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Abstract

A distributed algorithm that implements a sequentially consistent collection of shared read/update objects using
a combination of broadcast and point-to-point communication is presented and proved correct. Thisalgorithmis
ageneralization of one used in the Orca shared object system. The agorithm caches objectsin thelocal memory
of processors according to application needs; each read operation accesses a single copy of the object, while
each update accesses dl copies. Copies of all the objects are kept consistent using a strategy based on sequence
numbers for broadcasts.

The agorithm is presented in two layers. The lower layer uses the given broadcast and point-to-point
communication services, plus sequence numbers, to provide a new communication service called a context
multicast channel. The higher layer uses a context multicast channel to manage the object replication in
a consistent fashion. Both layers and their combination are described and verified formally, using the I/0
automaton model for asynchronous concurrent systems.

1 Introduction

In this paper, we present and verify a distributed agorithm that implements a sequentially consistent collection
of shared read/update objects using a combination of (reliable, totally ordered) broadcast and (reliable, FIFO)
point-to-point communication. Thisagorithm is a generalization of one used in the implementation of the Orca
distributed programming language [7] over the Amoeba distributed operating system [26].

Orcaisalanguage for writing parallel and distributed application programsto run on clusters of workstations,
processor pools and massively parallel computers [7, 25]. It provides a simple shared object model in which
each object has a state and a set of operations, classified as either read operations or update operations. Read
operations do not modify the object state, while update operations may do so. Each operation involves only a
single object and appears to be indivisible.

More precisely, Orca provides a sequentially consistent memory model [19]. Informally speaking, a sequen-
tially consistent memory appears to its users as if it were centralized (even though it may be implemented in a
distributed fashion). There are several formalizations of the notion of sequentially consistent memory, differing
in subtleways. We use the state machine definition of Afek, Brown and Merritt [2].

Orca runs over the Amoeba operating system [26], which provides two communication services. broadcast
and point-to-point communication. Both services provide reliable communication, even in the presence of
communication failures. No guarantees are made by Orca if processors fail; therefore, we do not consider
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processor failures either. In addition, the broadcast service promises delivery of the broadcast messages in the
same total order at every destination,! while the point-to-point service preserves the order of messages between
any sender and receiver. The cost of an Amoeba broadcast, in terms of time and amount of communication, is
higher than that of a single point-to-point message. Therefore, it is natural to design algorithms so that point-to-
point communication is used whenever possible, i.e., when a messageis intended for only a single destination,
and broadcast is only used when necessary, i.e., when a message must go to severa destinations.

In theimplementation of Orca, user programs are distributed among the various processorsin the system. The
user program consists of threads, each of which runs on a single processor. In this paper, we call these threads
clients of the Orca system. Each processor may support severa clients. Shared objects are cached in the local
memory of some of the processors. Each read operation by a client accesses a single copy of the object, while
each update operation accesses dl copies. The underlying broadcast primitive provided by the Amoeba system
is used to send messages that must be sent to severa destinations— that is, invocations of update operations for
objects that have multiple copies. The underlying point-to-point primitive is used to send messages that have
only a single destination, that is, invocations of reads from a site without alocal copy of the object, invocations
of writes for an abject that has only single (remote) copy, and responses to all invocations.

An early version of the implementation used the strategy of caching all shared objects at all processors. This
strategy yields good performance for an object that has a high read-to-update ratio, since a read operation needs
only to access the local copy of the object. The drawback is that updates must be performed at al copies, using
an (expensive) broadcast communication. Experience has shown that there are some objects for which thisis not
the best arrangement. For example, many applications use a job queue object to allow clients to share work; the
job queue is updated whenever a client appends information to it about a task that needs to be done, and also
whenever a client removes a task from the queue in order to begin work on it. Since al accessesto ajob queue
are updates, total replication is not an efficient strategy in this case.

Because of objects like these, Orca has been re-implemented to allow more flexibility in the placement of
copies. The new implementation alows some objects to be totally replicated and others to have only a single
copy. Operations on an object with only a single copy can now be done using only point-to-point messages,
though broadcast must still be used for updates on replicated objects. The decision about whether or not to
replicate an object is made at run time using information generated by the Orca compiler. The details of this
decision process, and a so performance measurements to show the benefits of not replicating al objects, can be
foundin [6].

The naive strategy of allowing each read operation to access any copy of the object and each update operation
to access dl copiesisnot by itself sufficient to implement a sequentialy consistent shared memory. To see why,
consider the execution depicted in Figure 1. The example involves 3 processors, P;, P, and Ps, and two objects,
xz and y. Object = isreplicated on al processors, while object y is stored only on P,. The figure shows the
invocation and response messages for an update of i by Py, and the broadcast invocation messages for an update
of z by Ps. In thisexecution, P»’s read operations indicate that y is updated before « is, while P; reads the new
value of z before invoking the update of y. In a centralized shared memory, such conflicting observations are
impossible; thus this execution viol ates sequential consistency.

The new version of the Orca algorithm solves this consistency problem using a strategy based on sequence
numbersfor broadcasts. These broadcast sequence numbers are piggybacked on certain point-to-point messages
and are used to determine certain ordering rel ationships among the messages.

Our original goal was to verify the correctness of the new Orca algorithm. In the early stages of our work,

A broadcast service with such a consistent ordering guarantee is sometimes called a group communication service. Although group
communication is widely discussed in the systemsliterature, there is no general agreement on its definition. In this paper, we sidestep the
issue by using the term broadcast to indicate a communication to all sites in the system, and multicast to indicate a communication to a
subset of the sites. Thisterminology does not say whether the serviceis provided by hardware or software.
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Figure 1. A problem with the naive replication strategy.

however, we discovered a logica error in the implemented algorithm. Namely, broadcast sequence numbers
were omitted from some point-to-point messages (the replies returned to the operation invokers) that needed to
include them. We produced a corrected version of the algorithm, which has since been incorporated into the
Orca system.

The algorithm we study in this paper is our corrected algorithm, generalized beyond what is used in the Orca
implementationto alow replication of ashared object at anarbitrary collection of processors, rather than just one
processor or all processors. Thereisoneway inwhich our agorithmislessgeneral than the Orcaimplementation,
however: we assume for simplicity that the locations of copies for each object are fixed throughout a program
execution, whereas Orca alows these locations to change dynamically, in response to changesin access patterns
over time. We discuss the extension of our results to the case of dynamic reconfiguration in Section 7.

We present and verify the algorithm as the composition of two completely separate layers, each a distributed
algorithm. The structure of this part of the system is depicted in Figure 2. The lower layer uses the given
broadcast and point-to-point communication services, plus broadcast sequence numbers, to implement a new
communication service called a context multicast channel. A context multicast channel supports multicast of
messages to designated subsets of the sites, according to a virtual total ordering of messages that is consistent
with the order of message receipt at each site, and consistent with certain restricted “ causality” relationships. The
guarantees provided by a context multicast channel are weaker than those that are provided by totally ordered
causal multicast channels, asprovided by systemssuch aslsis[10]. However, the propertiesof acontext multicast
channel are sufficiently strong to support the replica management of the Orca agorithm.

The lower layer uses the given point-to-point primitive for each multicast message with a single destination,
and the given totally ordered broadcast primitive for each multicast message with more than one destination.
(Sites that are not intended recipients simply discard the message.) Sites associate sequence numbers with
broadcasts and piggyback the sequence number of the last received broadcast on each point-to-point message.
When a point-to-point message reaches its destination, the recipient delaysitsdelivery until theindicated number
of broadcasts have been received. (The ideais similar to the onein Lamport’s clock synchronization algorithm
[18], but we only apply it to a restricted set of events.) We prove that this algorithm correctly implements a
context multicast channel.
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Figure 2: The architecture of the system.

The higher layer uses an arbitrary context multicast channel to manage the object replication in a consistent
fashion. Each object is replicated at an arbitrary subset of the sites. A site performs aread operation localy if
possible. Otherwise, it sendsarequest to any sitethat has acopy and that site returnsaresponse. A site performs
an update operation locally if it has the only copy of the object. Otherwise, it sends a multicast message to all
sites that have copies, and waits to receive either its own multicast, or else an appropriate response from some
other site. We prove that this algorithm, combined with any context multicast system, provides a sequentially
consistent memory. Our proof uses a new method based on partial orders.

All our specifications and proofs are presented in terms of the I/O automaton model for asynchronous
concurrent systems[23]. Genera results about the composition of I/0O automata allow usto infer the correctness
of the complete system from our correctness results for the two separate layers.

Many different correctness conditions have been proposed for shared memory, including strong conditions
like memory coherence and weaker ones likerel ease consistency. Sequential consistency iswidely used because
it appears to be closest to what programmers expect from a shared memory system; non-sequentially consistent
shared memory systems typicaly trade programmability for performance. Sequential consistency was first
defined by Lamport [19]; in this paper, we use an aternative formulation proposed by Afek et a. [2], based on
I/0 automata. Other papers exploring correctness conditionsfor shared memory and algorithms that implement
theminclude [1, 3,5, 8,9,11, 12, 13, 14, 15, 16, 21, 24]. Inmost of thiswork, memory ismodeled asacollection
of items that are accessed through read and write operations. The study of correctness for shared memory with
more general data types was initiated by Herlihy and Wing [17]. Sequential consistency and other consistency
conditions for general data types has been studied by Attiyaand Welch [5] and Attiyaand Friedman [4].

The rest of the paper is organized as follows. Section 2 introduces basic terminology that is used in the rest
of the paper. Section 3 contains the definition of a sequentially consistent shared memory and introduces our
new method for proving sequential consistency. Section 4 contains definitions of multicast channels with various
properties, and in particular, the definition of a context multicast channel. Section 5 contains the higher layer
algorithm, which implements sequentia consistency using context multicast, plus a proof of its correctness.
Section 6 contains the lower layer agorithm, which implements context multicast in terms of broadcast and
point-to-point messages. Section 7 contains a discussion of dynamic reconfiguration, and some ideas for future
work. Finally, in Section 8 we draw our conclusions.



2 SomeBasics

2.1 Partial Orders

We use many partial (and total) orders, on events in executions, and on operations. Throughout the paper, we
assumethat partial and total ordersareirreflexive, that is, they do not relate any element to itself. Also, we define
apartia or total order P to be well-founded provided that each element has only finitely many predecessorsin
P. Thisassumptionis needed to rule out various technical anomalies.

2.2 1/O Automata

The I/O automaton model isasimplelabeled transition system model for asynchronous concurrent systems. An
I/0O automaton has a set of states, including some start states. It also has a set of actions, classified as input,
output or internal actions, and a set of steps, each of which isa (state, action, state) triple. Finaly, it has a set of
tasks, each of which consistsof a set of output and/or internal actions. Inputs are assumed to be always enabled.

An 1/O automaton executes by performing a sequence of steps. An execution is said to be fair if each task
gets infinitely many chances to perform a step. Externa behavior of an 1/O automaton is defined by the set of
fair traces, i.e., the sequences of input and output actions that can occur in fair executions.

I/0O automata can be composed, by identifying actions with the same name. The fair trace semantics is
compositional. Output actions of an 1/0 automaton can also be hidden, which meansthat they are reclassified as
internal actions. See [23] for more details.

3 Sequentially Consistent Shared Object Systems

In this section, we define a sequentially consistent shared object systemand give anew method for proving that a
systemissequentially consistent. Informally, asystemissaid to be a sequentially consistent shared object system
if all operations receive responses that are “consistent with” the behavior of a serially-accessed, centralized
memory. More precisely, the order of events at each client should be the same as in the centralized system, but
the order of events at different clientsis alowed to be different.

3.1 Thelnterface

We start by identifying the actions by which the shared object system interacts with its environment (the clients).
The shared object system receives requests from its environment and respondswith reports. Requests and reports
are of two types. read and update. Each request and report is subscripted with the name of the client involved.
Each request and report contains, as arguments, the name of the object being accessed and a unique operation
identifier. In addition, each update request containsthe function to be applied to the object and each read report
contains areturn value.?

Formally, let C' be a fixed finite set of clients, X afixed set of shared objects, V' a fixed set of values for
the objects, including a distinguished initial value v, and = afixed set of operation identifiers, partitioned into
subsets =, one for each client ¢. Thentheinterfaceis asfollows. (Here, ¢, £, » and » areelementsof C', =, X,
and V, respectively, and f isafunctionfrom V to V)

Input:

2There are two ways in which Orca differs from our specification: in Orca, (1) an update may return a value and (2) an update might
block.
3We ignore the possihility of different datadomains for the different objects.



request-read(¢, z)., £ € =.
request-update(¢, =, f)e, € € =

Output:
report-read(¢, =, v)., € € =
report-update(¢, =), £ € =

If 5 isaseguence of actions, we write 3|c for the subsequence of 3 consisting of request-read., request-update.,
report-read. and report-update,. actions. This subsequence represents the interactions between client ¢ and the
object system.

We assume that invocations are blocking: a client does not issue a new request until it has received a report
for its previous request. This assumption, and the uniqueness of operation identifiers, are assumptions about the
behavior of clients. We express these conditionsin the following definition: we say that a sequence 5 of actions
is client-well-formed provided that for each client ¢, no two request events* in 3|c contain the same operation
identifier £, and that 3| does not contain two request events without an intervening report event.

The object systems we describe will generate responses to client requests. Here we define the syntactic
properties required of these responses. Namely, we say that a sequence of actions is complete provided that
there is a one-to-one correspondence between request and report events such that each report follows the
corresponding request and has the same client, operation identifier, object and type.®> If a sequence 3 is
client-well-formed and complete, then 5|¢ must consist of a sequence of pairs of actions, each of the form
request-read(¢, « )., report-read(¢, «, v ). or request-update(¢, =, f)., report-update(&, z )...

We say that an operation identifier £ occurs in sequence  provided that 5 contains a request event with
operation identifier £. If g isany client-well-formed sequence and ¢ occursin 3, then there is a unique request
event in g for £. We sometimes denote this event simply by request(¢). Also, if 3 is client-well-formed and
complete, then there is a unique report event with operation identifier £; we denote it by report(£). We often
refer to an operation identifier as just an operation.

If 5 is a complete client-well-formed sequence of actions, we define the totally-precedes partial order,
totally-precedes;;, on the operationsthat occur in 3 by: (£, ¢') € totally-precedes; provided that report(¢) occurs
before request(¢’) in 3. Notice that for each client ¢, totally-precedes;). totally orders the operations that occur

ingle.

3.2 Definition

Our definition of sequential consistency isbased on an atomic object [20, 22], also known as alinearizableobject
[17], whose underlying data type is the entire collection of data objects to be shared. In an atomic object, the
operations appear to theclients“asif” they happened in some sequential order, and furthermore, that order must
be consistent with the totally-precedes order. Specifically, welet AM, the atomic memory automaton, be just like
the serial object automaton Mgy defined by Afek, Brown and Merritt [2] for the given collection of objects,

except that we generdize it to allow updates that apply functions rather than just blind writes.
In more detail, the actions of AM are as follows. (Here, ¢, £, x and v are dements of C', =, X, and V,
respectively, and f isafunctionfrom V to V')

Input:
request-read(¢, z)., £ € =.
request-update(&, =, f)., € € =

Output:

4An event is an occurrence of an action in a sequence.
SNote that the completenessproperty includes both safety and liveness conditions.



request-read(¢, ). request-update(&, =, f).

Effect: Effect:

active(c) := (read-perform ¢, z) active(c) := (update-perform ¢, =, f)
performread(¢, z ). perform-update(¢, z, f).
Precondition: Precondition:

active(c) = (read-perform &, ) active(c) = (update-perform &, «, f)
Effect: Effect:

active(c) := (read-report, £, =, mem(z)) mem(z) == f(mem(z))
active(c) := (update-report, £, )

report-read(¢, ¢, v).

Precondition: report-update(¢, z ).
active(c) = (read-report, £, z, v) Precondition:

Effect: active(c) = (update-report, £, z)
active(c) := null Effect:

active(c) := null

Figure 3: Automaton AM .

report-read(¢, «, v)e, € € =

report-update(¢, z)., € € =
Internal:

performread(¢, z)., € € =

perform-update(¢, z, f)e, &€ € =

The state of the automaton AM consists of :

mem, an array indexed by X of elementsof V/, initialy identically v
active, an array indexed by C' of tuples or the special value null, initialy identially null

Here, mem(xz) represents the current value for object z, and active(c) represents the access by client ¢ that is
currently in progress, if any. (The value null means that no accessis currently in progress.)

Thetransitionsfor AM are described by the code in Figure 3. We represent the steps for each particular type
of action in asingle fragment of precondition-effect code (i.e., a guarded command). The automaton is allowed
to perform any of these actions at any time when its precondition is satisfied; this style allows us to express the
maximum allowable nondeterminism.

AM has one task for the output and internal actions of each client. This means that the automaton keeps
giving turns to the activitiesit doesin behaf of each client.

Note that every client-well-formed fair trace of AM is complete.

Sequentia consistency is almost the same as atomicity; the difference is that sequentia consistency does not
respect the order of events at different clients. Thus, if 5 isaclient-well-formed sequence of actions, we say that
3 is sequentially consistent provided that there is some fair trace v of AM such that y|c = 3|c for every client c.
That is, 7 “lookslike” + to each individua client; we do not require that the order of events at different clients
bethesamein g and 4.

If A isanautomaton that modelsashared object system, then we say that A is sequentially consistent provided
that every client-well-formed fair trace of A is sequentialy consistent.



3.3 Proving Sequential Consistency

In order to show that the Orca shared object system is sequentially consistent, we will use anew proof technique
based on producing a partial order on the operations that occur in afair trace. In this subsection, we collect the
properties we need, in the definition of a“supportive” partial order.

For each ¢ € C, let 3. be a complete client-well-formed sequence of request and report events at client c.
Supposethat P isapartial order on the set of al operations that occur in the sequences 5.. Thenwesay that P is
supportivefor the sequences 5. provided that it is consistent with the order of operations at each client and orders
all conflicting read and update operations; moreover, the responses provided by the reads are correct according
to P. Formally, it satisfies the following four conditions:

1. P iswell-founded.
2. For each ¢, P contains the order totally-precedes; .

3. For each object z € X, P totaly orders al the update operations of z, and P relates each read operation
of z to each update operation of x.

4. Each read operation ¢ of object = has a return value that is the result of applying to vg, in the order given
by P, the update operations of = that are ordered ahead of £. More precisely, let &1, &2, ..., &, bethe
unique finite sequence of operations such that (a) {£; : 1 < j < m} isexactly the set of updates ¢’ of =
suchthat (¢',€) € P,and (b) (§;,£;41) € P fordl j,1 < j < m. Let f; bethefunction associated with
request(¢;). Then thereturn valuefor £ is fi, ( fr—1(. . . (f2( f1(v0))) .. .)).

The following lemma describes how a supportive partial order can be used to prove sequential consistency.

Lemma 3.1 For each ¢ € C, let 5. be a complete client-well-formed sequence of request and report events at
client c. Supposethat P isa partial order on the set of all operationsthat occur in the sequences ...

If P issupportivefor the sequences j., then thereis a fair trace y of AM such that v|c = 3. for every ¢ and
totally-precedes, contains P.

Proof: Let P beasupportive partial order. We first show that we can extend P to atotal order ¢) suchthat @) is
also supportive for the sequences 3.. We define Q as follows: suppose ¢ and ¢’ are operations that occur in 3.
and 3. respectively. Let (£,£') € @ provided that either £ has fewer predecessorsin P than ¢’, or ese the two
operations have the same number of predecessors and ¢ precedes ¢’ in some fixed total ordering of the clients. It
isclear by construction that ) isatota order on the operationsthat occur in the sequences and that P C Q).

To show that @) is supportive, we note that the second and third conditions follow from the fact that P is
supportive (since () contains P).

To show thefirst condition, we observethat P totally ordersall the operationsthat occur in 3. (for thesame ),
and so it is not possiblefor two operations ¢ and £’ that are both in /3. to have the same number of predecessors.
(Whichever islater will have a set of predecessors that include all the predecessors of the other, together with the
other operation itself and possibly more). It follows that there are at most n( N + 1) operations that have < N
predecessorsin P, where » isthe number of clientsin the system. Now, if an operation has N predecessors in
P, then by definition of (), each of its predecessorsin ¢ must have at most N predecessorsin P. Sincethere are
at most n( N + 1) such operations, the operation has at most n(N + 1) predecessorsin ). This shows the first
condition.

Finally the fourth condition holds for ¢) because it holds for P, and the set of update operations of » that
precede a given read of = isidentical whether P or () isused as the order.



Now since ¢) is atota order in which each element has only a finite number of predecessors, arranging the
operations in the order given by ¢) defines a sequence of operations. We obtain the required sequence ~ by
replacing each operation in this sequence by its request event followed by its report event.

We claim that v has the required properties. The fact that each /. is well-formed and complete implies that
totally-precedes;; isatotal order on the operations that occur in 3., and so these operations occur in @ in the
same order; since~ isconstructed to be well-formed and compl ete, the eventsin ~|c are the same as the eventsin
/3., and their order isalso the same. Thus+|c = /.. By construction, totally-precedes, equals ¢ which contains
P. Findly, v isatrace of AM because the fourth condition ensures that return values are appropriate; thetraceis
fair since v is complete. [

Thefollowing lemmais what we actually use later in our proof.

Lemma 3.2 Supposethat A isan automaton with the right interface for a shared object system. Suppose that,
for every client-well-formed fair trace 3 of A, the following aretrue:

1. giscomplete.
2. Thereisa supportive partial order for the sequences j|c.
Then A isa sequentially consistent shared object system.

Proof: Immediate by Lemma3.1. |

4 Multicast Communication

In this section, we define properties for multicast channels, and in particular, define a context multicast channel.

Asin the previous section, we start by identifying the actions by which the multicast channel interactswith its
environment; now the environment will be a set of sites in adistributed network. The multicast channel receives
requests from a site to send a message to a specified collection of sites, and responds by delivering the message
to the requested recipients. Thus, the channel provides multicast messages. There are two specia cases: when
the destination set consists of the entire collection of sites (including the sender), the communication is caled
broadcast, and when the destination set contains a single site, the communication is called point-to-point.

Formally, let M be a set of messages, I be a set of sites, and 7 be a fixed set of subsets of /7, representing
the possible destination sets for messages. If 7 = {/} we say that the channel is broadcast, since the only
possible destination set includes al the sites. WhenZ = {{i} : 7 € I} we say the communication system is
point-to-point, since each destination set consists of asinglesite. Theinterfaceis asfollows:

Input:

mcast(m);, s, me M,1€1,J €T
Output:

receive(m); ., m € M,j,1 €1

The action mecast(m);,; represents the submission of message m by site i to the channel, with .J as the set of
intended destinations. The action receive(m ), ; representsthe delivery of message m to site 7, where j isthe site
where the message originates. In each case, the action occurs at site.

Now we describe various correctness properties for fair traces of multicast channels. First, werequirerdiable
delivery of all messages, each exactly once, and to exactly the specified destinations. Formally, in any fair trace
[ of any multicast channel, there should be a cause function mapping each receive event in § to a preceding
mcast event (i.e., the mcast event that “causes’ this receive event). The two corresponding events should have



the same message contents, the site of the mcast should be the originator argument of the receive, and the site of
the receive should be amember of the destination set given in themcast. Furthermore, the cause function should
be one-to-one on receive events at the same site (which means there is no duplicate delivery at the same site).
Finally, the destination set for any mcast event should equal the set of sites where corresponding receive events
occur (which means that every messageisin fact delivered everywhere it should be).

In addition to these basic properties, there are additional properties of multicast systemsthat are of interest.
Theseinvolvea*“virtua ordering” of multicasts. We define these properties as conditionson aparticular sequence
3 that we assume satisfies al the basic reliability requirements described just above, and a particular total order
T of mcast eventsin 3. Thefirst condition isatechnical condition: the virtual ordering 7' is really a sequence,
i.e., it does not order infinitely many multicasts before any particular multicast.

Wdl-Foundedness 7' iswell-founded.

The next condition says that the order in which each site receives its messages is consistent with the virtua
ordering 7. Thisimpliesthat the order in which any two sites receive their messages is consistent.

Receive Consistency 5 and T' are receive consistent provided that the following holds. If = and =’ are mcast
eventsin 3, and areceive corresponding to = precedes a receive corresponding to =’ at some site ¢, in 3,
then (r,7") € T.

The next condition describes FIFO delivery of messages originating at the same site.

FIFO (3 and T are FIFO provided that the following holds. If = and =’ are mcast events at site ¢ in 3, with =
preceding 7/, then (7, 7") € T

The fina condition describes a restricted “causality” relationship, between a multicast that arrives at site and

another that subsequently originates at the same site.

Context safety 5 and T' are context safe provided that the following holds. If 7 is any mcast event, 7’ isan
mcast event at site i, and a receive event corresponding to = precedes «’ at site: in 3, then (7, 7’) € T.

Now we define a context multicast channel to be any automaton with the proper interface in which every fair
trace (3 satisfiesthe basic reliability requirements, and also hasatotal order T" such that 5 and T are well-founded,
receive consistent and context safe. (We do not require the FIFO condition.)

In atotally ordered causal multicast channel, every fair trace has atotal order guaranteeing the FIFO condition
in addition to well-foundedness, receive consistency, and context safety. Thus, any totally ordered causal
multicast channel is a special case of a context multicast channel. However, there are communication systems
(such as the one described in Section 6) that are context multicast channels but are not FIFO.

5 TheHigher Layer

Now we present the replica management algorithm, which uses a context multicast channel to implement a
sequentially consistent shared memory (see Figure 4).

51 TheAlgorithm

The algorithm is modeled as a collection of automata P;, one for each site : in a distributed network. Asin the
previous section, welet I denotethe set of sites. The entire shared object systemis, formally, the composition of
the siteautomata P;, « € I, and a context multicast channel. Each client ¢ isassumed to run at a particular site
site(c). We let clients(7) denote the set of clients that run at site .

81n theoretical work on distributed shared memory, it is common to assumethat only one client runs per site. This does not accurately
model systemslike Orca.

10
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Figure 4: The architecture of the higher layer.

The agorithm replicates each object = at an arbitrary (but fixed) subset sites(z ) of the sites, one of which is
distinguished as the primary site, primary(z ). We assumethat the set of sitesat which each object = isreplicated
is a possible destination set for the multicast channdl, i.e., that for every z, site(z) € 7.

A siteautomaton P; performs aread operation on an object = localy if it has a copy of ». Otherwise, it sends
areguest to any site that has a copy of = and that site returns aresponse. P; performs an update operation on x
locally if it has the only copy of z. Otherwise, P; sends a multicast message to al sites that have copies of x,
and waits to receive either its own multicast (in case P; has a copy of z), or else an acknowledgement from the
primary site (in case P; does not have a copy).

Formally, the messages M used in the algorithm are of the following kinds:

(read-do, ¢, £, z),

(update-do, ¢, ¢, z, f),
(read-reply, ¢, &, z,v),
(update-reply, ¢, £, z),

wheece C,é e =,z € X,ve V,and f: V — V. The “do” messages are the requests to perform the

operations, and the “reply” messages are the reports.
Theinterface of P; isasfollows. (Here, ¢ € clients(7), £,  and v are lementsof =, X', and V', respectively,
and f isafunctionfrom V to V. Also, m isan arbitrary messagein M, j € I,and J € 7.)

Input:
request-read(¢, z)., £ € =.
request-update(¢, , f)e, £ € =,
receive(m); ;

Output:
report-read(é, z, v)e, € € =,
report-update(¢, z)., € € =
mcast(m);, s

Internal:
performread(c, &, z):, € € =
global-read(c, £, 7)i, € € =¢
perform-update(c, &, =, f):, € € =
global-update(c, &, =, )i, € € =¢

The input and output actions of P; are all the actions of al clients ¢ at site 7, plus actions to send and
receive multicasts. Theinternal action perform-read(c, £, «); representsthe reading of alocal copy of z, whereas
global-read(c, £, x); represents the decision to sen amessage to another site requesting thevalue of z. Similarly,
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perform-update(c, £, =, f); represents the local performance of an update (when site ¢ has the only copy of z),
whereas global-update( ¢, £, z, f); represents the decision to send a message in order to update z.
P, has the following state components:

for every ¢ € clients(¢):
statug ¢), atuple or quiet, initialy quiet
for every a for which thereisacopy at i:
val(z) € V, initialy vg
buffer, a FIFO queue of (message, destination set) pairs, initidly empty

The status components keeps track of operations being processed at the site. For example, if statugc) =
(update-wait, £, « ), it meansthat P; has sent amessage asking for = to be updated on behalf of operation £, and is
waiting for to receive either its own message or an acknowledgement before reporting back to client ¢. (Because
of client-well-formedness, status information needs to be kept for at most one operation of ¢ a atime.) The
val () component records the current value of the copy of = at site:. The buffer contains messages scheduled to
be sent via the multicast channel.

Thestepsof F; aregivenin Figure 5. We have organized the code so that the fragmentsinvolved in processing
reads (plus the code for mcast) appear on the left and the fragments for processing updates appear on the right.
Also, the fragments appear in the approximate order of their execution. However, note that the order in which
the fragments are presented has no formal significance. Aswe described earlier, the automaton can perform any
of its steps at time when its precondition is satisfied.

The code follows the informal description we gave above. For example, a perform-read is alowed to occur
provided that the operation hastheright statusand ¢ has acopy of the object x; its effect isto change the statusto
record the value read (and the fact that the read has occurred). As another example, a global-updateis allowed
to occur provided that the operation has the right status and 7 is not the only site with a copy of the object z; its
effect is to change the status to record that P; is now waiting and aso to put a message in the buffer. The most
interesting code fragment is that for receive(update-do). When this occurs, P; always updates its local copy of
the object . In addition, if the message received is P;’s own message, then P; usesthisas an indication to stop
waiting and report back to the client. On the other hand, if the message received is from a site that does not have
acopy of =, and P; isthe primary sitefor z, then P; sends areply back to the sender.

The tasks of automaton P; correspond to the individual output and internal actions. This means that each
non-input action keeps getting chances to perform its work.

5.2 Correctness

Let A denote the composition of the site automata P; and an automaton B that is a context multicast channel,
with the mcast and receive actions hidden. We prove the following theorem:

Theorem 5.1 A isa sequentially consistent shared object system.

The proof of Theorem 5.1 is based on Lemma 3.2. The rest of this section is devoted to this proof. For the
rest of the section, fix 5 to be an arbitrary client-well-formed fair trace of A, and let o be any fair execution of A
that givesriseto 3. Our eventual goals are to show that:

1. g iscomplete, and

2. thereisasupportive partia order P for the sequences j|c.
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request-read(¢, ).
Effect:
status(c) := (read-perform ¢, z)

performread(c, ¢, ¢ )
Precondition:
status(c) = (read-perform ¢, z)
i € sites(z)
Effect:
status(c) := (read-report, £, z, val(z))

global-read(c, &, ©);
Precondition:
status(c) = (read-perform ¢, z)
i ¢ sites(z)
Effect:
add ((read-do, ¢, ¢, =), {s}) to buffer
where j isany element of sites(z)
status(c) := (read-wait, &, z)

receive((read-do, ¢, &, ), j):
Effect:
add ((read-reply, ¢, ¢, =, val(z)), {s}) to buffer

receive((read-reply, ¢, &, «, v), j)
Effect:
status(c) := (read-report, £, z, v)

report-read(¢, ¢, v).
Precondition:

status(c) = (read-report, &, z, v)
Effect:

status(c) := quiet

mcast(m)u
Precondition:

(m, J) isfirst on buffer
Effect:

remove first element of buffer

request-update(&, =, f).
Effect:
status(c) := (update-perform ¢, «, f)

perform-update(c, ¢, , f);

Precondition:
status(c) = (update-perform &, =, f)
sites(z) = {7}

Effect:

val(z) = f(val(z))
status(c) := (update-report, &, z)

global-update(c, £, «, f);

Precondition:
status(c) = (update-perform &, =, f)
sites(x) # {1}

Effect:

add ((update-do, ¢, &, =, f), sites(«)) to buffer
status(c) := (update-wait, ¢, z)

receive((update-do, ¢, &, z, f), 7):
Effect:
val(z) = f(val(z))
if j = ¢ then status(c) := (update-report, ¢, ¢ )
if j ¢ sites(z) and 1 = primary(z)
then add ((update-reply, ¢, &, «), {s}) to buffer

receive( (update-reply, ¢, £, z), 5)i
Effect:
status(c) := (update-report, &, z)

report-update(¢, ).
Precondition:

status(c) = (update-report, ¢, =)
Effect:

status(c) = quiet

Figure 5: Automaton F;.
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Since B isacontext multicast channel, thereisatota order on the mcast events satisfying well-foundedness,
receive consistency and context safety. We choose one such order and call it T'.

If £ isan operation that occursin 3 thensince 3 isclient-well-formed, weknow that thereisauniquerequest(£)
eventin j.

Let ¢ be an operation. Then we classify £ as follows.

1. {isalocal read operation if £ isaread operation of object « by client ¢ and site(¢) € sites( ).
2. ¢ isalocal update operation if £ isan update operation of z by ¢ and {site(¢)} = sites(z).

3. ¢ isaremoteread operationif £ isaread operation of « by ¢ and site(¢) ¢ sites(z).

4. ¢ isaremote update operation if £ isan update operation of = by ¢ and site(¢) ¢ siteg(z).

5. ¢ is ashared update operation if £ is an update operation of = by ¢, site(c) € sites(z) and {site(c)} #
siteg(z).

6. ¢ isaglobal operationif it is either aremote operation or a shared operation.

The following five lemmas summarize the way the algorithm processes al the different types of operations.
Namely, local operationsare processed using performevents, remote operationsare processed using an mecast(do)
message followed by an mcast(reply) message, and shared operations are processed using an mcast(do) message
only. The proofs are al routine.

Lemma 5.2 Supposethat £ isa local read operation of object = by client ¢ that occursin a. Let i = site(c).
Then:

1. o contains exactly one event perform-read(c, £, );. This event followsrequest(£) in a.

2. a contains exactly one event of the form report-read(¢, =, v). (for some v»), and this event follows
performread(c, &, z );.

3. «a containsno other eventsinvolving £.
Lemma 5.3 Suppose¢ isalocal update operation of object « that occursin a. Let ¢ = site(¢). Then:
1. o contains exactly one event of the form perform-update(c, &, z, f);. This event follows request(¢).
2. « containsexactly oneevent of theformreport-updatg ¢, 2 )., and thisevent follows perform-update ¢, £, z, f)..
3. «a contains no other eventsinvolving €.
Lemma 5.4 Suppose¢ isaremote read operation of object z by client ¢ that occursin «. Let i = site(c). Then:
1. o contains exactly one event global-read(c, £, z );. This event follows request(¢).

2. a contains exactly one event of the form mcast(read-do, c, £, z); ¢, (for some j5), and this event follows
global-read(c, £, z);.

3. o contains exactly one event of the form receive(read-do,c,&,z); ;, and this event follows
mcast(read-do, ¢, £, = ); (1

4. o containsexactly oneevent of theformmcast(read-reply, c, £, z, v); 1} (for somew), and thisevent follows
receive(read-do, ¢, £, z); ;.
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5. o contains exactly one event of the form receive(read-reply, ¢, £, z,v);;, and this event follows
mcast(read-reply, ¢, £, z, v)]7{i}'

6. o containsexactly one event report-read(¢, =, v)., and this event follows receive(read-reply, ¢, £, z, v); ;.

7. There are no other eventsin « that involve £.

Lemma5.5 Suppose ¢ is a remote update operation of object = by client ¢ that occursin «. Let ¢ = site(c),
J = sites(z), and j = primary(z ). Then:

1. « contains exactly one event global-update(c, £, =, f);. This event followsrequest(¢).

2. o contains exactly one event of the form mcast(update-do, ¢, &, z, f); s, and this event follows
global-update(c, £, z, f)..

3. For every j' € J, a contains exactly one event receive(update-do, ¢, &, z, f); j+, and each of these events
follows mecast(update-do, ¢, &, z, f); s

.« containsexactly oneevent meast(update-reply, ¢, £, z); 1,1, and thisevent followsreceive( update-do, ¢, £, z, f); ;.

4
5. a containsexactly oneevent receive( update-reply, c, £, = )); ;, and thisevent follows mecast( update-reply, ¢, £, z ) ; 13-
6. o containsexactly one event report-update(£, « )., and this event follows receive(update-reply, ¢, £, z); ..

7

. There are no other eventsin « that involve £.

Lemma 5.6 Suppose is a shared update operation of object « by client ¢ that occursin a. Let ¢ = site(c),
J = sites(z), and j = primary(z ). Then:

1. « contains exactly one event global-update(c, £, =, f);. This event followsrequest().

2. o contains exactly one event of the form mcast(update-do, ¢, &, z, f); s, and this event follows
global-update(c, £, z, f)..

3. For every j' € J, a contains exactly one event receive(update-do, ¢, &, z, f); ;+, and each of these events
follows mecast(update-do, ¢, &, z, f); s

4. o contains exactly one event report-update(¢, « )., and this event follows receive(update-do, ¢, £, z, f); ..
5. There are no other eventsin « that involve £.
The previous lemmas can be used to draw some conclusions about the order of eventsin «.
Lemma 5.7 Supposethat (£, &) € totally-precedes; . for someclient c at site .
1. If £ and ¢ are both local, then the perform event for £ precedes the perform event for ¢’ in .
2. If ¢ islocal and ¢’ isglobal, then the performevent for £ precedes the mcast of the do messagefor £’ in a.

3. If ¢ islocal and ¢’ is shared, then the perform event for ¢ precedes the receipt of the do messagefor ¢’ by
7,ina.

4. If ¢ isshared and ¢’ islocal, then the receipt of the do messagefor £ by 7 precedes the performevent for &’
ina.
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5. If £ isremote and &’ islocal, then the receipt of the reply message for ¢ precedes the perform event for ¢’
ina.

6. If ¢ isshared and ¢’ is global, then the receipt of the do message for £ by 7 precedes the mcast of the do
messagefor ¢’ in a.

7. If £ and ¢’ are both shared, then the receipt of the do message for ¢ by ¢ precedes the receipt of the do
message for ¢’ by 4, in a.

8. If £ isremote and ¢’ is global, then the receipt of the reply message for ¢ precedes the mecast of the do
messagefor £’ in a.

Proof: We prove Part 2. By Lemma 5.2 or 5.3, the perform for £ precedes report(£). By the definition of
totally-precedes)., thisin turn precedes request(¢’). By Lemma5.4, 5.5 or 5.6, this precedes the meast of the

do message for ¢'.
The proofs of the other parts of the lemmaare similar. [

Among the facts shown by the previous lemmasisthat in fair client-well-formed executions, each operation
has a report event following the request. Therefore, we have reached thefirst of our two godls:

Lemmab5.8 5 iscomplete.

Now we turn to our second goal, of producing a supportive partial order P for the sequences 3|c. We begin
by providing someterminology for discussing the crucia actions of the various operations, namely, those actions
that actually affect or use the values of object copies.

Let = bean object, and | et : beany element of sites(z). Thus, thereisareplicaof « at site:. From thetransition
relation, we seethat the events that can modify thisreplica are those of the form perform-update(c, ¢, z, f); and
receive(update-do, ¢, £, z, f);;. We say that each of these is a modification of z at 7 on behalf of £. The only
other events that use this replica are those of the form perform-read(c, £, = ); and receive(read-do, ¢, £, ) ;. We
say that each of these isalookup of = at 7 on behalf of £&. A crucial event for « at 7 on behalf of ¢ is either a
modification or alookup. Note that for any site  and operation £, « contains at most one crucial event at : on
behalf of £. We also have some guarantees of when crucia events must occur:

Lemma5.9 Let £ be an update operation of object z. Then for every site: in sites(z ), there is a modification of
x at+ on behalf of £.

Lemma5.10 Let £ be a read operation of object z. Then there is some site ¢ in sites(z) such that there is a
lookup of z at i on behalf of £.

Now we can define P. It isdefined to be the transitive closure of the union of the following relations:

1. mcast-order.

Thisrelates any two global operations that occur in «, ordering them in the total order 7' provided by the
context multicast channel B.

That is, each global operation gives rise to a unique mcast(read) or mcast(update) event. If £ and ¢’ are
global operations that occur in «, then we define (£, £) € mcast-order provided that the mcast event of £
precedes the mcast event of £/ inT'.
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2. For each site+, crucial-order;.

This relates any two (local or global) operations that both perform crucia events at site 7 in «, ordering
them in the order of their crucial events.

That is, if £ and £’ are operations that occur in «, then we define (£, £') € crucial-order; provided that o
contains a crucial event at 7 on behalf of ¢ and alater crucial event at 7 on behalf of ¢’. (Note that these
events may befor different objects.)

3. For each client ¢, the totally-precedes;|. order on operations invoked by ¢, which totally orders the
operations of client ¢.

It turns out that most of the work is devoted to showing that P isa partia order; it isthen easy to show that P
is supportivefor the sequences 3|c.

In order to show that P isapartial order, we show that al its constituent orders give the same order for global
operations. Thisinvolves a case anaysis, using the receive consistency and context safety properties. Then the
combined order P just insertsloca operationsin appropriate places in the sequence of globa operations.

The following lemmas demonstrate rel ationshi ps between the different constituent partial orders.

Lemma5.11 Suppose that £ and ¢’ are local or shared operations of the same client ¢ that occur in «. Let
i = site(c). If (£,¢’) € totally-precedes;,.., then (£, &) € crucial-order;.

Proof: Four of the parts of Lemma5.7 together imply that a crucial event at : on behaf of £ precedes a crucia
event at ¢ on behalf of ¢, in a. Therefore, (£,¢’) € crucial-order;. [ |

Lemma5.12 Supposethat £ isa remote operation. Then T' ordersthe mcast of the do message for £ before the
mcast of the reply message for £.

Proof: Let j be the site performing the mcast of the reply for £. By Lemma 5.4 or 5.5, the mcast of the reply
for £ must be preceded by the receipt by j of a do message for £. Then the context safety property implies that
T orders the mcast of the do message for £ before the mcast of the reply message. |

Lemma 5.13 Supposethat ¢ and ¢’ are two global operationsand i isany site. If (£,¢') € crucial-order; then
(€,¢') € mecast-order.

Proof: For global operations on behaf of which a crucia event occurs at site ¢, crucial-order; is the order in
which ¢ receives the multicast do messages. By receive consistency, thisis the same as the order given by 7' to
the mcast events, which is exactly the order given to the operations by mcast-order. [

Lemma 5.14 Supposethat ¢ and ¢’ aretwo global operationsof thesameclient c. If (£,¢) € totally-precedes;) .
then (&, £’) € mcast-order.

Proof: If £ isshared, then by Lemma5.7, the receipt by 7 of the do message for £ precedes the mcast of the do
message for £/ in . Then the context safety property implies that 7' orders the mcast of the do message for ¢
before the mcast of the do message for £'. Thus, (&, £’) € mcast-order.

On the other hand, if £ is remote, then by Lemma 5.7, the receipt by ¢ of the reply for ¢ precedes the mcast
of the do message for ¢, in «. Then the context safety property impliesthat 17" orders the msmecast of the reply
message for ¢ before the mcast of the do message for ¢’. But Lemmab5.12 impliesthat 7" orders the mcast of the
do message for ¢ before the mcast of the reply message for £. So by transitivity, T' orders the mcast of the do
message for ¢ before the mcast of the do message for £'. Again, (£, ¢') € mcast-order. [ |
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Lemma 5.15 Supposethat £ and ¢’ are global operations. If (£,£') € P, then (£,£’) € mcast-order.

Proof: If £ and ¢ aredirectly related by one of the constituent relations, then the result is exactly the conclusion
of Lemma5.13 or 5.14.

Next, we consider the situation when ¢ and ¢ are related through a chain of loca operations, which must
therefore al be at a single site 7. Let these local operations be named &3, &o, ..., &, Lemma 5.11 shows
that for each k, (&,&k+1) € crucial-order;. Since crucial-order; is transitive, we have either m = 1 or
(é1,&7) € crucial-order;. We divide the argument into cases, depending on which constituent relations give the
initial and final edgesin the chain.

1. (&,¢&1) € crucial-order;.

Then by transitivity, (£,&,,) € crucial-order;. That is, the receipt by ¢ of the do message for £ precedes
the performevent for £,,,. We consider subcases.

@ (&m, &) € crucial-order;.
Then by transitivity, (£, £’) € crucial-order;, so Lemmab5.13 impliesthat (£, £’) € mcast-order.

(b) (&m,¢') € totally-precedes;,. for somec.
Then: = site(c¢) and £’ isan operation of ¢. Lemmab5.7 impliesthat the performfor &, precedesthe
mcast of the do message for £’. Thus, the receipt by : of the do message for ¢ precedes the mcast (by
i) of the do message for £’. Context safety then impliesthat (£, £’) € mcast-order.

2. (&, 1) € totally-precedes;, for somec.

Then ¢ = site(c) and £ is an operation of ¢. If £ is a shared update, then Lemma 5.11 implies that also
(£,&1) € crucial-order;, in which case the earlier cases apply. So we may assume that ¢ is a remote
operation.

Then Lemma5.12 impliesthat T' orders the mcast of the do message for ¢ before the mcast of the reply
message for £. And Lemma5.7 impliesthat the receipt by ¢ of thereply for £ precedes the perform event
for £1, which either equals (in case m = 1) or precedes the perform event for £,,,. Thus, thereceipt by : of
the reply for ¢ precedes the the perform event for £,,,. We consider subcases.

@ (&m, &) € crucial-order;.
Then the perform event for &, precedes the receipt by 7 of the do message for ¢’. Therefore, the
receipt by ¢ of the reply message for ¢ precedes the receipt by 7 of the do message for £’. Then the
receive consistency property impliesthat 7' orders the mcast of the reply message for £ before the
mcast of the do message for ¢'.

(b) (&m,¢') € totally-precedes;,.

Thenby Lemmab.7, the performevent for £,,, precedes the mcast of the do messagefor ¢’. Therefore,
thereceipt by ¢ of thereply for ¢ precedes the mcast of the do messagefor ¢/, in «.. By context safety,
T orders the mcast of the reply message for ¢ before the mcast of the do message for ¢'.

Thus, in either case, T' orders the mcast of the reply message for £ before the mcast of the do message for
&', Then by transitivity, 7' orders the mcast of the do message for ¢ before the mcast of the do message for
¢'. Thus, (¢, ¢') € mcast-order.

Thus, if £ and ¢’ are related through achain of local operations, then (&, £’) € mcast-order.
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Finaly, if the chain between the operations ¢ and ¢’ includes other global operations, then we can divide it
into segments each starting and ending with a global operation but containing no other globa operations. The
argument just made applies to each segment, which shows that the global operations in the whole chain are
themselves a chain related by mcast-order. Transitivity of mcast-order yieldsthat (£, £") € mcast-order. [ |

Lemmab5.16 Therelation P isa partial order.

Proof: Suppose not. Then there is a cycle of length at least 2 consisting of operations, each related to the
following by oneof the constituent relations. If thecycle containsany global operation £, thenwehave (¢, €) € P,
whichimpliesthat (¢, £) € mcast-order by Lemmab5.15; thiscontradictsthefact that mcast-order isanirreflexive
partia order. If, on the other hand, every operation in the cycleislocal, then al must be at a single site, and by
Lemmab.11, there must be acycle in crucial-order;, which is also a contradiction. |

Finally, we show that P is supportive.
Lemma5.17 P issupportive for the sequences j|c.

Proof: We first show that P iswell-founded, that is, that each operation has finitely many predecessorsin P.
Note that in each constituent relation, each operation has finitely many predecessors. So if this property does
not hold in P, Konig's lemmaimpliesthe existence of an infinite chain of direct predecessors. If infinitely many
operations in this chain are global, then Lemma 5.15 gives an infinite chain of predecessors in mcast-order,
contradicting the well-founded property of the multicast service. On the other hand, if only finitely many
operationsin the chain are global, then we can start far enough aong the chain and get an infinite chain of local
operations. But then all these local operations must occur at the same site, say :. Then Lemma5.11 yields an
infinite chain of predecessors in crucial-order; which isimpossible because « contains only a finite number of
eventsthat are before any given event. It followsthat P iswell-founded.

The construction immediately guarantees that, for any client ¢, P containstotally-precedes( 3|c).

Now we show that P relates al the“conflicting” operations (that is, aread and an update, or two updates) on a
single object ». Supposethat ¢ and ¢’ are distinct operations of object » and that at least one is an update. Then
Lemmas 5.10 and 5.9 together imply that there is some site 7 at which there are crucial eventsfor = on behalf of
both £ and ¢’. Thisimpliesthat £ and ¢’ are related by crucial-order;, and therefore are related by P.

Finally, we argue that each read operation returns the right value. Suppose £ is aread operation of object =.
Then by Lemmab5.10, thereisasite: at which alookup event is performed on behalf of £. The algorithm ensures
that the return value of ¢ is exactly the cumulative effect of all the modifications performed on the copy of = at ¢
before the lookup event. By Lemma 5.9, these modifications are exactly those that arise from the collection of
update operationsto x that are ordered before £ by crucial-order;. Also by Lemmab.9, every update operation
to = isrelated to £ by crucial-order;. Thus the collection of update operations to « that are ordered before ¢ by
crucial-order; is exactly the set of update operations to x that precede £ in P. This shows that ¢ receives the
specified return vaue. [

Proof: (of Theorem 5.1)
Lemmas 5.8, 5.16, 5.17, and 3.2 combineto imply that A isasequentially consistent shared object system. W

6 Lower Layer
Now we present the algorithm that constructs a context multicast channel based on a combination of totally
ordered broadcast and point-to-point communication (see Figure 6).

We fix an arbitrary message alphabet M, set I of sites, and set 7 of destination sets; we will implement a
context multicast channel for M, I and 7.
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Figure 6: The architecture of the lower layer.

6.1 TheAlgorithm

Theimplementation is constructed as the composition of the following automata: BC, areliable, totally-ordered
broadcast channel,” PP, areliable, point-to-point channel, and a collection D;, one for each i € I, of daemon
automata that multiplex between the two lower-level services.

Both BC and PP are multicast channels, as defined in Section 4, and both have I as their set of sites. The
broadcast channel BC has only one possible destination set, namely, I itself, while the point-to-point channel PP
has exactly the singleton sets {i}, € I, as destination sets. Both satisfy the basic reliability requirements for
multicast channels. In addition, we assume that BC is itself a context multicast channel — each of its fair traces
has an ordering that iswell-founded, receive consistent and context safe.® We do not assume anything additional
about PP. In order to distinguish the mcast and receive events for BC, PP, and the channel being implemented,

we superscript each action of BC and PP by the channel name.

Each automaton D; processes the messages that are submitted by the environment via mcast; ; events. To
process a message that is destined for more than one site, 1D; broadcasts the message and itsintended destination
set, using the broadcast channel BC. When this message reaches a site j, automaton D; delivers it to the
environment if j is among the intended destinations; otherwise, D; discards it. To process a message intended
for one site only, D; piggybacks on it the sequence number of the broadcast most recently received at site ¢, and
then sends the embellished message directly to its destination using the point-to-point channel PP. After this
message reaches its destination, it is delivered to the environment, but only after multicasts with the same and
lower sequence numbers have been delivered. The interface of D; isasfollows. (Here, m € M, j € I,J € T,
and k is anonnegative integer.)

Input:
mcast(m)u
receive®” (m, 1),
receive” " (m, k),
Output:
receive(m); ;
ITCaStBC(m, J)i,I
maStPP(m’ k)iy{J}

"We model this broadcast channel as a single automaton. This could itself be implemented as a collection of automata, one per site,
communicating through a still lower-level service.

8In fact, since each messageis received by every site including the sender itself, and each receive event occurs after the corresponding
mcast event, any total order in a broadcast system that is receive consistent must also be well-founded and context safe.
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mcast(m);, s
Effect:
add (m, J) to buffer

mecast?¢ (m, J)i1
Precondition:
(m, J) isfirst on buffer
|J] > 1
Effect:
remove first element of buffer

maStPP(m’ k)iy{J}

receive®” (m, 1),
Effect:
Segno = segqno+ 1
if i € J thenadd (m, y) to msgs
add to msgs (in any order) al (m’', j')
suchthat (m’, 5/, seqno) € ppwait
remove from ppwait all (m', 5/, seqno)

receive” " (m, k),

Effect:
if k& < segnothen add (m, 5) to msgs
elseadd (m, j, k) to ppwait

Precondition:
(m, {7}) isfirst on buffer receive(m, j);
k = segno Precondition:

Effect: (m, 5) isfirst on msgs
remove first element of buffer ~ Effect:

remove first element of msgs

Figure 7: Automaton D;.

D; hasthefollowing state components:

buffer, a queue of (message, destination set) pairs, initialy empty

msgs, aqueue of (message, site) pairs, initialy empty

ppwait, amultiset of (message, site, nonnegative integer) triples, initialy empty
segno, a nonnegative integer, initialy O.

The buffer component is used like buffer in P; in the higher layer agorithm; it contains messages scheduled
to be sent via the underlying communication services. The msgs component keeps track of messages that are
scheduled for delivery to the environment, each with an indication of its site of origin. The ppwait component
keeps track of point-to-point messages that are destined for site ¢, but that are waiting for the receipt of the
broadcast with the appropriate sequence number. Finally, component segno records the number of broadcasts
received so far.

The codefor D; appearsin Figure 7.

6.2 Correctness

Let C' denote the composition of the site automata D; together with BC and PP, with the actions of BC and PP
hidden. We prove the following theorem:

Theorem 6.1 (' isa context multicast channdl.

The proof of Theorem 6.1 occupiesthe rest of thissection. For therest of thissection, fix 3 bean arbitrary fair
trace of C', and let o be any fair execution of C' that givesriseto 3. We define arelation 7' on the mcast events
in g, and show that 7" isatota order with the required properties. 5 and T are well-founded, receive consistent,
and context safe.
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First, if 7 is any mcast event, then we define its epoch, epoch(r). If = isa multi-destination mcast, then
epoch(r) is the value assigned to the state component seqno when 7’s receive®“ occurs at any site. (Receive
consistency of BC and the fact that al sites receive each broadcast, imply that this value is uniquely defined.)
Also, if 7 is any single-destination mcast event, say with destination set {:}, then epoch(r) is the maximum
of the following two numbers: (&) the sequence number piggybacked on «’s point-to-point message (thisis the
value of segno at the sender when the corresponding meast?”*” occurs) and (b) the value of segno at site i when
the corresponding receive’”" occurs at D;.

Notice that since the state component segno is incremented exactly in each receive®“ event, it follows that
the range of the function epoch isa prefix of the positiveintegers, and that each integer in thisprefix isthe epoch
of exactly one multi-destination mcast event (as well as of zero or more single-destination mcast events).

We now define 7' as the relation on mcast events in « which is the transitive closure of the union of several
individual relations.

1. Themulti-multi order relates any two multi-destination mcast eventsin «; it orders them according to their
epoch’s.

2. The multi-single relation orders a multi-destination mcast event = in « before a single-destination mcast
event ¢ in a if epoch(w) < epoch(¢).

3. The single-multi relation orders a single-destination mcast event ¢ in « before a multi-destination mcast
event = in a if epoch(¢) < epoch(r).

4. The single-single order relates any two single-destination mcast events in « that have the same epoch; it
orders them in the order of their receive events as they occur in a.

Then we must show that 7" isawell-founded total order, and that it guarantees the needed properties of receive
consistency and context safety.

From the individual relations defined above we see that T’ respects the order determined by epoch numbers,
and among events with the same epoch, T" places the unique multi-destination mcast at the beginning.

Lemma 6.2 Whenever (7w, 7’) € T, then epoch(w) < epoch(r’). Also, whenever (7,7’) € T and 7’ isa
multi-destination mcast, then epoch(7) < epoch(r’).

Thereisapartial converseto Lemma6.2:
Lemma 6.3 Whenever epoch(7) < epoch(r’), then (w,7’) € T.

Proof: Consider any two mcast events, = and ’, in o, with epoch(7) < epoch(z’). If both are multi-destination,
then (7, /) € multi-multi; if 7 ismulti-destinationand 7’ issingle-destination, then (7, 7’) € multi-single and if
7 issingle-destinationand 7’ is single-destination, then (7, 7’) € single-multi. The remaining case iswhere both
aresingle-destination. Then, taking ¢ to be the unique multi-destination mcast event with epoch( 1) = epoch(~’)
we see that 7 is ordered before ¢ by single-multi and v is ordered before 7’ by multi-single Thusin every case
(m,7')eT. |

Now we are ready to show in turn that 5 and T have the properties required of them.

Lemma 6.4 T isapartial order.
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Proof: By Lemma 6.2, any cycle of edges each from one of the constituent relations (which generate T°)
would have to involve a collection of events all of which had the same epoch, and further, none could be a
multi-destination mcast. But this means that al the edges must be from the relation pp which isitself a partial
order. This contradiction showsthat T is acyclic, and so, since it is by construction transitive and irreflexive, it
isapartia order. [ |

Lemma 6.5 7T isatotal order.

Proof: Consider any two distinct mcast events, = and 7, in . If epoch(w) # epoch(=’) then Lemma6.3 shows
that = and 7’ are related by 7. On the other hand, suppose the events have the same epoch; thus at most one
can be multi-destination. If neither is multi-destination then they are related by single-single, while if one is
multi-destination and the other is single-destination then they are related by multi-single Thusin every case «
and =’ arerelated by T'. [

Lemma 6.6 7" iswell-founded.

Proof: Note that at a given site ¢, there can be an infinite number of mcast events with the same epoch N only
if there are exactly IV receive”“ eventsat 7. Since each broadcast isreceived at every site, this only happens if
there are exactly N multi-destination messages in the execution. Asthere are afinite number of sites, there must
be only finitely many mcast events in each epoch except possibly the last. As epoch values are non-negative
integers, the predecessors of any mcast event = can include only a finite number of events with lower epochs,
one multi-destination mcast with the same epoch, and those single-destination events with the same epoch which
precede 7 in a. As « isasequence, thislatter collectionisaso finite. ThusT iswell-founded. [

Lemma 6.7 7T iscontext safe.

Proof: Supposethat at i, receive(m, j); isfollowed by mcast(m’, J);. We divide the argument into cases.

Suppose both m and m’ are intended for multiple sites, then at 4 the algorithm shows that the receive?“ for
m precedes the event receive(m, j);. Similarly, mcast(m’, .J); precedes the mcast?“ for m’. That is we must
have the receive?“ for m before the mcast?® for m’/. Context safety of 7'M C' now shows that at every site,
the receiveP® for m precedes the receive®“ for m/. Thus the value of seqno assigned at any site during the
receiveP for m isless than the value of seqno assigned during the receive®© for m’. That is, the epoch of the
mcast of m islessthan the epoch of the mcast of m’; so that the mcast events are ordered appropriately by 7.

Suppose both 2 and m’ are intended for single sites, then at p we must have the receive for m before the
mecast” " for m’. Now the epoch of the mcast event for m/ is greater than or equal to the tag placed on i/, which
isthe value of seqno at the time of the mcast”” event for m/; this value must be at least as great as the value of
segno at the time of the receive for m. The use of the ppwait queue ensures that the value of segno when the
receivefor m occursisat least as great asthetag which was attached to m, and (because segno never decreases) it
isalso at |east as great as the val ue of seqno when thereceive”””” for m occurs. By definition we see that thevalue
of segno at thereceive for m isat least as great as the epoch of the mcast for m. Combining these observations,
we see that the epoch of the mcast event for m/ is greater than or equal to the epoch of the mcast for m. If these
epochs are not equal, then it was shown in Lemma 6.3 that 7" orders the mcast events appropriately, whileif the
epochs are equal, then we note that the receive for m’ must occur later in o than the mcast, and hence later still
than the receive for m. Again, T' orders the events appropriately.

Supposethat m isintended for multiple destinationswhile m’ isintended for asingle site. At p we must have
thereceive®“ for m before the mecast” " for m’. Now the epoch of the mcast event for 1’ isgreater than or equal
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to the tag placed on 2/, which is the value of seqno at the time of the mcast”” event for 7’; this value must be
at least as great as the value of seqno assigned during the receive®“ for m, which is the epoch of /. Thusthe
multi-singlerelation orders the mcast events appropriately, asso 1" aso orders them appropriately.

Supposethat m isintended for asinglesite, while m’ isintended for multiplesites. then at p we must have the
receive for m before the meast®“ for m/, which itself occurs before the receive”® event for 1’ at site i itself.
Now the epoch of the mcast event for 72’ is the val ue assigned to seqno during the receive® ¢ event for m/, which
is stricty greater than the value of segno at the time of the receive for m. The use of the ppwait queue ensures
that the value of segno when the receive for m occurs is at least as great as the tag which was attached to m,
and (because seqno never decreases) it is aso at least as great as the value of seqno when the receive!’” for m
occurs. By definition we see that the value of segno at the receive for m is at least as great as the epoch of the
mcast for m. Combining these observations, we see that the epoch of the mcast event for m/ is strictly greater
than the epoch of the mcast for m. Thus the single-multi relation (and so also T") order the events appropriately.

The above cases cover al possibilities, showing that 7" is context safe. [

Lemma 6.8 7' isreceve consistent.

Proof: Wefirst note that the order of receive events at asiteisthe same asthe order of entry into the queue msgs
a that site. A multi-destination message 1 enters the msgs queue during the corresponding receive®“ step, in
which segno is first assigned to be the epoch of the mcast event for m. Also the ppwait queue is used so that a
single-destination message m enters the msgs queue during an event after which the value of seqgno is equal to
the epoch of the mcast event for m. Now suppose that receive(m, j ); precedes receive(m/, j'); at sitec ina. Let
us consider cases.

Suppose m and m’ are multi-destination messages, so each enters the msgs queue during the corresponding
receiveP® event. Thusthereceive”“ for m precedes the receive®“ for m’, and since seqno never decreases, the
epoch of m isless than the epoch for m'. Thus multi-multi (and so also 7') orders the mcast event for m before
the mcast event for m’.

Suppose m and m’ are both single-destination messages. Since the epoch of each isthe value of seqno at the
step when it enters the msgs queue, and since seqno never decreases, the epoch of m must be lessthan or equal to
the epoch of m/. If the epochs are equal, then it isimmediate that single-single orders the corresponding mcast
eventsin the same order as the receive events. On the other hand, if the epoch of m islessthan the epoch for m/,
then we saw in Lemma 6.3 that 7' orders the mcast event for m before the mcast event for m'.

Supposethat m isintended for multiple destinationswhile m’ isintended for asinglesite. Since m entersthe
msgs queue during the step when segno is first set to equa the epoch of m, and m' enters the msgs queuein a
later event after which seqno equals the epoch of 2/, we have that the epoch of m is less than or equal to the
epoch of m/. It isimmediate that multi-single orders the mcast event for m before the mcast event for m/’.

Suppose that m isintended for asingle site, while 2’ isintended for multiple sites. Since m enters the msgs
queue during a step after which seqno is equal the epoch of m, and m’ enters the msgs queue during alater event
in which seqno isfirst assigned to be the epoch of m’, we have that the epoch of m is strictly less than the epoch
of m/. Itisimmediatethat single-multi orders the mcast event for m before the mcast event for m/.

In every case, we see that T' orders the mcast event for m before the mecast event for m/. [

Proof: (of Theorem 6.1) The properties of T" have been shownin Lemmas 6.5, 6.6, 6.7, and 6.8. [

We notethat it ispossibleto improvetheefficiency of thealgorithmfor al or one-sitereplication. For example,
we tag each point-to-point message with the sequence number of the last broadcast received (in a receive®“
event) before the point-to-point message is sent (in amcast”™” event). Alternatively, we could tag it with the
sequence number of thelast broadcast messagethat is passed to the environment at site 7 before the point-to-point
message is submitted by the environment at site . This can be smaller than the tag used above, so that the
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destination site might delay the message for a shorter time. In this respect, our version of the algorithm follows
the Orcaimplementation.

7 Discussion

We have presented a new algorithm for implementing a sequentially consistent shared object system in a
distributed network. The agorithm is based on the one used in the Orca system, but generaizes it to alow
objectsto be partialy replicated. Replicated objects are kept consistent using a context multicast system, which
is a new communication service that can be implemented using a combination of totally ordered broadcast
and point-to-point communication. We have presented this algorithm in two layers, and have carried out a
complete correctness proof using this decomposition. In the course of our work, we found a logical error in
the implementation of the Orca system that had not yet manifested itself in execution; as a result, the Orca
implementation has been modified to correct thiserror.

This work opens up many avenues for future research. First, some simple extensions to our results can be
made. For example, we could alow concurrent invocations of operations by the same client instead of requiring
clients to block. In order to handle this case, we need to adjust our definition of sequential consistency to
eliminate the client-well-for medness condition, to modify the a gorithm to maintain sets of active operations, and
to make minor changes in our proofs.

Another extension to our work is to incorporate objects with more genera kinds of operations than just read
and update.

A more serious extension is to allow for dynamic changes to the locations of object copies. Aswe noted in
Section 1, Orca alows object locations to change dynamically, in response to changes in access patterns. There
are several different schemes possible for managing such changes, most of these maintain the safety properties
expressed by our results, but cause violations to the liveness conditions (e.g., an operation might not be able to
find the needed copi es because they are continuously moving). It remainsto describe and verify existing schemes
using our framework, and to develop and verify new schemes that preserve the liveness condition.

Still another extension is to use weaker communication primitives. In some process group systems such as
the present implementation of Isis, consistent ordering is not guaranteed between all messages, but only between
messages with a common destination. We would like to consider how to build a shared object system using this
primitive together with point-to-point messages. For al these extensions we expect that much of the machinery
developed in this paper can be reused.

8 Conclusions

Implementationsfor distributed systemssuch as Orcaare complicated, because of the many possibleinterleavings
of events of concurrent threads. It is generally difficult to be sure that such implementations are correct. Formal
modeling and verification in the style we have presented here can provide great help in understanding and
verifying such systems. Our modeling and verification of Orca has dready contributed to the Orca project by
identifying and correcting an error and by giving the designers extra confidence in the corrected implementation.
In addition, the structures we have provided should provide useful documentation and assistancein future system
maodification.

More broadly, our work can be seen as afirst step in the development of a practical theory for distributed
shared memory systems. Such atheory should consist of a body of abstract component specifications, abstract
algorithms, theorems about how the various abstract notions are related, and application-specific proof methods.
Our contributions to this theory include our specifications for a sequentially consistent shared memory system
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and for various kinds of multicast channels, our higher layer and lower layer agorithms and their correctness
theorems, and our lemmas that show how to prove sequential consistency. However, our work isonly afirst step
— we believe that much more work of the same kind, based on formal modeling of real systemsand applications,
is needed to complete the job.

Acknowledgements

We liketo thank Henri Bal, Wilson Hsieh, Victor Luchangco, and Tim Ruhl for their comments on drafts of this
paper.

References

[1]

[2]

(3]

[4]

(3]

6]

[7]

8]

[9]

[10]

[11]

[12]

SV. Adve and M.D. Hill. Weak ordering - a new definition and some implications. Technica Report
TR-902, University of Wisonsin, Madison, WI, Dec. 1989.

Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM. Trans. on Programming Languages and Systems,
15(1):182-205, Jan. 1989.

M. Ahamad, PW. Hutto, and R. John. Implementing and programming causal distributed shared memory.
In Proc. Eleventh International Conference on Distributed Computing Systems, pages 274-281, Arlington,
TX, May 1991.

H. Attiyaand R. Friedman. A correctness condition for high-performance multiprocessors. In Proc. 24th
ACM Symp. on Theory of Computing, pages 679-691, 1992.

H. Attiya and J. Welch. Sequentia consistency versus linearizability. ACM Transactions on Computer
Systems, 12(2):91-122, 1994.

H.E. Bal and M.F. Kaashoek. Object distribution in orca using compile-time and run-time techniques. In
Proc. Eigth Annual Conf. on Object-Oriented Programming Systems, Languages, and Applications, pages
162—177, Washington, DC, Sept. 1993.

H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A languagefor parallel programming of distributed
systems. |EEE Trans. on Soft. Eng., 18(3):190-205, March 1992.

JK. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on type-specific
memory coherence. In Proc. Second Symposium on Principles and Practice of Parallel Programming,
pages 168-176, Seettle, WA, March 1990.

B.N. Bershad and M .J. Zekauskas. Midway: Shared memory parallel programming with entry consistency
for distributed memory multiprocessors. Technical Report CMU-CS-91-170, CMU, Pittsburgh, PA, Sept.
1991.

K.P. Birman and T.A. Joseph. Reliable communication in the presence of failures. ACM Trans. Comp. Syst.,
5(1):47-76, Feb. 1987.

L.M. Censier and P. Feautrier. A new solution to cache coherence problems in multicache systems. |IEEE
Trans. on Computers, pages 1112-1118, Dec. 1978.

Collier. Reasoning about Parallel Architectures. Prentice Hall Publishers, Englewood Cliffs, NJ, 1992.

26



[13] M. Dubois, C. Scheurich, and FA. Briggs. Synchronization, coherence, and event ordering in multiproces-
sors. |EEE Computer, 21(2):9-21, Feb. 1988.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency
and event ordering in scalabl e shared-memory multiprocessors. In Proc. Seventeenth Annual Inter national
Symposium on Computer Architecture, pages 1526, Seettle, WA, May 1990.

[15] P Gibbons and M. Merritt. Specifying non-blocking shared memoaries. In Proc. Fourth ACM Symp. on
Paralldl Algorithmsand Architectures, pages 306-315, 1992.

[16] P. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequentia consistency of high-performance shared
memories. In Proc. Third ACM Symp. on Parallel Algorithmsand Architectures, pages 292—303, 1991.

[17] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Trans.
on Programming Languages and Systems, 12(3):463-492, July 1990.

[18] L.Lamport. Time, clocks, andtheordering of eventsinadistributed system. Commun. ACM, 21(7):558-565,
July 1978.

[19] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocessprograms. |EEE
Trans. on Computers, 28(9):690-691, Sept. 1979.

[20] L. Lamport. On interprocess communication, partsi and ii. Distributed Computing, 1(2):77-101, 1986.

[21] R.J.LiptonandJ.S. Sandberg. Pram: ascal able shared memory. Technical Report CS-TR-180-88, Princeton
University, Princeton, NJ, Sept. 1988.

[22] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1995.

[23] N.LynchandM. Tuttle. Anintroductiontoinput/output automata. CWI Quarterly, 2(3):219-246, September
1989.

[24] C.Scheurichand M. Dubois. Correct memory operation of cache-based multiprocessors. In Proc. Fourteenth
Annual International Symposium on Computer Architecture, pages 234243, Pittsburg, PA, June 1987.

[25] A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bdl. Pardlel programming using shared objects and broadcast-
ing. |EEE Computer, 25(8):10-19, Aug. 1992.

[26] A.S. Tanenbaum, M.F. Kaashoek, R. van Renesse, and H.E. Bal. The Amoeba distributed operating system
- astatus report. Computer Communications, 14(6):324—-335, Aug. 1991.

27



