
Implementing Sequentially Consistent Shared Objects using Broadcast and
Point-To-Point Communication

Alan Feketey M. Frans Kaashoekz Nancy Lynchz

yDepartment of Computer Science F09 z MIT Laboratory for Computer Science
University of Sydney 2006, Australia. Cambridge MA 02139, U.S.A.

Abstract

A distributed algorithm that implements a sequentially consistent collection of shared read/update objects using
a combination of broadcast and point-to-point communication is presented and proved correct. This algorithm is
a generalization of one used in the Orca shared object system. The algorithm caches objects in the local memory
of processors according to application needs; each read operation accesses a single copy of the object, while
each update accesses all copies. Copies of all the objects are kept consistent using a strategy based on sequence
numbers for broadcasts.

The algorithm is presented in two layers. The lower layer uses the given broadcast and point-to-point
communication services, plus sequence numbers, to provide a new communication service called a context
multicast channel. The higher layer uses a context multicast channel to manage the object replication in
a consistent fashion. Both layers and their combination are described and verified formally, using the I/O
automaton model for asynchronous concurrent systems.

1 Introduction

In this paper, we present and verify a distributed algorithm that implements a sequentially consistent collection
of shared read/update objects using a combination of (reliable, totally ordered) broadcast and (reliable, FIFO)
point-to-point communication. This algorithm is a generalization of one used in the implementation of the Orca
distributed programming language [7] over the Amoeba distributed operating system [26].

Orca is a language for writing parallel and distributed application programs to run on clusters of workstations,
processor pools and massively parallel computers [7, 25]. It provides a simple shared object model in which
each object has a state and a set of operations, classified as either read operations or update operations. Read
operations do not modify the object state, while update operations may do so. Each operation involves only a
single object and appears to be indivisible.

More precisely, Orca provides a sequentially consistent memory model [19]. Informally speaking, a sequen-
tially consistent memory appears to its users as if it were centralized (even though it may be implemented in a
distributed fashion). There are several formalizations of the notion of sequentially consistent memory, differing
in subtle ways. We use the state machine definition of Afek, Brown and Merritt [2].

Orca runs over the Amoeba operating system [26], which provides two communication services: broadcast
and point-to-point communication. Both services provide reliable communication, even in the presence of
communication failures. No guarantees are made by Orca if processors fail; therefore, we do not consider

This research was supported in part by ARPA N00014-92-J-4033, NSF 922124-CCR, and ONR-AFOSR F49620-94-1-0199; also by
ONR contract N00014-94-1-0985 and a NSF Young Investigator Award.

processor failures either. In addition, the broadcast service promises delivery of the broadcast messages in the
same total order at every destination,1 while the point-to-point service preserves the order of messages between
any sender and receiver. The cost of an Amoeba broadcast, in terms of time and amount of communication, is
higher than that of a single point-to-point message. Therefore, it is natural to design algorithms so that point-to-
point communication is used whenever possible, i.e., when a message is intended for only a single destination,
and broadcast is only used when necessary, i.e., when a message must go to several destinations.

In the implementation of Orca, user programs are distributed among the various processors in the system. The
user program consists of threads, each of which runs on a single processor. In this paper, we call these threads
clients of the Orca system. Each processor may support several clients. Shared objects are cached in the local
memory of some of the processors. Each read operation by a client accesses a single copy of the object, while
each update operation accesses all copies. The underlying broadcast primitive provided by the Amoeba system
is used to send messages that must be sent to several destinations — that is, invocations of update operations for
objects that have multiple copies. The underlying point-to-point primitive is used to send messages that have
only a single destination, that is, invocations of reads from a site without a local copy of the object, invocations
of writes for an object that has only single (remote) copy, and responses to all invocations.

An early version of the implementation used the strategy of caching all shared objects at all processors. This
strategy yields good performance for an object that has a high read-to-update ratio, since a read operation needs
only to access the local copy of the object. The drawback is that updates must be performed at all copies, using
an (expensive) broadcast communication. Experience has shown that there are some objects for which this is not
the best arrangement. For example, many applications use a job queue object to allow clients to share work; the
job queue is updated whenever a client appends information to it about a task that needs to be done, and also
whenever a client removes a task from the queue in order to begin work on it. Since all accesses to a job queue
are updates, total replication is not an efficient strategy in this case.

Because of objects like these, Orca has been re-implemented to allow more flexibility in the placement of
copies. The new implementation allows some objects to be totally replicated and others to have only a single
copy. Operations on an object with only a single copy can now be done using only point-to-point messages,
though broadcast must still be used for updates on replicated objects. The decision about whether or not to
replicate an object is made at run time using information generated by the Orca compiler. The details of this
decision process, and also performance measurements to show the benefits of not replicating all objects, can be
found in [6].

The naive strategy of allowing each read operation to access any copy of the object and each update operation
to access all copies is not by itself sufficient to implement a sequentially consistent shared memory. To see why,
consider the execution depicted in Figure 1. The example involves 3 processors, P1, P2 and P3, and two objects,
x and y. Object x is replicated on all processors, while object y is stored only on P2. The figure shows the
invocation and response messages for an update of y by P1, and the broadcast invocation messages for an update
of x by P3. In this execution, P2’s read operations indicate that y is updated before x is, while P1 reads the new
value of x before invoking the update of y. In a centralized shared memory, such conflicting observations are
impossible; thus this execution violates sequential consistency.

The new version of the Orca algorithm solves this consistency problem using a strategy based on sequence
numbers for broadcasts. These broadcast sequence numbers are piggybacked on certain point-to-point messages
and are used to determine certain ordering relationships among the messages.

Our original goal was to verify the correctness of the new Orca algorithm. In the early stages of our work,

1A broadcast service with such a consistent ordering guarantee is sometimes called a group communication service. Although group
communication is widely discussed in the systems literature, there is no general agreement on its definition. In this paper, we sidestep the
issue by using the term broadcast to indicate a communication to all sites in the system, and multicast to indicate a communication to a
subset of the sites. This terminology does not say whether the service is provided by hardware or software.

2

Update x

Read x

Update y

Read y

Read x

P1 P2 P3

Time

Figure 1: A problem with the naive replication strategy.

however, we discovered a logical error in the implemented algorithm. Namely, broadcast sequence numbers
were omitted from some point-to-point messages (the replies returned to the operation invokers) that needed to
include them. We produced a corrected version of the algorithm, which has since been incorporated into the
Orca system.

The algorithm we study in this paper is our corrected algorithm, generalized beyond what is used in the Orca
implementation to allow replication of a shared object at an arbitrary collection of processors, rather than just one
processor or all processors. There is one way in which our algorithm is less general than the Orca implementation,
however: we assume for simplicity that the locations of copies for each object are fixed throughout a program
execution, whereas Orca allows these locations to change dynamically, in response to changes in access patterns
over time. We discuss the extension of our results to the case of dynamic reconfiguration in Section 7.

We present and verify the algorithm as the composition of two completely separate layers, each a distributed
algorithm. The structure of this part of the system is depicted in Figure 2. The lower layer uses the given
broadcast and point-to-point communication services, plus broadcast sequence numbers, to implement a new
communication service called a context multicast channel. A context multicast channel supports multicast of
messages to designated subsets of the sites, according to a virtual total ordering of messages that is consistent
with the order of message receipt at each site, and consistent with certain restricted “causality” relationships. The
guarantees provided by a context multicast channel are weaker than those that are provided by totally ordered
causal multicast channels, as provided by systems such as Isis [10]. However, the properties of a context multicast
channel are sufficiently strong to support the replica management of the Orca algorithm.

The lower layer uses the given point-to-point primitive for each multicast message with a single destination,
and the given totally ordered broadcast primitive for each multicast message with more than one destination.
(Sites that are not intended recipients simply discard the message.) Sites associate sequence numbers with
broadcasts and piggyback the sequence number of the last received broadcast on each point-to-point message.
When a point-to-point message reaches its destination, the recipient delays its delivery until the indicated number
of broadcasts have been received. (The idea is similar to the one in Lamport’s clock synchronization algorithm
[18], but we only apply it to a restricted set of events.) We prove that this algorithm correctly implements a
context multicast channel.

3

Context multicast

Object management

Client Client . . . Client

Figure 2: The architecture of the system.

The higher layer uses an arbitrary context multicast channel to manage the object replication in a consistent
fashion. Each object is replicated at an arbitrary subset of the sites. A site performs a read operation locally if
possible. Otherwise, it sends a request to any site that has a copy and that site returns a response. A site performs
an update operation locally if it has the only copy of the object. Otherwise, it sends a multicast message to all
sites that have copies, and waits to receive either its own multicast, or else an appropriate response from some
other site. We prove that this algorithm, combined with any context multicast system, provides a sequentially
consistent memory. Our proof uses a new method based on partial orders.

All our specifications and proofs are presented in terms of the I/O automaton model for asynchronous
concurrent systems [23]. General results about the composition of I/O automata allow us to infer the correctness
of the complete system from our correctness results for the two separate layers.

Many different correctness conditions have been proposed for shared memory, including strong conditions
like memory coherence and weaker ones like release consistency. Sequential consistency is widely used because
it appears to be closest to what programmers expect from a shared memory system; non-sequentially consistent
shared memory systems typically trade programmability for performance. Sequential consistency was first
defined by Lamport [19]; in this paper, we use an alternative formulation proposed by Afek et al. [2], based on
I/O automata. Other papers exploring correctness conditions for shared memory and algorithms that implement
them include [1, 3, 5, 8, 9, 11, 12, 13, 14, 15, 16, 21, 24]. In most of this work, memory is modeled as a collection
of items that are accessed through read and write operations. The study of correctness for shared memory with
more general data types was initiated by Herlihy and Wing [17]. Sequential consistency and other consistency
conditions for general data types has been studied by Attiya and Welch [5] and Attiya and Friedman [4].

The rest of the paper is organized as follows. Section 2 introduces basic terminology that is used in the rest
of the paper. Section 3 contains the definition of a sequentially consistent shared memory and introduces our
new method for proving sequential consistency. Section 4 contains definitions of multicast channels with various
properties, and in particular, the definition of a context multicast channel. Section 5 contains the higher layer
algorithm, which implements sequential consistency using context multicast, plus a proof of its correctness.
Section 6 contains the lower layer algorithm, which implements context multicast in terms of broadcast and
point-to-point messages. Section 7 contains a discussion of dynamic reconfiguration, and some ideas for future
work. Finally, in Section 8 we draw our conclusions.

4

2 Some Basics

2.1 Partial Orders

We use many partial (and total) orders, on events in executions, and on operations. Throughout the paper, we
assume that partial and total orders are irreflexive, that is, they do not relate any element to itself. Also, we define
a partial or total order P to be well-founded provided that each element has only finitely many predecessors in
P . This assumption is needed to rule out various technical anomalies.

2.2 I/O Automata

The I/O automaton model is a simple labeled transition system model for asynchronous concurrent systems. An
I/O automaton has a set of states, including some start states. It also has a set of actions, classified as input,
output or internal actions, and a set of steps, each of which is a (state, action, state) triple. Finally, it has a set of
tasks, each of which consists of a set of output and/or internal actions. Inputs are assumed to be always enabled.

An I/O automaton executes by performing a sequence of steps. An execution is said to be fair if each task
gets infinitely many chances to perform a step. External behavior of an I/O automaton is defined by the set of
fair traces, i.e., the sequences of input and output actions that can occur in fair executions.

I/O automata can be composed, by identifying actions with the same name. The fair trace semantics is
compositional. Output actions of an I/O automaton can also be hidden, which means that they are reclassified as
internal actions. See [23] for more details.

3 Sequentially Consistent Shared Object Systems

In this section, we define a sequentially consistent shared object system and give a new method for proving that a
system is sequentially consistent. Informally, a system is said to be a sequentially consistent shared object system
if all operations receive responses that are “consistent with” the behavior of a serially-accessed, centralized
memory. More precisely, the order of events at each client should be the same as in the centralized system, but
the order of events at different clients is allowed to be different.

3.1 The Interface

We start by identifying the actions by which the shared object system interacts with its environment (the clients).
The shared object system receives requests from its environment and responds with reports. Requests and reports
are of two types: read and update. Each request and report is subscripted with the name of the client involved.
Each request and report contains, as arguments, the name of the object being accessed and a unique operation
identifier. In addition, each update request contains the function to be applied to the object and each read report
contains a return value.2

Formally, let C be a fixed finite set of clients, X a fixed set of shared objects, V a fixed set of values for
the objects, including a distinguished initial value v0,3 and Ξ a fixed set of operation identifiers, partitioned into
subsets Ξc, one for each client c. Then the interface is as follows. (Here, c, �, x and v are elements of C, Ξ, X ,
and V , respectively, and f is a function from V to V .)

Input:

2There are two ways in which Orca differs from our specification: in Orca, (1) an update may return a value and (2) an update might
block.

3We ignore the possibility of different data domains for the different objects.

5

request-read(�; x)c, � 2 Ξc

request-update(�;x; f)c, � 2 Ξc

Output:
report-read(�;x; v)c, � 2 Ξc

report-update(�; x)c, � 2 Ξc

If � is a sequence of actions, we write �jc for the subsequence of � consisting of request-readc, request-updatec,
report-readc and report-updatec actions. This subsequence represents the interactions between client c and the
object system.

We assume that invocations are blocking: a client does not issue a new request until it has received a report
for its previous request. This assumption, and the uniqueness of operation identifiers, are assumptions about the
behavior of clients. We express these conditions in the following definition: we say that a sequence � of actions
is client-well-formed provided that for each client c, no two request events4 in �jc contain the same operation
identifier �, and that �jc does not contain two request events without an intervening report event.

The object systems we describe will generate responses to client requests. Here we define the syntactic
properties required of these responses. Namely, we say that a sequence of actions is complete provided that
there is a one-to-one correspondence between request and report events such that each report follows the
corresponding request and has the same client, operation identifier, object and type.5 If a sequence � is
client-well-formed and complete, then �jc must consist of a sequence of pairs of actions, each of the form
request-read(�; x)c; report-read(�; x; v)c or request-update(�; x; f)c; report-update(�; x)c.

We say that an operation identifier � occurs in sequence � provided that � contains a request event with
operation identifier �. If � is any client-well-formed sequence and � occurs in �, then there is a unique request
event in � for �. We sometimes denote this event simply by request(�). Also, if � is client-well-formed and
complete, then there is a unique report event with operation identifier �; we denote it by report(�). We often
refer to an operation identifier as just an operation.

If � is a complete client-well-formed sequence of actions, we define the totally-precedes partial order,
totally-precedes�, on the operations that occur in � by: (�; �0) 2 totally-precedes� provided that report(�) occurs
before request(�0) in �. Notice that for each client c, totally-precedes�jc totally orders the operations that occur
in �jc.

3.2 Definition

Our definition of sequential consistency is based on an atomic object [20, 22], also known as a linearizable object
[17], whose underlying data type is the entire collection of data objects to be shared. In an atomic object, the
operations appear to the clients “as if” they happened in some sequential order, and furthermore, that order must
be consistent with the totally-precedes order. Specifically, we let AM, the atomic memory automaton, be just like
the serial object automaton Mserial defined by Afek, Brown and Merritt [2] for the given collection of objects,
except that we generalize it to allow updates that apply functions rather than just blind writes.

In more detail, the actions of AM are as follows. (Here, c, �, x and v are elements of C, Ξ, X , and V ,
respectively, and f is a function from V to V .)

Input:
request-read(�; x)c, � 2 Ξc

request-update(�;x; f)c, � 2 Ξc

Output:

4An event is an occurrence of an action in a sequence.
5Note that the completeness property includes both safety and liveness conditions.

6

request-read(�;x)c
Effect:

active(c) := (read-perform; �;x)

perform-read(�; x)c
Precondition:

active(c) = (read-perform; �; x)
Effect:

active(c) := (read-report; �; x;mem(x))

report-read(�;x; v)c
Precondition:

active(c) = (read-report; �;x; v)
Effect:

active(c) := null

request-update(�;x; f)c
Effect:

active(c) := (update-perform; �;x; f)

perform-update(�; x; f)c
Precondition:

active(c) = (update-perform; �; x; f)
Effect:

mem(x) := f(mem(x))
active(c) := (update-report; �; x)

report-update(�;x)c
Precondition:

active(c) = (update-report; �;x)
Effect:

active(c) := null

Figure 3: AutomatonAM .

report-read(�;x; v)c, � 2 Ξc

report-update(�; x)c, � 2 Ξc

Internal:
perform-read(�;x)c, � 2 Ξc

perform-update(�; x; f)c, � 2 Ξc

The state of the automaton AM consists of:

mem, an array indexed by X of elements of V , initially identically v0

active, an array indexed by C of tuples or the special value null, initially identially null

Here, mem(x) represents the current value for object x, and active(c) represents the access by client c that is
currently in progress, if any. (The value null means that no access is currently in progress.)

The transitions for AM are described by the code in Figure 3. We represent the steps for each particular type
of action in a single fragment of precondition-effect code (i.e., a guarded command). The automaton is allowed
to perform any of these actions at any time when its precondition is satisfied; this style allows us to express the
maximum allowable nondeterminism.
AM has one task for the output and internal actions of each client. This means that the automaton keeps

giving turns to the activities it does in behalf of each client.
Note that every client-well-formed fair trace of AM is complete.
Sequential consistency is almost the same as atomicity; the difference is that sequential consistency does not

respect the order of events at different clients. Thus, if � is a client-well-formed sequence of actions, we say that
� is sequentially consistent provided that there is some fair trace of AM such that jc = �jc for every client c.
That is, � “looks like” to each individual client; we do not require that the order of events at different clients
be the same in � and .

IfA is an automaton that models a shared object system, then we say thatA is sequentially consistent provided
that every client-well-formed fair trace of A is sequentially consistent.

7

3.3 Proving Sequential Consistency

In order to show that the Orca shared object system is sequentially consistent, we will use a new proof technique
based on producing a partial order on the operations that occur in a fair trace. In this subsection, we collect the
properties we need, in the definition of a “supportive” partial order.

For each c 2 C, let �c be a complete client-well-formed sequence of request and report events at client c.
Suppose that P is a partial order on the set of all operations that occur in the sequences �c. Then we say that P is
supportive for the sequences �c provided that it is consistent with the order of operations at each client and orders
all conflicting read and update operations; moreover, the responses provided by the reads are correct according
to P . Formally, it satisfies the following four conditions:

1. P is well-founded.

2. For each c, P contains the order totally-precedes�c .

3. For each object x 2 X , P totally orders all the update operations of x, and P relates each read operation
of x to each update operation of x.

4. Each read operation � of object x has a return value that is the result of applying to v0, in the order given
by P , the update operations of x that are ordered ahead of �. More precisely, let �1; �2; : : : ; �m be the
unique finite sequence of operations such that (a) f�j : 1 � j � mg is exactly the set of updates �0 of x
such that (�0; �) 2 P , and (b) (�j ; �j+1) 2 P for all j, 1 � j < m. Let fj be the function associated with
request(�j). Then the return value for � is fm(fm�1(: : :(f2(f1(v0))) : : :)).

The following lemma describes how a supportive partial order can be used to prove sequential consistency.

Lemma 3.1 For each c 2 C, let �c be a complete client-well-formed sequence of request and report events at
client c. Suppose that P is a partial order on the set of all operations that occur in the sequences �c.

If P is supportive for the sequences �c, then there is a fair trace of AM such that jc = �c for every c and
totally-precedes contains P .

Proof: Let P be a supportive partial order. We first show that we can extend P to a total order Q such thatQ is
also supportive for the sequences �c. We define Q as follows: suppose � and �0 are operations that occur in �c
and �c0 respectively. Let (�; �0) 2 Q provided that either � has fewer predecessors in P than �0, or else the two
operations have the same number of predecessors and c precedes c0 in some fixed total ordering of the clients. It
is clear by construction that Q is a total order on the operations that occur in the sequences and that P � Q.

To show that Q is supportive, we note that the second and third conditions follow from the fact that P is
supportive (since Q contains P).

To show the first condition, we observe that P totally orders all the operations that occur in �c (for the same c),
and so it is not possible for two operations � and �0 that are both in �c to have the same number of predecessors.
(Whichever is later will have a set of predecessors that include all the predecessors of the other, together with the
other operation itself and possibly more). It follows that there are at most n(N + 1) operations that have � N

predecessors in P , where n is the number of clients in the system. Now, if an operation has N predecessors in
P , then by definition ofQ, each of its predecessors inQmust have at mostN predecessors in P . Since there are
at most n(N + 1) such operations, the operation has at most n(N + 1) predecessors in Q. This shows the first
condition.

Finally the fourth condition holds for Q because it holds for P , and the set of update operations of x that
precede a given read of x is identical whether P or Q is used as the order.

8

Now since Q is a total order in which each element has only a finite number of predecessors, arranging the
operations in the order given by Q defines a sequence of operations. We obtain the required sequence by
replacing each operation in this sequence by its request event followed by its report event.

We claim that has the required properties. The fact that each �c is well-formed and complete implies that
totally-precedes�c is a total order on the operations that occur in �c, and so these operations occur in Q in the
same order; since is constructed to be well-formed and complete, the events in jc are the same as the events in
�c, and their order is also the same. Thus jc = �c. By construction, totally-precedes equals Q which contains
P . Finally, is a trace of AM because the fourth condition ensures that return values are appropriate; the trace is
fair since is complete.

The following lemma is what we actually use later in our proof.

Lemma 3.2 Suppose that A is an automaton with the right interface for a shared object system. Suppose that,
for every client-well-formed fair trace � of A, the following are true:

1. � is complete.

2. There is a supportive partial order for the sequences �jc.

Then A is a sequentially consistent shared object system.

Proof: Immediate by Lemma 3.1.

4 Multicast Communication

In this section, we define properties for multicast channels, and in particular, define a context multicast channel.
As in the previous section, we start by identifying the actions by which the multicast channel interacts with its

environment; now the environment will be a set of sites in a distributed network. The multicast channel receives
requests from a site to send a message to a specified collection of sites, and responds by delivering the message
to the requested recipients. Thus, the channel provides multicast messages. There are two special cases: when
the destination set consists of the entire collection of sites (including the sender), the communication is called
broadcast, and when the destination set contains a single site, the communication is called point-to-point.

Formally, let M be a set of messages, I be a set of sites, and I be a fixed set of subsets of I , representing
the possible destination sets for messages. If I = fIg we say that the channel is broadcast, since the only
possible destination set includes all the sites. When I = ffig : i 2 Ig we say the communication system is
point-to-point, since each destination set consists of a single site. The interface is as follows:

Input:
mcast(m)i;J , m 2M , i 2 I , J 2 I

Output:
receive(m)j;i, m 2 M , j; i 2 I

The action mcast(m)i;J represents the submission of message m by site i to the channel, with J as the set of
intended destinations. The action receive(m)j;i represents the delivery of messagem to site i, where j is the site
where the message originates. In each case, the action occurs at site i.

Now we describe various correctness properties for fair traces of multicast channels. First, we require reliable
delivery of all messages, each exactly once, and to exactly the specified destinations. Formally, in any fair trace
� of any multicast channel, there should be a cause function mapping each receive event in � to a preceding
mcast event (i.e., the mcast event that “causes” this receive event). The two corresponding events should have

9

the same message contents, the site of the mcast should be the originator argument of the receive, and the site of
the receive should be a member of the destination set given in the mcast. Furthermore, the cause function should
be one-to-one on receive events at the same site (which means there is no duplicate delivery at the same site).
Finally, the destination set for any mcast event should equal the set of sites where corresponding receive events
occur (which means that every message is in fact delivered everywhere it should be).

In addition to these basic properties, there are additional properties of multicast systems that are of interest.
These involve a “virtual ordering” of multicasts. We define these properties as conditions on a particular sequence
� that we assume satisfies all the basic reliability requirements described just above, and a particular total order
T of mcast events in �. The first condition is a technical condition: the virtual ordering T is really a sequence,
i.e., it does not order infinitely many multicasts before any particular multicast.

Well-Foundedness T is well-founded.

The next condition says that the order in which each site receives its messages is consistent with the virtual
ordering T . This implies that the order in which any two sites receive their messages is consistent.

Receive Consistency � and T are receive consistent provided that the following holds. If � and �0 are mcast
events in �, and a receive corresponding to � precedes a receive corresponding to �0 at some site i, in �,
then (�; �0) 2 T .

The next condition describes FIFO delivery of messages originating at the same site.

FIFO � and T are FIFO provided that the following holds. If � and �0 are mcast events at site i in �, with �
preceding �0, then (�; �0) 2 T .

The final condition describes a restricted “causality” relationship, between a multicast that arrives at site and
another that subsequently originates at the same site.

Context safety � and T are context safe provided that the following holds. If � is any mcast event, �0 is an
mcast event at site i, and a receive event corresponding to � precedes �0 at site i in �, then (�; �0) 2 T .

Now we define a context multicast channel to be any automaton with the proper interface in which every fair
trace � satisfies the basic reliability requirements, and also has a total order T such that � andT are well-founded,
receive consistent and context safe. (We do not require the FIFO condition.)

In a totally ordered causal multicast channel, every fair trace has a total order guaranteeing the FIFO condition
in addition to well-foundedness, receive consistency, and context safety. Thus, any totally ordered causal
multicast channel is a special case of a context multicast channel. However, there are communication systems
(such as the one described in Section 6) that are context multicast channels but are not FIFO.

5 The Higher Layer

Now we present the replica management algorithm, which uses a context multicast channel to implement a
sequentially consistent shared memory (see Figure 4).

5.1 The Algorithm

The algorithm is modeled as a collection of automata Pi, one for each site i in a distributed network. As in the
previous section, we let I denote the set of sites. The entire shared object system is, formally, the composition of
the site automata Pi; i 2 I , and a context multicast channel. Each client c is assumed to run at a particular site
site(c). We let clients(i) denote the set of clients that run at site i.6

6In theoretical work on distributed shared memory, it is common to assume that only one client runs per site. This does not accurately
model systems like Orca.

10

Context multicast

Replica
manager

Replica
manager

Replica
manager

...

Client Client... Client Client...

Figure 4: The architecture of the higher layer.

The algorithm replicates each object x at an arbitrary (but fixed) subset sites(x) of the sites, one of which is
distinguished as the primary site, primary(x). We assume that the set of sites at which each object x is replicated
is a possible destination set for the multicast channel, i.e., that for every x, sites(x) 2 I.

A site automaton Pi performs a read operation on an object x locally if it has a copy of x. Otherwise, it sends
a request to any site that has a copy of x and that site returns a response. Pi performs an update operation on x
locally if it has the only copy of x. Otherwise, Pi sends a multicast message to all sites that have copies of x,
and waits to receive either its own multicast (in case Pi has a copy of x), or else an acknowledgement from the
primary site (in case Pi does not have a copy).

Formally, the messages M used in the algorithm are of the following kinds:

(read-do; c; �; x),

(update-do; c; �; x; f),

(read-reply; c; �; x; v),

(update-reply; c; �; x),

where c 2 C, � 2 Ξ, x 2 X , v 2 V , and f : V ! V . The “do” messages are the requests to perform the
operations, and the “reply” messages are the reports.

The interface of Pi is as follows. (Here, c 2 clients(i), �, x and v are elements of Ξ, X , and V , respectively,
and f is a function from V to V . Also, m is an arbitrary message in M , j 2 I , and J 2 I.)

Input:
request-read(�; x)c, � 2 Ξc

request-update(�;x; f)c, � 2 Ξc

receive(m)j;i
Output:

report-read(�;x; v)c, � 2 Ξc

report-update(�; x)c, � 2 Ξc

mcast(m)i;J
Internal:

perform-read(c; �; x)i, � 2 Ξc

global-read(c; �;x)i, � 2 Ξc

perform-update(c; �; x; f)i, � 2 Ξc

global-update(c; �; x; f)i, � 2 Ξc

The input and output actions of Pi are all the actions of all clients c at site i, plus actions to send and
receive multicasts. The internal action perform-read(c; �; x)i represents the reading of a local copy of x, whereas
global-read(c; �; x)i represents the decision to sen a message to another site requesting the value of x. Similarly,

11

perform-update(c; �; x; f)i represents the local performance of an update (when site i has the only copy of x),
whereas global-update(c; �; x; f)i represents the decision to send a message in order to update x.
Pi has the following state components:

for every c 2 clients(i):
status(c), a tuple or quiet, initially quiet

for every x for which there is a copy at i:
val(x) 2 V , initially v0

buffer, a FIFO queue of (message, destination set) pairs, initially empty

The status components keeps track of operations being processed at the site. For example, if status(c) =
(update-wait; �; x), it means that Pi has sent a message asking for x to be updated on behalf of operation �, and is
waiting for to receive either its own message or an acknowledgement before reporting back to client c. (Because
of client-well-formedness, status information needs to be kept for at most one operation of c at a time.) The
val(x) component records the current value of the copy of x at site i. The buffer contains messages scheduled to
be sent via the multicast channel.

The steps of Pi are given in Figure 5. We have organized the code so that the fragments involved in processing
reads (plus the code for mcast) appear on the left and the fragments for processing updates appear on the right.
Also, the fragments appear in the approximate order of their execution. However, note that the order in which
the fragments are presented has no formal significance. As we described earlier, the automaton can perform any
of its steps at time when its precondition is satisfied.

The code follows the informal description we gave above. For example, a perform-read is allowed to occur
provided that the operation has the right status and i has a copy of the object x; its effect is to change the status to
record the value read (and the fact that the read has occurred). As another example, a global-update is allowed
to occur provided that the operation has the right status and i is not the only site with a copy of the object x; its
effect is to change the status to record that Pi is now waiting and also to put a message in the buffer. The most
interesting code fragment is that for receive(update-do). When this occurs, Pi always updates its local copy of
the object x. In addition, if the message received is Pi’s own message, then Pi uses this as an indication to stop
waiting and report back to the client. On the other hand, if the message received is from a site that does not have
a copy of x, and Pi is the primary site for x, then Pi sends a reply back to the sender.

The tasks of automaton Pi correspond to the individual output and internal actions. This means that each
non-input action keeps getting chances to perform its work.

5.2 Correctness

Let A denote the composition of the site automata Pi and an automaton B that is a context multicast channel,
with the mcast and receive actions hidden. We prove the following theorem:

Theorem 5.1 A is a sequentially consistent shared object system.

The proof of Theorem 5.1 is based on Lemma 3.2. The rest of this section is devoted to this proof. For the
rest of the section, fix � to be an arbitrary client-well-formed fair trace of A, and let � be any fair execution of A
that gives rise to �. Our eventual goals are to show that:

1. � is complete, and

2. there is a supportive partial order P for the sequences �jc.

12

request-read(�;x)c
Effect:

status(c) := (read-perform; �; x)

perform-read(c; �;x)i
Precondition:

status(c) = (read-perform; �; x)
i 2 sites(x)

Effect:
status(c) := (read-report; �;x; val(x))

global-read(c; �; x)i
Precondition:

status(c) = (read-perform; �; x)
i =2 sites(x)

Effect:
add ((read-do; c; �; x);fjg) to buffer

where j is any element of sites(x)
status(c) := (read-wait; �; x)

receive((read-do; c; �; x); j)i
Effect:

add ((read-reply; c; �; x; val(x)); fjg) to buffer

receive((read-reply; c; �; x; v); j)i
Effect:

status(c) := (read-report; �; x; v)

report-read(�;x; v)c
Precondition:

status(c) = (read-report; �;x; v)
Effect:

status(c) := quiet

mcast(m)i;J
Precondition:

(m;J) is first on buffer
Effect:

remove first element of buffer

request-update(�;x; f)c
Effect:

status(c) := (update-perform; �;x; f)

perform-update(c; �; x; f)i
Precondition:

status(c) = (update-perform; �;x; f)
sites(x) = fig

Effect:
val(x) := f(val(x))
status(c) := (update-report; �;x)

global-update(c; �; x; f)i
Precondition:

status(c) = (update-perform; �;x; f)
sites(x) 6= fig

Effect:
add ((update-do; c; �;x; f); sites(x)) to buffer
status(c) := (update-wait; �;x)

receive((update-do; c; �;x; f); j)i
Effect:

val(x) := f(val(x))
if j = i then status(c) := (update-report; �;x)
if j =2 sites(x) and i = primary(x)

then add ((update-reply; c; �; x);fjg) to buffer

receive((update-reply; c; �;x); j)i
Effect:

status(c) := (update-report; �;x)

report-update(�; x)c
Precondition:

status(c) = (update-report; �; x)
Effect:

status(c) := quiet

Figure 5: Automaton Pi.

13

Since B is a context multicast channel, there is a total order on the mcast events satisfying well-foundedness,
receive consistency and context safety. We choose one such order and call it T .

If � is an operation that occurs in � then since � is client-well-formed, we know that there is a unique request(�)
event in �.

Let � be an operation. Then we classify � as follows.

1. � is a local read operation if � is a read operation of object x by client c and site(c) 2 sites(x).

2. � is a local update operation if � is an update operation of x by c and fsite(c)g = sites(x).

3. � is a remote read operation if � is a read operation of x by c and site(c) =2 sites(x).

4. � is a remote update operation if � is an update operation of x by c and site(c) =2 sites(x).

5. � is a shared update operation if � is an update operation of x by c, site(c) 2 sites(x) and fsite(c)g 6=
sites(x).

6. � is a global operation if it is either a remote operation or a shared operation.

The following five lemmas summarize the way the algorithm processes all the different types of operations.
Namely, local operations are processed using perform events, remote operations are processed using an mcast(do)
message followed by an mcast(reply)message, and shared operations are processed using an mcast(do)message
only. The proofs are all routine.

Lemma 5.2 Suppose that � is a local read operation of object x by client c that occurs in �. Let i = site(c).
Then:

1. � contains exactly one event perform-read(c; �; x)i. This event follows request(�) in �.

2. � contains exactly one event of the form report-read(�; x; v)c (for some v), and this event follows
perform-read(c; �; x)i.

3. � contains no other events involving �.

Lemma 5.3 Suppose � is a local update operation of object x that occurs in �. Let i = site(c). Then:

1. � contains exactly one event of the form perform-update(c; �; x; f)i. This event follows request(�).

2. � contains exactly one event of the form report-update(�; x)c, and this event follows perform-update(c; �; x; f)i.

3. � contains no other events involving �.

Lemma 5.4 Suppose � is a remote read operation of object x by client c that occurs in �. Let i = site(c). Then:

1. � contains exactly one event global-read(c; �; x)i. This event follows request(�).

2. � contains exactly one event of the form mcast(read-do; c; �; x)i;fjg (for some j), and this event follows
global-read(c; �; x)i.

3. � contains exactly one event of the form receive(read-do; c; �; x)i;j, and this event follows
mcast(read-do; c; �; x)i;fjg.

4. � contains exactly one event of the form mcast(read-reply; c; �; x; v)j;fig (for some v), and this event follows
receive(read-do; c; �; x)i;j.

14

5. � contains exactly one event of the form receive(read-reply; c; �; x; v)j;i, and this event follows
mcast(read-reply; c; �; x; v)j;fig.

6. � contains exactly one event report-read(�; x; v)c, and this event follows receive(read-reply; c; �; x; v)j;i.

7. There are no other events in � that involve �.

Lemma 5.5 Suppose � is a remote update operation of object x by client c that occurs in �. Let i = site(c),
J = sites(x), and j = primary(x). Then:

1. � contains exactly one event global-update(c; �; x; f)i. This event follows request(�).

2. � contains exactly one event of the form mcast(update-do; c; �; x; f)i;J, and this event follows
global-update(c; �; x; f)i.

3. For every j 0 2 J , � contains exactly one event receive(update-do; c; �; x; f)i;j0, and each of these events
follows mcast(update-do; c; �; x; f)i;J.

4. � contains exactly one event mcast(update-reply; c; �; x)j;fig, and this event follows receive(update-do; c; �; x; f)i;j.

5. � contains exactly one event receive(update-reply; c; �; x))j;i, and this event follows mcast(update-reply; c; �; x)j;fig.

6. � contains exactly one event report-update(�; x)c, and this event follows receive(update-reply; c; �; x)j;i.

7. There are no other events in � that involve �.

Lemma 5.6 Suppose � is a shared update operation of object x by client c that occurs in �. Let i = site(c),
J = sites(x), and j = primary(x). Then:

1. � contains exactly one event global-update(c; �; x; f)i. This event follows request(�).

2. � contains exactly one event of the form mcast(update-do; c; �; x; f)i;J, and this event follows
global-update(c; �; x; f)i.

3. For every j 0 2 J , � contains exactly one event receive(update-do; c; �; x; f)i;j0, and each of these events
follows mcast(update-do; c; �; x; f)i;J.

4. � contains exactly one event report-update(�; x)c, and this event follows receive(update-do; c; �; x; f)i;i.

5. There are no other events in � that involve �.

The previous lemmas can be used to draw some conclusions about the order of events in �.

Lemma 5.7 Suppose that (�; �0) 2 totally-precedes�jc for some client c at site i.

1. If � and � are both local, then the perform event for � precedes the perform event for �0 in �.

2. If � is local and �0 is global, then the perform event for � precedes the mcast of the do message for �0 in �.

3. If � is local and �0 is shared, then the perform event for � precedes the receipt of the do message for �0 by
i, in �.

4. If � is shared and �0 is local, then the receipt of the do message for � by i precedes the perform event for �0

in �.

15

5. If � is remote and �0 is local, then the receipt of the reply message for � precedes the perform event for �0

in �.

6. If � is shared and �0 is global, then the receipt of the do message for � by i precedes the mcast of the do
message for �0 in �.

7. If � and �0 are both shared, then the receipt of the do message for � by i precedes the receipt of the do
message for �0 by i, in �.

8. If � is remote and �0 is global, then the receipt of the reply message for � precedes the mcast of the do
message for �0 in �.

Proof: We prove Part 2. By Lemma 5.2 or 5.3, the perform for � precedes report(�). By the definition of
totally-precedes�jc, this in turn precedes request(�0). By Lemma 5.4, 5.5 or 5.6, this precedes the mcast of the
do message for �0.

The proofs of the other parts of the lemma are similar.

Among the facts shown by the previous lemmas is that in fair client-well-formed executions, each operation
has a report event following the request. Therefore, we have reached the first of our two goals:

Lemma 5.8 � is complete.

Now we turn to our second goal, of producing a supportive partial order P for the sequences �jc. We begin
by providing some terminology for discussing the crucial actions of the various operations, namely, those actions
that actually affect or use the values of object copies.

Let x be an object, and let i be any element of sites(x). Thus, there is a replica of x at site i. From the transition
relation, we see that the events that can modify this replica are those of the form perform-update(c; �; x; f)i and
receive(update-do; c; �; x; f)j;i. We say that each of these is a modification of x at i on behalf of �. The only
other events that use this replica are those of the form perform-read(c; �; x)i and receive(read-do; c; �; x)j;i. We
say that each of these is a lookup of x at i on behalf of �. A crucial event for x at i on behalf of � is either a
modification or a lookup. Note that for any site i and operation �, � contains at most one crucial event at i on
behalf of �. We also have some guarantees of when crucial events must occur:

Lemma 5.9 Let � be an update operation of object x. Then for every site i in sites(x), there is a modification of
x at i on behalf of �.

Lemma 5.10 Let � be a read operation of object x. Then there is some site i in sites(x) such that there is a
lookup of x at i on behalf of �.

Now we can define P . It is defined to be the transitive closure of the union of the following relations:

1. mcast-order.

This relates any two global operations that occur in �, ordering them in the total order T provided by the
context multicast channel B.

That is, each global operation gives rise to a unique mcast(read) or mcast(update) event. If � and �0 are
global operations that occur in �, then we define (�; �0) 2 mcast-order provided that the mcast event of �
precedes the mcast event of �0 in T .

16

2. For each site i, crucial-orderi.

This relates any two (local or global) operations that both perform crucial events at site i in �, ordering
them in the order of their crucial events.

That is, if � and �0 are operations that occur in �, then we define (�; �0) 2 crucial-orderi provided that �
contains a crucial event at i on behalf of � and a later crucial event at i on behalf of �0. (Note that these
events may be for different objects.)

3. For each client c, the totally-precedes�jc order on operations invoked by c, which totally orders the
operations of client c.

It turns out that most of the work is devoted to showing that P is a partial order; it is then easy to show that P
is supportive for the sequences �jc.

In order to show that P is a partial order, we show that all its constituent orders give the same order for global
operations. This involves a case analysis, using the receive consistency and context safety properties. Then the
combined order P just inserts local operations in appropriate places in the sequence of global operations.

The following lemmas demonstrate relationships between the different constituent partial orders.

Lemma 5.11 Suppose that � and �0 are local or shared operations of the same client c that occur in �. Let
i = site(c). If (�; �0) 2 totally-precedes�jc, then (�; �0) 2 crucial-orderi.

Proof: Four of the parts of Lemma 5.7 together imply that a crucial event at i on behalf of � precedes a crucial
event at i on behalf of �0, in �. Therefore, (�; �0) 2 crucial-orderi.

Lemma 5.12 Suppose that � is a remote operation. Then T orders the mcast of the do message for � before the
mcast of the reply message for �.

Proof: Let j be the site performing the mcast of the reply for �. By Lemma 5.4 or 5.5, the mcast of the reply
for � must be preceded by the receipt by j of a do message for �. Then the context safety property implies that
T orders the mcast of the do message for � before the mcast of the reply message.

Lemma 5.13 Suppose that � and �0 are two global operations and i is any site. If (�; �0) 2 crucial-orderi then
(�; �0) 2 mcast-order.

Proof: For global operations on behalf of which a crucial event occurs at site i, crucial-orderi is the order in
which i receives the multicast do messages. By receive consistency, this is the same as the order given by T to
the mcast events, which is exactly the order given to the operations by mcast-order.

Lemma 5.14 Suppose that � and �0 are two global operations of the same client c. If (�; �0) 2 totally-precedes�jc
then (�; �0) 2 mcast-order.

Proof: If � is shared, then by Lemma 5.7, the receipt by i of the do message for � precedes the mcast of the do
message for �0 in �. Then the context safety property implies that T orders the mcast of the do message for �
before the mcast of the do message for �0. Thus, (�; �0) 2 mcast-order.

On the other hand, if � is remote, then by Lemma 5.7, the receipt by i of the reply for � precedes the mcast
of the do message for �0, in �. Then the context safety property implies that T orders the msmcast of the reply
message for � before the mcast of the do message for �0. But Lemma 5.12 implies that T orders the mcast of the
do message for � before the mcast of the reply message for �. So by transitivity, T orders the mcast of the do
message for � before the mcast of the do message for �0. Again, (�; �0) 2 mcast-order.

17

Lemma 5.15 Suppose that � and �0 are global operations. If (�; �0) 2 P , then (�; �0) 2 mcast-order.

Proof: If � and �0 are directly related by one of the constituent relations, then the result is exactly the conclusion
of Lemma 5.13 or 5.14.

Next, we consider the situation when � and �0 are related through a chain of local operations, which must
therefore all be at a single site i. Let these local operations be named �1; �2; : : : ; �m. Lemma 5.11 shows
that for each k, (�k; �k+1) 2 crucial-orderi. Since crucial-orderi is transitive, we have either m = 1 or
(�1; �m) 2 crucial-orderj . We divide the argument into cases, depending on which constituent relations give the
initial and final edges in the chain.

1. (�; �1) 2 crucial-orderi.

Then by transitivity, (�; �m) 2 crucial-orderi. That is, the receipt by i of the do message for � precedes
the perform event for �m. We consider subcases.

(a) (�m; �
0) 2 crucial-orderi.

Then by transitivity, (�; �0) 2 crucial-orderi, so Lemma 5.13 implies that (�; �0) 2 mcast-order.

(b) (�m; �0) 2 totally-precedes�jc for some c.

Then i = site(c) and �0 is an operation of c. Lemma 5.7 implies that the perform for �m precedes the
mcast of the do message for �0. Thus, the receipt by i of the do message for � precedes the mcast (by
i) of the do message for �0. Context safety then implies that (�; �0) 2 mcast-order.

2. (�; �1) 2 totally-precedes�jc for some c.

Then i = site(c) and � is an operation of c. If � is a shared update, then Lemma 5.11 implies that also
(�; �1) 2 crucial-orderi, in which case the earlier cases apply. So we may assume that � is a remote
operation.

Then Lemma 5.12 implies that T orders the mcast of the do message for � before the mcast of the reply
message for �. And Lemma 5.7 implies that the receipt by i of the reply for � precedes the perform event
for �1, which either equals (in case m = 1) or precedes the perform event for �m. Thus, the receipt by i of
the reply for � precedes the the perform event for �m. We consider subcases.

(a) (�m; �
0) 2 crucial-orderi.

Then the perform event for �m precedes the receipt by i of the do message for �0. Therefore, the
receipt by i of the reply message for � precedes the receipt by i of the do message for �0. Then the
receive consistency property implies that T orders the mcast of the reply message for � before the
mcast of the do message for �0.

(b) (�m; �
0) 2 totally-precedes�jc

Then by Lemma 5.7, the perform event for �m precedes the mcast of the do message for �0. Therefore,
the receipt by i of the reply for � precedes the mcast of the do message for �0, in �. By context safety,
T orders the mcast of the reply message for � before the mcast of the do message for �0.

Thus, in either case, T orders the mcast of the reply message for � before the mcast of the do message for
�0. Then by transitivity, T orders the mcast of the do message for � before the mcast of the do message for
�0. Thus, (�; �0) 2 mcast-order.

Thus, if � and �0 are related through a chain of local operations, then (�; �0) 2 mcast-order.

18

Finally, if the chain between the operations � and �0 includes other global operations, then we can divide it
into segments each starting and ending with a global operation but containing no other global operations. The
argument just made applies to each segment, which shows that the global operations in the whole chain are
themselves a chain related by mcast-order. Transitivity of mcast-order yields that (�; �0) 2 mcast-order.

Lemma 5.16 The relation P is a partial order.

Proof: Suppose not. Then there is a cycle of length at least 2 consisting of operations, each related to the
following by one of the constituent relations. If the cycle contains any global operation �, then we have (�; �) 2 P ,
which implies that (�; �) 2 mcast-order by Lemma 5.15; this contradicts the fact that mcast-order is an irreflexive
partial order. If, on the other hand, every operation in the cycle is local, then all must be at a single site i, and by
Lemma 5.11, there must be a cycle in crucial-orderi, which is also a contradiction.

Finally, we show that P is supportive.

Lemma 5.17 P is supportive for the sequences �jc.

Proof: We first show that P is well-founded, that is, that each operation has finitely many predecessors in P .
Note that in each constituent relation, each operation has finitely many predecessors. So if this property does
not hold in P , Konig’s lemma implies the existence of an infinite chain of direct predecessors. If infinitely many
operations in this chain are global, then Lemma 5.15 gives an infinite chain of predecessors in mcast-order,
contradicting the well-founded property of the multicast service. On the other hand, if only finitely many
operations in the chain are global, then we can start far enough along the chain and get an infinite chain of local
operations. But then all these local operations must occur at the same site, say i. Then Lemma 5.11 yields an
infinite chain of predecessors in crucial-orderi which is impossible because � contains only a finite number of
events that are before any given event. It follows that P is well-founded.

The construction immediately guarantees that, for any client c, P contains totally-precedes(�jc).
Now we show that P relates all the “conflicting” operations (that is, a read and an update, or two updates) on a

single object x. Suppose that � and �0 are distinct operations of object x and that at least one is an update. Then
Lemmas 5.10 and 5.9 together imply that there is some site i at which there are crucial events for x on behalf of
both � and �0. This implies that � and �0 are related by crucial-orderi, and therefore are related by P .

Finally, we argue that each read operation returns the right value. Suppose � is a read operation of object x.
Then by Lemma 5.10, there is a site i at which a lookup event is performed on behalf of �. The algorithm ensures
that the return value of � is exactly the cumulative effect of all the modifications performed on the copy of x at i
before the lookup event. By Lemma 5.9, these modifications are exactly those that arise from the collection of
update operations to x that are ordered before � by crucial-orderi. Also by Lemma 5.9, every update operation
to x is related to � by crucial-orderi. Thus the collection of update operations to x that are ordered before � by
crucial-orderi is exactly the set of update operations to x that precede � in P . This shows that � receives the
specified return value.

Proof: (of Theorem 5.1)
Lemmas 5.8, 5.16, 5.17, and 3.2 combine to imply thatA is a sequentially consistent shared object system.

6 Lower Layer

Now we present the algorithm that constructs a context multicast channel based on a combination of totally
ordered broadcast and point-to-point communication (see Figure 6).

We fix an arbitrary message alphabet M , set I of sites, and set I of destination sets; we will implement a
context multicast channel for M , I and I.

19

Object Management

Client ClientClient ...

Daemon Daemon

Broadcast channel

Point−to−point channel

Lower
Layer

...

Figure 6: The architecture of the lower layer.

6.1 The Algorithm

The implementation is constructed as the composition of the following automata: BC, a reliable, totally-ordered
broadcast channel,7 PP, a reliable, point-to-point channel, and a collection Di, one for each i 2 I , of daemon
automata that multiplex between the two lower-level services.

Both BC and PP are multicast channels, as defined in Section 4, and both have I as their set of sites. The
broadcast channel BC has only one possible destination set, namely, I itself, while the point-to-point channel PP
has exactly the singleton sets fig; i 2 I , as destination sets. Both satisfy the basic reliability requirements for
multicast channels. In addition, we assume that BC is itself a context multicast channel – each of its fair traces
has an ordering that is well-founded, receive consistent and context safe.8 We do not assume anything additional
about PP. In order to distinguish the mcast and receive events for BC, PP, and the channel being implemented,
we superscript each action of BC and PP by the channel name.

Each automaton Di processes the messages that are submitted by the environment via mcasti;J events. To
process a message that is destined for more than one site,Di broadcasts the message and its intended destination
set, using the broadcast channel BC. When this message reaches a site j, automaton Dj delivers it to the
environment if j is among the intended destinations; otherwise, Dj discards it. To process a message intended
for one site only, Di piggybacks on it the sequence number of the broadcast most recently received at site i, and
then sends the embellished message directly to its destination using the point-to-point channel PP. After this
message reaches its destination, it is delivered to the environment, but only after multicasts with the same and
lower sequence numbers have been delivered. The interface of Di is as follows. (Here, m 2 M , j 2 I , J 2 I,
and k is a nonnegative integer.)

Input:
mcast(m)i;J
receiveBC (m;J)j;i
receivePP (m;k)j;i

Output:
receive(m)j;i
mcastBC(m;J)i;I
mcastPP (m;k)i;fjg

7We model this broadcast channel as a single automaton. This could itself be implemented as a collection of automata, one per site,
communicating through a still lower-level service.

8In fact, since each message is received by every site including the sender itself, and each receive event occurs after the corresponding
mcast event, any total order in a broadcast system that is receive consistent must also be well-founded and context safe.

20

mcast(m)i;J
Effect:

add (m;J) to buffer

mcastBC (m;J)i;I
Precondition:

(m;J) is first on buffer
jJ j > 1

Effect:
remove first element of buffer

mcastPP (m;k)i;fjg
Precondition:

(m; fjg) is first on buffer
k = seqno

Effect:
remove first element of buffer

receiveBC(m;J)j;i
Effect:

seqno := seqno+ 1
if i 2 J then add (m; j) to msgs
add to msgs (in any order) all (m0; j0)

such that (m0; j0; seqno) 2 ppwait
remove from ppwait all (m0; j0; seqno)

receivePP (m;k)j;i
Effect:

if k � seqno then add (m; j) to msgs
else add (m; j; k) to ppwait

receive(m; j)i
Precondition:

(m; j) is first on msgs
Effect:

remove first element of msgs

Figure 7: AutomatonDi.

Di has the following state components:

buffer, a queue of (message, destination set) pairs, initially empty
msgs, a queue of (message, site) pairs, initially empty
ppwait, a multiset of (message, site, nonnegative integer) triples, initially empty
seqno, a nonnegative integer, initially 0.

The buffer component is used like buffer in Pi in the higher layer algorithm; it contains messages scheduled
to be sent via the underlying communication services. The msgs component keeps track of messages that are
scheduled for delivery to the environment, each with an indication of its site of origin. The ppwait component
keeps track of point-to-point messages that are destined for site i, but that are waiting for the receipt of the
broadcast with the appropriate sequence number. Finally, component seqno records the number of broadcasts
received so far.

The code for Di appears in Figure 7.

6.2 Correctness

Let C denote the composition of the site automata Di together with BC and PP, with the actions of BC and PP
hidden. We prove the following theorem:

Theorem 6.1 C is a context multicast channel.

The proof of Theorem 6.1 occupies the rest of this section. For the rest of this section, fix � be an arbitrary fair
trace of C, and let � be any fair execution of C that gives rise to �. We define a relation T on the mcast events
in �, and show that T is a total order with the required properties: � and T are well-founded, receive consistent,
and context safe.

21

First, if � is any mcast event, then we define its epoch, epoch(�). If � is a multi-destination mcast, then
epoch(�) is the value assigned to the state component seqno when �’s receiveBC occurs at any site. (Receive
consistency of BC and the fact that all sites receive each broadcast, imply that this value is uniquely defined.)
Also, if � is any single-destination mcast event, say with destination set fig, then epoch(�) is the maximum
of the following two numbers: (a) the sequence number piggybacked on �’s point-to-point message (this is the
value of seqno at the sender when the corresponding mcastPP occurs) and (b) the value of seqno at site i when
the corresponding receivePP occurs at Di.

Notice that since the state component seqno is incremented exactly in each receiveBC event, it follows that
the range of the function epoch is a prefix of the positive integers, and that each integer in this prefix is the epoch
of exactly one multi-destination mcast event (as well as of zero or more single-destination mcast events).

We now define T as the relation on mcast events in � which is the transitive closure of the union of several
individual relations.

1. The multi-multi order relates any two multi-destination mcast events in �; it orders them according to their
epoch’s.

2. The multi-single relation orders a multi-destination mcast event � in � before a single-destination mcast
event � in � if epoch(�) � epoch(�).

3. The single-multi relation orders a single-destination mcast event � in � before a multi-destination mcast
event � in � if epoch(�) < epoch(�).

4. The single-single order relates any two single-destination mcast events in � that have the same epoch; it
orders them in the order of their receive events as they occur in �.

Then we must show that T is a well-founded total order, and that it guarantees the needed properties of receive
consistency and context safety.

From the individual relations defined above we see that T respects the order determined by epoch numbers,
and among events with the same epoch, T places the unique multi-destination mcast at the beginning.

Lemma 6.2 Whenever (�; �0) 2 T , then epoch(�) � epoch(�0). Also, whenever (�; �0) 2 T and �0 is a
multi-destination mcast, then epoch(�) < epoch(�0).

There is a partial converse to Lemma 6.2:

Lemma 6.3 Whenever epoch(�) < epoch(�0), then (�; �0) 2 T .

Proof: Consider any two mcast events, � and �0, in�, with epoch(�) < epoch(�0). If both are multi-destination,
then (�; �0) 2 multi-multi; if� is multi-destination and �0 is single-destination, then (�; �0) 2 multi-single; and if
� is single-destination and �0 is single-destination, then (�; �0) 2 single-multi. The remaining case is where both
are single-destination. Then, taking to be the unique multi-destination mcast event with epoch() = epoch(�0)
we see that � is ordered before by single-multi and is ordered before �0 by multi-single. Thus in every case
(�; �0) 2 T .

Now we are ready to show in turn that � and T have the properties required of them.

Lemma 6.4 T is a partial order.

22

Proof: By Lemma 6.2, any cycle of edges each from one of the constituent relations (which generate T)
would have to involve a collection of events all of which had the same epoch, and further, none could be a
multi-destination mcast. But this means that all the edges must be from the relation pp which is itself a partial
order. This contradiction shows that T is acyclic, and so, since it is by construction transitive and irreflexive, it
is a partial order.

Lemma 6.5 T is a total order.

Proof: Consider any two distinct mcast events, � and �0, in �. If epoch(�) 6= epoch(�0) then Lemma 6.3 shows
that � and �0 are related by T . On the other hand, suppose the events have the same epoch; thus at most one
can be multi-destination. If neither is multi-destination then they are related by single-single, while if one is
multi-destination and the other is single-destination then they are related by multi-single. Thus in every case �
and �0 are related by T .

Lemma 6.6 T is well-founded.

Proof: Note that at a given site i, there can be an infinite number of mcast events with the same epoch N only
if there are exactly N receiveBC events at i. Since each broadcast is received at every site, this only happens if
there are exactly N multi-destination messages in the execution. As there are a finite number of sites, there must
be only finitely many mcast events in each epoch except possibly the last. As epoch values are non-negative
integers, the predecessors of any mcast event � can include only a finite number of events with lower epochs,
one multi-destination mcast with the same epoch, and those single-destination events with the same epoch which
precede � in �. As � is a sequence, this latter collection is also finite. Thus T is well-founded.

Lemma 6.7 T is context safe.

Proof: Suppose that at i, receive(m; j)i is followed by mcast(m0; J)i. We divide the argument into cases.
Suppose both m and m0 are intended for multiple sites, then at i the algorithm shows that the receiveBC for

m precedes the event receive(m; j)i. Similarly, mcast(m0; J)i precedes the mcastBC for m0. That is we must
have the receiveBC for m before the mcastBC for m0. Context safety of TMC now shows that at every site,
the receiveBC for m precedes the receiveBC for m0. Thus the value of seqno assigned at any site during the
receiveBC for m is less than the value of seqno assigned during the receiveBC for m0. That is, the epoch of the
mcast of m is less than the epoch of the mcast of m0; so that the mcast events are ordered appropriately by T .

Suppose both m and m0 are intended for single sites, then at p we must have the receive for m before the
mcastPP form0. Now the epoch of the mcast event form0 is greater than or equal to the tag placed onm0, which
is the value of seqno at the time of the mcastPP event for m0; this value must be at least as great as the value of
seqno at the time of the receive for m. The use of the ppwait queue ensures that the value of seqno when the
receive form occurs is at least as great as the tag which was attached tom, and (because seqno never decreases) it
is also at least as great as the value of seqno when the receivePP form occurs. By definition we see that the value
of seqno at the receive for m is at least as great as the epoch of the mcast for m. Combining these observations,
we see that the epoch of the mcast event for m0 is greater than or equal to the epoch of the mcast for m. If these
epochs are not equal, then it was shown in Lemma 6.3 that T orders the mcast events appropriately, while if the
epochs are equal, then we note that the receive for m0 must occur later in � than the mcast, and hence later still
than the receive for m. Again, T orders the events appropriately.

Suppose that m is intended for multiple destinations whilem0 is intended for a single site. At p we must have
the receiveBC form before the mcastPP form0. Now the epoch of the mcast event form0 is greater than or equal

23

to the tag placed on m0, which is the value of seqno at the time of the mcastPP event for m0; this value must be
at least as great as the value of seqno assigned during the receiveBC for m, which is the epoch of m. Thus the
multi-single relation orders the mcast events appropriately, as so T also orders them appropriately.

Suppose thatm is intended for a single site, whilem0 is intended for multiple sites. then at p we must have the
receive for m before the mcastBC for m0, which itself occurs before the receiveBC event for m0 at site i itself.
Now the epoch of the mcast event for m0 is the value assigned to seqno during the receiveBC event form0, which
is stricty greater than the value of seqno at the time of the receive for m. The use of the ppwait queue ensures
that the value of seqno when the receive for m occurs is at least as great as the tag which was attached to m,
and (because seqno never decreases) it is also at least as great as the value of seqno when the receivePP for m
occurs. By definition we see that the value of seqno at the receive for m is at least as great as the epoch of the
mcast for m. Combining these observations, we see that the epoch of the mcast event for m0 is strictly greater
than the epoch of the mcast for m. Thus the single-multi relation (and so also T) order the events appropriately.

The above cases cover all possibilities, showing that T is context safe.

Lemma 6.8 T is receive consistent.

Proof: We first note that the order of receive events at a site is the same as the order of entry into the queue msgs
at that site. A multi-destination message m enters the msgs queue during the corresponding receiveBC step, in
which seqno is first assigned to be the epoch of the mcast event for m. Also the ppwait queue is used so that a
single-destination message m enters the msgs queue during an event after which the value of seqno is equal to
the epoch of the mcast event for m. Now suppose that receive(m; j)i precedes receive(m0; j 0)i at site i in �. Let
us consider cases.

Suppose m and m0 are multi-destination messages, so each enters the msgs queue during the corresponding
receiveBC event. Thus the receiveBC form precedes the receiveBC for m0, and since seqno never decreases, the
epoch of m is less than the epoch for m0. Thus multi-multi (and so also T) orders the mcast event for m before
the mcast event for m0.

Suppose m and m0 are both single-destination messages. Since the epoch of each is the value of seqno at the
step when it enters the msgs queue, and since seqno never decreases, the epoch ofmmust be less than or equal to
the epoch of m0. If the epochs are equal, then it is immediate that single-single orders the corresponding mcast
events in the same order as the receive events. On the other hand, if the epoch of m is less than the epoch for m0,
then we saw in Lemma 6.3 that T orders the mcast event for m before the mcast event for m0.

Suppose that m is intended for multiple destinations whilem0 is intended for a single site. Since m enters the
msgs queue during the step when seqno is first set to equal the epoch of m, and m0 enters the msgs queue in a
later event after which seqno equals the epoch of m0, we have that the epoch of m is less than or equal to the
epoch of m0. It is immediate that multi-single orders the mcast event for m before the mcast event for m0.

Suppose that m is intended for a single site, while m0 is intended for multiple sites. Since m enters the msgs
queue during a step after which seqno is equal the epoch of m, andm0 enters the msgs queue during a later event
in which seqno is first assigned to be the epoch of m0, we have that the epoch of m is strictly less than the epoch
of m0. It is immediate that single-multi orders the mcast event for m before the mcast event for m0.

In every case, we see that T orders the mcast event for m before the mcast event for m0.

Proof: (of Theorem 6.1) The properties of T have been shown in Lemmas 6.5, 6.6, 6.7, and 6.8.

We note that it is possible to improve the efficiency of the algorithm for all or one-site replication. For example,
we tag each point-to-point message with the sequence number of the last broadcast received (in a receiveBC

event) before the point-to-point message is sent (in a mcastPP event). Alternatively, we could tag it with the
sequence number of the last broadcast message that is passed to the environment at site i before the point-to-point
message is submitted by the environment at site i. This can be smaller than the tag used above, so that the

24

destination site might delay the message for a shorter time. In this respect, our version of the algorithm follows
the Orca implementation.

7 Discussion

We have presented a new algorithm for implementing a sequentially consistent shared object system in a
distributed network. The algorithm is based on the one used in the Orca system, but generalizes it to allow
objects to be partially replicated. Replicated objects are kept consistent using a context multicast system, which
is a new communication service that can be implemented using a combination of totally ordered broadcast
and point-to-point communication. We have presented this algorithm in two layers, and have carried out a
complete correctness proof using this decomposition. In the course of our work, we found a logical error in
the implementation of the Orca system that had not yet manifested itself in execution; as a result, the Orca
implementation has been modified to correct this error.

This work opens up many avenues for future research. First, some simple extensions to our results can be
made. For example, we could allow concurrent invocations of operations by the same client instead of requiring
clients to block. In order to handle this case, we need to adjust our definition of sequential consistency to
eliminate the client-well-formedness condition, to modify the algorithm to maintain sets of active operations, and
to make minor changes in our proofs.

Another extension to our work is to incorporate objects with more general kinds of operations than just read
and update.

A more serious extension is to allow for dynamic changes to the locations of object copies. As we noted in
Section 1, Orca allows object locations to change dynamically, in response to changes in access patterns. There
are several different schemes possible for managing such changes; most of these maintain the safety properties
expressed by our results, but cause violations to the liveness conditions (e.g., an operation might not be able to
find the needed copies because they are continuously moving). It remains to describe and verify existing schemes
using our framework, and to develop and verify new schemes that preserve the liveness condition.

Still another extension is to use weaker communication primitives. In some process group systems such as
the present implementation of Isis, consistent ordering is not guaranteed between all messages, but only between
messages with a common destination. We would like to consider how to build a shared object system using this
primitive together with point-to-point messages. For all these extensions we expect that much of the machinery
developed in this paper can be reused.

8 Conclusions

Implementations for distributed systems such as Orca are complicated, because of the many possible interleavings
of events of concurrent threads. It is generally difficult to be sure that such implementations are correct. Formal
modeling and verification in the style we have presented here can provide great help in understanding and
verifying such systems. Our modeling and verification of Orca has already contributed to the Orca project by
identifying and correcting an error and by giving the designers extra confidence in the corrected implementation.
In addition, the structures we have provided should provide useful documentation and assistance in future system
modification.

More broadly, our work can be seen as a first step in the development of a practical theory for distributed
shared memory systems. Such a theory should consist of a body of abstract component specifications, abstract
algorithms, theorems about how the various abstract notions are related, and application-specific proof methods.
Our contributions to this theory include our specifications for a sequentially consistent shared memory system

25

and for various kinds of multicast channels, our higher layer and lower layer algorithms and their correctness
theorems, and our lemmas that show how to prove sequential consistency. However, our work is only a first step
— we believe that much more work of the same kind, based on formal modeling of real systems and applications,
is needed to complete the job.

Acknowledgements

We like to thank Henri Bal, Wilson Hsieh, Victor Luchangco, and Tim Ruhl for their comments on drafts of this
paper.

References

[1] S.V. Adve and M.D. Hill. Weak ordering - a new definition and some implications. Technical Report
TR-902, University of Wisonsin, Madison, WI, Dec. 1989.

[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM. Trans. on Programming Languages and Systems,
15(1):182–205, Jan. 1989.

[3] M. Ahamad, P.W. Hutto, and R. John. Implementing and programming causal distributed shared memory.
In Proc. Eleventh International Conference on Distributed Computing Systems, pages 274–281, Arlington,
TX, May 1991.

[4] H. Attiya and R. Friedman. A correctness condition for high-performance multiprocessors. In Proc. 24th
ACM Symp. on Theory of Computing, pages 679–691, 1992.

[5] H. Attiya and J. Welch. Sequential consistency versus linearizability. ACM Transactions on Computer
Systems, 12(2):91–122, 1994.

[6] H.E. Bal and M.F. Kaashoek. Object distribution in orca using compile-time and run-time techniques. In
Proc. Eigth Annual Conf. on Object-Oriented Programming Systems, Languages, and Applications, pages
162–177, Washington, DC, Sept. 1993.

[7] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A language for parallel programming of distributed
systems. IEEE Trans. on Soft. Eng., 18(3):190–205, March 1992.

[8] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on type-specific
memory coherence. In Proc. Second Symposium on Principles and Practice of Parallel Programming,
pages 168–176, Seattle, WA, March 1990.

[9] B.N. Bershad and M.J. Zekauskas. Midway: Shared memory parallel programming with entry consistency
for distributed memory multiprocessors. Technical Report CMU-CS-91-170, CMU, Pittsburgh, PA, Sept.
1991.

[10] K.P. Birman and T.A. Joseph. Reliable communication in the presence of failures. ACM Trans. Comp. Syst.,
5(1):47–76, Feb. 1987.

[11] L.M. Censier and P. Feautrier. A new solution to cache coherence problems in multicache systems. IEEE
Trans. on Computers, pages 1112–1118, Dec. 1978.

[12] Collier. Reasoning about Parallel Architectures. Prentice Hall Publishers, Englewood Cliffs, NJ, 1992.

26

[13] M. Dubois, C. Scheurich, and F.A. Briggs. Synchronization, coherence, and event ordering in multiproces-
sors. IEEE Computer, 21(2):9–21, Feb. 1988.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency
and event ordering in scalable shared-memory multiprocessors. In Proc. Seventeenth Annual International
Symposium on Computer Architecture, pages 15–26, Seattle, WA, May 1990.

[15] P. Gibbons and M. Merritt. Specifying non-blocking shared memories. In Proc. Fourth ACM Symp. on
Parallel Algorithms and Architectures, pages 306–315, 1992.

[16] P. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential consistency of high-performance shared
memories. In Proc. Third ACM Symp. on Parallel Algorithms and Architectures, pages 292–303, 1991.

[17] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.
on Programming Languages and Systems, 12(3):463–492, July 1990.

[18] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,
July 1978.

[19] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Trans. on Computers, 28(9):690–691, Sept. 1979.

[20] L. Lamport. On interprocess communication, parts i and ii. Distributed Computing, 1(2):77–101, 1986.

[21] R.J. Lipton and J.S. Sandberg. Pram: a scalable shared memory. Technical Report CS-TR-180-88, Princeton
University, Princeton, NJ, Sept. 1988.

[22] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.

[23] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–246, September
1989.

[24] C. Scheurich and M. Dubois. Correct memory operation of cache-based multiprocessors. In Proc. Fourteenth
Annual International Symposium on Computer Architecture, pages 234–243, Pittsburg, PA, June 1987.

[25] A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal. Parallel programming using shared objects and broadcast-
ing. IEEE Computer, 25(8):10–19, Aug. 1992.

[26] A.S. Tanenbaum, M.F. Kaashoek, R. van Renesse, and H.E. Bal. The Amoeba distributed operating system
- a status report. Computer Communications, 14(6):324–335, Aug. 1991.

27

