
Symmetric Alternation Captures BPP

Alexander Russell
�

Department of Mathematics

Ravi Sundaram
y

Laboratory for Computer

Science

Massachusetts Institute of Technology

Cambridge, MA 02139

November 14, 1995

Abstract

We introduce the natural class SP2 containing those languages which may be ex-
pressed in terms of two symmetric quanti�ers. This class lies between �P

2 and �P
2 \�

P
2

and naturally generates a \symmetric" hierarchy corresponding to the polynomial-time
hierarchy. We demonstrate, using the probabilistic method, new containment theorems
for BPP. We show that MA (and hence BPP) lies within S

P
2 , improving the con-

structions of [10, 8] (which show that BPP � �P
2 \ �P

2). Symmetric alternation is
shown to enjoy two strong structural properties which are used to prove the desired
containment results. We o�er some evidence that SP2 6= �P

2 \�P
2 by demonstrating an

oracle so that SP;O2 6= �P;O
2 \ �P;O

2 assuming that the machines make only \positive"
oracle queries.

1 Introduction

Since the inclusion of randomness among those resources for which we have agreeable com-
putational models, determination of the exact relationship between randomness and other
such computational resources has become a major project. The relationship between space

and randomness, elucidated by startling pseudorandom constructions ([1, 9]), is remark-
ably well understood. These constructions demonstrate that space-bounded computation
bene�ts little by the use of randomness. The analogous relationship with time has proved

�E-mail address: acr@theory.lcs.mit.edu. Supported by an NSF Graduate Fellowship and grants NSF

92-12184, AFOSR F49620-92-J-0125, and DARPA N00014-92-1799
yE-mail address: koods@theory.lcs.mit.edu. Supported by grants NSF 92-12184, AFOSR F49620-92-

J-0125, and DARPA N00014-92-J-1799

1

less tractable: the only (non-trivial) relationships depend on unproven complexity-theoretic
assumptions ([7, 12]). We continue the study initiated by Sipser [10] of the relationship
between randomness and quanti�cation, that is, the relationship between BPP and classes
arising by appropriate quanti�cation of polynomial-time predicates (e.g. NP, coNP and
other classes in the polynomial-time hierarchy [11]).

BPP was �rst shown to lie in the polynomial-time hierarchy in [10] which demonstrates
that BPP � �P

2 (and hence that BPP � �P
2 \ �P

2). We introduce a natural quanti�ed
class, SP2 , and demonstrate that

BPP � SP2 � �P
2 \ �P

2 :

Given the unnaturality of �P
2 \ �P

2 , the naturality of SP2 suggests that SP2 (�P
2 \ �P

2 and
hence that this containment is more than a solely conceptual improvement.

The class SP2 consists of those languages L which may be decided by a polynomial-
time machine that receives counsel from two provers in such a manner that when the input
x 2 L there is a \witness" w1 which the �rst prover may provide so that regardless of
the information provided by the second prover, the machine accepts and, similarly, when
x 62 L, there is a \witness" w2 which the second prover may supply so that, regardless of the
information supplied by the �rst prover, the machine rejects. The special sort of alternation
involved here we refer to as symmetric alternation. The S2 operator enjoys some remarkable
structural properties:

� S2 �BP �P � S2 �P,

� P(S2�P) = S2 � P .

We use these structural properties to conclude that

� BPP �MA � SP2 , and

� �P
2 = PNP � SP2 .

Considering the strong structural properties which SP2 enjoys, it seems unlikely that
SP2 = �P

2 \ �P
2 . In light of the above containment theorems, however, we would like to

present as much evidence as possible in this direction. One standard method of o�ering
evidence that two classes are di�erent is to demonstrate an oracle which separates them. In
x3 we construct an oracle which separates SP

2 from �P
2 \�P

2 under the assumption that the
machines involved are monotone. The framework we develop to build this oracle can be used
to simplify the construction given by [3] of an oracle separating �P

2 and �P
2 .

2 De�nitions and Containment Results

� is used to denote the alphabet and may be assumed to be f0; 1g without loss of generality.
Throughout, the variable n denotes jwj, the length of the input in question. For m 2 N, we
use 9mx as shorthand for 9x(jxj = m), 9m!x if such x is unique. 8mx and 8m!x is similarly
used.

2

De�nition 2.1 (S2 � C) For a complexity class C we de�ne S2 � C to be the complexity class

consisting of those languages L for which there exists C 2 C and a polynomial q so that

� w 2 L) 9q(n)x;8q(n)y; hw; x; yi 2 C, and

� w 62 L) 9q(n)y;8q(n)x; hw; x; yi 62 C.

Notice that the acceptance criteria for the S2 operator has the form of the acceptance
criteria for �P

2 . The rejection criteria is similarly related to that of �P
2 . S2 � P, then, is

clearly inside �P
2 \ �P

2 . Notice that S
P
2 , like BPP and IP, is a promise class { the criteria

for acceptance and rejection are not complements of each other.

De�nition 2.2 (SP2) SP2
def
= S2 �P.

De�nition 2.3 (SP2k) SP2k
def
=

kz }| {
S2 � S2 � � �S2 �P.

Theorem 2.4 �P
1

S
�P
1 � SP2 � �P

2

T
�P
2 .

Proof: �P
1 � SP2 � �P

2 and SP2 is closed under complement. 2

Corollary 2.5 �P
k

S
�P
k � SP2k � �P

2k

T
�P
k2.

This allows us to conclude that PH
def
=
S

k �
P
2 =

S
k S

P
2k, so that S

P
2k for k = 1; 2 : : : form

a hierarchy which collapses if and only if the polynomial hierarchy collapses.

Theorem 2.6 PS
P
2 � SP2

Proof: Let S 2 SP2 and S(�; �; �) be a polynomial time machine accepting S according
to the de�nition of SP2 . Let L 2 PS and let DS be a deterministic polynomial-time machine
deciding L. A computation suggestion of DS(w) consists of a sequence of pairs (di; ai) for
i = 1; : : : ; t so that

� each di is an instantaneous description (see [6]) of DS,

� d1 is the initial instantaneous description of DS(w),

� dt is a �nal instantaneous description of DS,

� if di does not �nd DS in its query state, then di `D di+1,

� if di �nds DS querying qi, then there is a response ri so that di `D di+1 with response
ri and ai is a string of length appropriate for the quanti�ed inputs of S on input w.

3

We construct a machine T (�; �; �) accepting L according to the de�nition of SP2 . T (w; x; y) �rst
examines x, rejecting unless x is a computation suggestion for DS so that x = (dxi ; a

x
i)i�tx.

T then examines y, accepting unless y is a computation suggestion for DS (so that y =
(dyi ; a

y
i)i�ty). If tx = ty and 8i 2 f1; : : : txg we have that dxi = d

y
i then T accepts exactly when

d
x
tx
= d

y
ty
is an accepting description. Otherwise there is i0 so that dxi0 = d

y
i0
but dxi0+1 6= d

y
i0+1.

Evidently, dxi0 is a query state of D
S (otherwise there is a unique next state, upon which both

x and y must agree if they are computation suggestions). Let qi0 be the query appearing
in this description. Assume without loss of generality that the computation suggestion of
x claims that qi0 2 S. T then simulates S(qi0; a

x
i0
; a

y
i0
) accepting exactly when S accepts.

Notice that for input w, there is a correct computation suggestion �w = (di; ai)i�t (that is,
one in which every oracle query is answered correctly) so that for each query qi,

� if qi 2 S then 8z; S(qi; ai; z) accepts, and

� if qi 62 S then 8z; S(qi; z; ai) rejects.

Then

� if w 2 L, then 8q(n)y; T (w;�w; y) accepts, and

� if w 62 L, then 8q(n)x; T (w; x;�w) rejects,

as desired. 2

Corollary 2.7 �P
2 = PNP � PS

P
2 � SP2 .

Corollary 2.8 �P
k+1 � SP2k.

The proof of Theorem 2.9 below is a generalization of the argument of Lautemann [8].

Theorem 2.9 S2 �BP �P � S2 �P.

Proof: Let L 2 S2 �BP �P. Let D 2 P and q; r be polynomials such that

� w 2 L =) 9q(n)x;8q(n)y;Prr2R�r(n) [hw; x; y; ri 2 D] � 1 � 2�q(n)�n

� w 62 L =) 9q(n)y;8q(n)x;Prr2R�r(n) [hw; x; y; ri 2 D] � 2�q(n)�n

Fix w 2 �� and let x̂ 2 �q(n) be so that for all y 2 �q(n), Prr2R�r(n) [hw; x̂; y; ri 2 D] �
1� 2�q(n)�n. Let Wy � �r(n) be the collection of random strings r for which hw; x̂; y; ri 2 D

and let W
def
=
T

yWy (these are the random strings r such that hw; x̂; y; ri 2 D for all y).

For a set B let �(B) denote the measure of the set. Then 8y; �(Wy) � 1� 2�q(n)�n so that

�(W) � 1 � 2�n. As in [8], we demonstrate that there exists a set f�
def
= �1; : : : ; �r(n)g of

elements of �r(n) so that for every � 2 �r(n), there is some i so that �i�� 2 W (� stands for
the binary operator that returns the bitwise XOR of the operands). Selecting �1; : : : ; �r(n)

4

uniformly and independently at random from �r(n), let B� be the event that for each i,
�i � � 62 W. Then Pr[B�] � 2�nr(n) so that

Pr[
_

�2�r(n)

B�] �
X
�

Pr[B�] = 2r(n)2�nr(n) = 2r(n)(1�n) < 1:

Hence there is a set f� = �1; : : : ; �r(n)g so that for all � , there is i so that �i � � 2 W.
Suppose now that w 62 L. There is then ŷ 2 �q(n) so that for all x 2 �q(n), Prr[hw; x; ŷ; ri 2

D] � 2�q(n)�n. As before, let Wx
def
=
�
r 2 �r(n) j hw; x; ŷ; ri 2 D

	
. De�ne W

def
=
S

xWx so

that �(W) � 2�n. Then we show that there is a set �
def
= f�1; : : : ; �r(n)2g of elements of �q(n)

so that for all � = f�1; : : : ; �r(n)g, 9j;8i; �i� �j 62 W. Selecting �1; : : : ; �r(n)2 independently
and uniformly at random, let B� be the event that 8j;9i; �i� �j 2 W. Then

Pr[B�] �
Y
j

r(n)X
i=1

Pr[�i � �j 2 W] =
Y
j

r(n)X
i=1

2�n = (
r(n)

2n
)r(n)

2

:

Hence,

Pr[
_
�

B�] �
X
�

Pr[B�] = 2r(n)
2

�
r(n)

2n

�r(n)2

< 1:

Therefore, there is a set f�1; : : : ; �r(n)2g with the property that for any set f�1; : : : ; �r(n)g,
there is some j so that �i � �j 62 W for all i. In light of this, consider the deterministic
polynomial time machineM(�; �; �) which, on input (w;�; �),

� checks the format of �, rejecting unless � = hx;�1; : : : ; �r(n)i,

� checks the format of �, accepting unless � = hy; �1; : : : ; �r(n)2i, and

� accepts i� for each �j , there is some �i so that hw; x; y; �i � �ji 2 D.

From above, if x 2 L then setting � to be the hx̂;�1; : : : ; �r(n)i promised in the �rst part of
the above discussion we have that D accepts regardless of �. Similarly, if x 62 L then setting
� to be the hŷ; �1; : : : ; �r(n)2i promised in the second part of the above discussion, we have
that D rejects regardless of �. 2

Corollary 2.10 MA � SP2 .

Corollary 2.11 BPP � SP2

3 An Oracle Separating monotone SP2 and monotone

�
P
2 \ �

P
2

De�nition 3.1 We shall call an oracle Turing machine MO(�; : : : ; �) monotone if for any

inputs of the machine x1; : : : ; xn,

O1 � O2 ^M
O1(x1; : : : ; xn) accepts =) MO2(x1; : : : ; xn) accepts:

We then de�ne mSP;O2 to be the class of languages accepted by some monotone machine

according to the SP2 acceptance rules with oracle O. m�P;O
2 and m�P;O

2 are de�ned similarly.

5

The above conclusion that BPP � SP2 � �P
2 \�P

2 is interesting commensurate with the
extent to which we believe that the inclusion SP2 � �P

2 \�
P
2 is strict. We o�er evidence for the

strictness of this inclusion by demonstration of an oracle O so thatmSP;O2 (m�P;O
2 \m�P;O

2 .
We begin with some de�nitions relevant to our construction. For n � 0, consider subsets

T of �2n satisfying the �P
2 predicate 8nx9ny; xy 2 T . This predicate is monotone. Collect

together the minterms to form

T = fT � �2n j 8nx9n!y; xy 2 Tg:

This set has size 2n2
n

. Given a family of minterms T � T and a set W � �2n we de�ne

TW
def
= fT 2 T j W � Tg

which we shall call T pinched at W . A family T � T is said to be �-concentrated at w

if PrT2T[w 2 T] � �. We shall say that T 6= ; is �-di�use on S if for all w 2 S, T is
not �-concentrated at w. A family T which is �-concentrated at � may be pinched at f�g,
resulting in Tf�g, with jTf�gj � �jT j. A �-concentration sequence for a family T is a sequence
�1; : : : ; �r such that

� T is �-concentrated at �1,

� for i 2 f1; : : : ; r � 1g, Tf�1;::: ;�ig is �-concentrated at �i+1,

� and Tf�1;::: ;�rg is �-di�use on �2n � f�1; : : : ; �rg.

Lemma 3.2 Let �1; : : : ; �r be an �-concentration sequence for T � T. Then

r �
� log �(T)

log �+ n

where �(T) is the density of T in T.

Proof: Let � = f�1; : : : ; �rg. Since T � T, T� � T� so that

�r�(T) � �(T�) � �(T�) = 2�nr

and hence

r �
� log �(T)

log �+ n

as desired. 2

Theorem 3.3 There exists an oracle O so that mSP;O2 (m�P;O
2 \m�P;O

2 .

Proof: For a pair of oracles O1; O2 � ��, de�ne O1�O2
def
= f0x j x 2 O1g[f1y j y 2 O2g.

Let C be the set of all oracles O = O1 �O2 so that 8n � 0,

9nx8ny; xy 2 O1 () 8nx9ny; xy 2 O2:

6

Let An = fC0 � C1 2 C j 9nx;8ny; xy 2 C0g. De�ne L(O1 � O2) = f1n j 9nx8ny; xy 2 O1g
and notice that for O 2 C, we have that L(O) 2 m�P;O

2 \m�P;O
2 . We shall construct an

oracle C = C1 � C2 2 C so that L(C) 62 mS
P;C
2 . Let fDi(�; �; �)g be an enumeration of

monotone oracle-SP
2 machines so that for every O, mS

P;O
2 = fL(DO

i)g. De�ne Qi(n) to be
the maximum size, over all oracles, x values, and y values, of any query made by Di(1n; x; y).
C shall be constructed in stages C1 � C2 � � � � so that C =

S
iCi, stage i constructed to

foil a speci�c monotone SP
2 machine. We shall have that

� for i < j, Ci � Cj and Cj � Ci � �kj for some kj,

� i < j =) ki < kj ,

� for any oracle O with O \ ��ks = Cs, L(O) 6= L(DO
i) for any i � s.

Assume we have constructed the �rst t�1 stages, thus de�ning the oracle to length kt�1 and
foiling the �rst t � 1 machines. We shall construct Ct, foiling Dt. Let p(n) be the running
time of Dt. Select n so that 2n > kt�1, 2n > Qt�1(kt�1), and 2n > 2p(n). Set kt = 2n.
Assume, for contradiction, that regardless of our choice of Ct 2 C (with Ct \��kt�1 = Ct�1),
DCt

t (1n; �; �) accepts exactly when Ct 2 An.

For each u 2 �n, let Su
def
= fuv j jvj = ng and consider the family of oracles

fCt�1 [Su � T j T 2 Tg:

Associate with each oracle O in this family an appropriate x so that 8y;DO
t (1

n; x; y) accepts.
There are at most 2p(n) various values for x, so some xu is associated with a fraction of this
family of density at least 2�p(n). Let F(u) be the (sub) family so associated with this xu.
Then de�ne T (u) = fT j Ct�1 [Su � T 2 Fug. Let � (u)1; � (u)2; : : : ; � (u)t(u) be a p(n)

�1-
concentration sequence for T (u) and � (u) = f� (u)1; � (u)2; : : : ; � (u)t(u)g. By lemma 3.2 the
length of this sequence, t(u), is at most

� log �(T (u))

log p(n)�1 + n
�

p(n)

n� log p(n)

(�)

� p(n)

where the inequality
(�)

� follows because 2n > 2p(n). Reiterating, for each u 2 �n, we have
selected a family of mintermsF(u) all associated with a certain xu and a p(n)�1-concentration
sequence � (u) for T (u).

We similarly construct such sets of maxterms. For a subset X � �2n, let X̂
def
= �2n �X

be the relative complement of X. For each v 2 �n, consider

fCt�1 [T̂ � Ŝv j T 2 Tg:

As above, let yv be associated with a family of these maxterms G(v)
def
= fCt�1 [T̂ � Ŝv j

T 2 T (v)g so that �(T (v)) � 2�p(n) (so that for any oracle O in this set and any x,
DO
t (1

n; x; yv) rejects). Let � (v)1; : : : ; � (v)t(v) be a p(n)�1-concentration sequence for T (v)
and � (v) = f� (v)1; : : : ; � (v)t(v)g. Again t(v) � p(n).

7

Selecting u and v uniformly and independently at random from �n, we have that

Pr
u;v
[9i; � (u)i 2 Sv or 9j; � (v)j 2 Su] �

t(u) + t(v)

2n
�

2p(n)

2n
< 1

so that there exists a pair (~u; ~v) with the property that

� 8i; � (~u)i 62 Sv and

� 8j; � (~v)j 62 Su.

Notice that an oracle O selected from F(~u)[G(~v) is accepted by DO
t (1

n; x~u; y~v) exactly when
O 2 F(~u). LetM = �2n� � (~v)� � (~u) and consider the behavior of DM

t (1n; x~u; y~v). Suppose
that DM

t (1n; x~u; y~v) accepts. Since D is monotone, every oracle O 2 fCt�1 [T̂ � Ŝ~v j
T 2 T (~v)�(~v)g must disagree with M in one of the at most p(n) places which DM

t (1n; x~u; y~v)
queries, which contradicts that T (~v)�(~v) is p(n)

�1-di�use on �2n � � (~v). The case when
DM
t (1n; x~u; y~v) rejects is handled dually. 2

4 Conclusions and Open Problems

In this note we studied the notion of symmetric alternation by de�ning the complexity class
SP2 . We observed certain structural properties of the S2 operator which allowed us to prove
some interesting containment results. We were able to show that BPP � SP2 using a clever
twist of Lautemann's proof [8].

The original motivation for de�ning and studying the notion of symmetric alternation
was a question posed by Uriel Feige. [4] and [5] study situations, in an interactive setting,
where the provers do not have complete access to each other's strategies. As a step towards
characterizing the class of languages accepted by such interactive proof systems we, in this
paper, decided to formalize and study the associated non-interactive version.

It is an interesting open problem to construct an oracle separating SP2 and �P
2 \ �P

2 .
This would provide more evidence of the fact that the two classes are indeed di�erent. The
interactive version of symmetric alternation, the original motivation for this study, has not
been characterized exactly and continues to remain an area of active study.

References

[1] M. Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in logspace. In Pro-

ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages
132{140, 1987.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, Inc., 1992.

[3] T. P. Baker and A. L. Selman. A second step toward the polynomial hierarchy. Theo-
retical Computer Science, 8:177{187, 1979.

8

[4] U. Feige, A. Shamir, and M. Tennenholtz. The noisy oracle problem. In Proceedings of

CRYPTO 1988, pages 284{296, 1988.

[5] J. Feigenbaum, D. Koller, and P. Shor, November 1994. Unpublished Manuscript.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading,
Massachusetts, 1979.

[7] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of

Computing, pages 12{24, Seattle, Washington, May 1989.

[8] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17:215{217, 1983.

[9] N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In Proceedings

of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 235{244,
1993.

[10] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing, pages 330{335, 1983.

[11] L. J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Science, 3:1{22,
1976.

[12] A. C. Yao. Theory and applications of trapdoor functions. In 23 rd Annual Symposium

on Foundations of Computer Science, pages 80{91. IEEE, 1982.

9

