, honest or corrupted.

Requirement 3: Recovery

At the end of the protocol each good processor Pi outputs an n bit vector Bi =
(Bi;1; : : : ; Bi;n) such that

� if Pi and Pj are good processors then Bi = Bj

� the event that 9k such that Bi;k 6= bk happens with negligible probability

This requirement simply says that even if a player stops the protocol after having
committed to a bit, it is still possible for the good players to recover his/her value
with very high probability.

3.1 Previous solutions

As noted in the examples provided above, the main problem in achieving indepen-
dence is that some parties may commit to a value without knowing it, but being
sure that it is correlated to someone else's value. As pointed out in [3] and [5] the
problem is eliminated by requiring each party to provide a zero-knowledge proof of
knowledge of the committed bit. A simple solution would then be to have each player
commit to his/her bit in a given order and then prove in zero-knowledge that he/she
knows the value he/she has committed to. This solution however is very expensive
in terms of round complexity since it requires 2n rounds of computation. Indeed
to avoid correlation each proof must be conducted separately from the others and
not concurrently. Suppose in fact that a faulty Pi and a correct Pj are concurrently
providing zero-knowledge proofs, then when queried Pi could use Pj as an oracle to
answer his queries.

Chor-Rabin in [3] solve this problem by a clever way of scheduling the zero-
knowledge proofs. In their protocol each player Pi broadcast his encryption scheme

7



Ei and the encrypted value Ei(bi). Then each player proves in zero-knowledge that
he knows bi. To avoid correlation between the proofs this will be done O(log n) times
in a way that for every pair of processors Pi; Pj there is a phase in which Pi acts
as a prover and Pj only as a veri�er. Moreover to allow recovery of the values they
add a Veri�able Secret Sharing (VSS) of the value bi. At the end this results in a
O(log n) rounds protocol. The cryptographic assumption needed for the protocol is
the existence of one-way functions.

3.2 Our constant rounds solution

Our solution to the simultaneous broadcast problem will be based on Chor-Rabin
protocol. Each processor will broadcast his value encrypted and then a NIZK proof
of knowledge of the value broadcasted. In doing this we will make sure that each
player references to a di�erent and independently chosen random string to prove his
statement. Because of Lemma 1 this will eliminate the risk of correlation. Then each
player will share his value among all other player using the VSS protocol from [8].
The total number of rounds will be constant. To be able to use NIZK proofs we must
assume the existence of trapdoor permutations (see [6]).

We assume that the players share a random string � nk bits long where k is the
length needed from the reference string in order to do a NIZKP in our protocol. When
Pi wants to produce a NIZKP (and as we will see he has to do that only once during
the protocol) he will refer to the string �i = �[(i� 1)k + 1 : : : ik]. We will show later
how to eliminate this common randomness assumption.

In the following description of the protocol, let t = n

2
be the allowed fault tolerance.

Protocol 1

1. Each process Pi publishes his own public key encryption scheme Ei. Ei is
actually a probabilistic encryption scheme as in [9]

2. Each process Pi publishes a string si = Ei(bi; ri) � �i where

� bi is the value Pi wants to announce

� ri are the random number used for the probabilistic encryption

� �i is a NIZK proof that Pi knows bi relative to the random string �i

3. Each process checks on what Pi broadcasted, i.e. runs a veri�cation procedure
on the string si, and if the proof fails broadcasts a disquali�cation vote for Pi.
If t+ 1 such votes are casted Pi is disquali�ed and his value is assumed to be ?

4. Each non-disquali�ed process Pi shares his value bi among all players using the
VSS protocol of [8]. I.e., Pi chooses a random polynomial Ri(x) of degree t,
such that R(0) = bi. Pi sends to player Pj the value Ri(j) encrypted with Pj 's
public key. Then he proves in zero-knowledge that the shared value is identical

8



to the one announced in round 1. This proof can be conducted interactively or
to save rounds non-interactively as well.

5. Again each process checks on the VSS proof Pi performed during the previous
round and if the proof fails, broadcasts a disquali�cation vote for Pi. If t + 1
such votes are casted Pi is disquali�ed and his value is assumed to be ?

6. Each process Pi broadcasts the values bi and ri. If these values match the
encryption broadcasted in round 1 all players accept bi as Pi's announced value.
Otherwise (or if Pi does not broadcast anything) the players run the recover
phase of the VSS protocol and compute bi on their own.

End of Protocol 1

The proof of the correctness and security of this protocol is quite simple. Intuitively
the reasoning is as follows. Because of lemma 1 at the end of round 3 every player
who has not been disquali�ed must know the bit he is committed to. This is the bit
the player must share and eventually broadcast at the end. If a bad player manages to
correlate his bit to the one of good player Pi, then, since he knows from the beginning
the value of the bit, one can show that the encryption scheme Ei is not secure.

Theorem 1 Protocol 1 is a constant round simultaneous broadcast protocol.

Sketch of Proof The honest commitment and recovery requirements are easily
seen to be met by the protocol. The main point is the independence requirement.
We proceed by contradiction. Suppose that there exist an adversary A who is able
to correlate i.e. 9 a good player Pi and 9r; s 2 f0; 1; ?gn�1 such that w.l.o.g.

jpPi

0;r � pPi

0;sj >
1

q(n)

where q is a polynomial.
By an usual hybrid argument we can prove that 9t; u 2 f0; 1?gn�1 such that

w.l.o.g.
ti = ui8i 6= j and tj = 0 and uj = 1

and

pPi

0;t � pPi

0;u >
1

p(n)

with p(n) polynomial
At this point we can construct an inverter I that is an e�cient algorithm that

breaks the encryption scheme Ei of player Pi using A as an oracle. On input Ei(bi),
I runs a simulation of the �rst three rounds of the protocol. He plays the role of
Pi on the network of players, using the advises of A to corrupt players. Under the
condition that A does not corrupt Pi (this event must happen with non-negligible
probability) we know that the bit of Pj is equal to the one of Pi with probability

9



sensibly bigger than 1

2
. Running the knowledge extractor will return bi with non-

negligible probability.

A possible source of worry in this protocol is the fact that the random string �i
is easily accessible to Pi before the beginning. But as we noticed in the previous
section this will not help Pi in manufacturing a false proof. A way of eliminating the
common randomness assumption would be to give to each player a string �i = �i1 � �i2
describing his identity (we can think of it as full name, date of birth, social security
number etc.) known to everybody. Then assume the existence of a pseudo-random
function generator like the one in [7]. Then �i = f�i1(�i2).

Remark: We do not need to generate a new string �i for each time we perform the
protocol. Indeed using results in [2, 6] it is known that multiple theorems can be
proven using the same random string.

4 Election Protocols

At CRYPTO 94 Sako and Kilian presented a new voting scheme based on partially
compatible homomorphisms [10]. Their scheme is based on a previous protocol of
Benaloh and Yung [1]. Their improvements on the previous scheme are twofold:

� they use a more general family of homomorphic encryption functions based on
a discrete-log like problem.

� they incorporate more modern techniques (which were not available at the time
of the original paper of Benaloh and Yung) to improve the overall e�ciency of
the protocol.

In particular they make extended use of the Fiat-Shamir heuristic for removing inter-
action from proofs of knowledge and so improve substantially on the round complexity
of the protocol.

In this section we will show that the scheme described in [10] fails on achieving
independence between votes casted by di�erent players. The problem lies on a wrong
application of the Fiat-Shamir scheme that brings consequences similar to the ones
described in Section 2.1. Using the techniques described in this paper we will also
present various ways to �x these problems.

4.1 Sako-Kilian protocol

Let us summarize the Sako-Kilian protocol in its most important aspects. The proto-
col is based on a pair of partially compatible homomorphic encryption functions, i.e.,
a pair of functions fE1; E2g over Zq (with q prime) such that:

� Ei(x+ y) = Ei(x)Ei(y)

10



� the two distributions :

1. (Ei(x); Ej(y)) with x and y chosen uniformly

2. (Ei(x); Ej(x)) with x chosen uniformly

are computationally indistinguishable

Suppose there are two centers C1; C2 counting votes. Let k1; k2 be their public keys
respectively for a �xed public-key encryption scheme E (which needs not to be an
homomorphism). The protocol goes as following:

Vote casting Voter Pi chooses his vote vi, 1 for a "yes" vote, �1 for a "no" vote. He
then chooses randomly xi;1; xi;2 such that vi = xi;1+xi;2. He posts yi;1 = E1(xi;1)
and yi;2 = E2(xi;2) and proves in zero-knowledge that xi;1 + xi;2 = 1 or �1. We
will describe this proof later. Then voter Pi posts E(kj ; xi;j).

Vote counting Center Cj decrypts xi;j and checks that it agrees with yi;j. Center
Cj sums up all the xi;j to obtain tj and posts tj. Each voter checks that
Ej(tj) = �iyi;j. Finally set T = t1 + t2. T is equal to the di�erence between
"yes" and "no" votes.

The zero-knowledge protocol to check the correctness of the proof can be found in
the original paper [10]. It is a straightforward commit-challenge-reveal protocol. To
eliminate interaction the Fiat-Shamir heuristic is used. The protocol is run in parallel
say 60 times (to achieve a probability of error < 2�60) and the 60 bits of the veri�er's
challenge are obtained by applying a random-looking hash function to the prover's

�rst messages (this is what Sako and Kilian suggest in their paper, we will see shortly
how this is the cause of serious problems). Assuming that the hash function behaves
as a random oracle then we can prove that the probability of cheating for the prover
is < 2�60. One of the main advantages of this approach is universal veri�ability i.e.,
everybody can check the correctness of Pi's vote and of the entire election protocol.

With these improvements voter Pi must post just a single string si to cast his
vote. si will be of the following form :

si = E1(xi;1) � E2(xi;2) � �i � E(k1; xi;1) � E(k2; xi;2)

where �i is the non-interactive proof that the vote is correct. For ease of notation let
us de�ne

ai = E1(xi;1) � E2(xi;2) � E(k1; xi;1) � E(k2; xi;2)

i.e., si minus the proof �i.
Suppose now voter Pj wants to copy Pi's vote. The only thing he has to do is

to post the same exact message as Pi did. So Pj waits for Pi to cast his vote si and
then posts sj = si. To require every single voter to post a di�erent string s is not
satisfactory for two reasons:

11



1. it introduces interaction between the centers and the voters

2. it requires some extra assumption on the encryption functions E1 and E2 stating
that given a string s it is infeasible to produce a string s0 that cast the same
vote

4.2 How to �x this problem

A �rst solution would be to construct di�erently the string �i, that is the non-
interactive proof that Pi's vote is correct. Instead of using the Fiat-Shamir heuristic
we could directly use non-interactive zero-knowledge proofs. To do this we need shared
randomness, i.e. we need to associate each voter with a publicly known random string
�i. Alternativelywe could use an identity string �i to generate a pseudo-random string
�i as described in the previous section. Then �i will be a NIZKP relative to the string
�i. As we remarked before, advance knowledge of the string �i will not help Pi in
fabricating a false proof. Such proof could be constructed by reducing the problem to
a SAT formula and then using Blum et al. protocol. All these computations can be
performed o�-line, so the relative ine�ciency of this method does not really constitute
a serious problem.

A second, probably more e�cient, solution can be obtained by modifying the
implementation of the Fiat-Shamir heuristic in the following way. After running in
parallel 60 copies of the �rst round of the interactive proof that the vote is a correct
one, compute the challenges of the veri�er as h(ai � �i) where �i is the identity string
of Pi. 2

The �rst solution has the advantage of being provably secure and not an heuristic
that holds conditioned to the "goodness" of the hash function.

5 Conclusion

We have put forward a new and stronger formal de�nition for the problem of inde-
pendence in distributed computation. A new constant round protocol for the task
of simultaneous broadcast has been presented. Previous solutions were all O(log n)
rounds. Moreover as a practical application of this problem we have presented some
critical remarks on the security of the Sako-Kilian voting scheme. The remarks stem
from the failure of that protocol in achieving independence between casted votes. In
the spirit of our results we have �nally proposed some simple modi�cations to the
Sako-Kilian protocol which greatly enhance its security.

2After being noti�ed by the author of this paper of the problem with their scheme, Sako and
Kilian independently found a similar �x to this one

12



Acknowledgments

We wish to thank Silvio Micali, Ray Sidney and Joe Kilian for useful discussions and
suggestions.

References

[1] Josh Benaloh and Moti Yung. Distributing the power of a government to en-
hance the privacy of voters. In 5th ACM Symposium on Principles of Distributed

Computing, pages 52{62, 1986.

[2] Manuel Blum, Alfredo DeSantis, Silvio Micali, and Giuseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6):1084{1118, De-
cember 1991.

[3] Benny Chor and Michael Rabin. Achieving independence in logarithmic number
of rounds. In 6th ACM Symposium on Principles of Distributed Computing,
pages 260{268, 1987.

[4] Alfredo DeSantis and Giuseppe Persiano. Zero-knowledge proofs of knowledge
without interaction. In 33rd IEEE Symposium on Foundations of Computer

Science, 1992.

[5] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In
23rd ACM Symposium on Theory of Computing, pages 542{552, 1991.

[6] Uri Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero-
knowledge proofs. In 31st IEEE Symposium on Foundations of Computer Sci-

ence, 1990.

[7] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33:792{807, 1986.

[8] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems. Journal
of the ACM, 38(1):691{729, 1991.

[9] Sha� Goldwasser and Silvio Micali. Probabilisitc encryption. Journal of Com-

puter and System Sciences, 28:270{299, 1984.

[10] Kazue Sako and Joe Kilian. Secure voting using partially compatible homo-
morphisms. In CRYPTO'94, volume 839 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.

13


