‘C: A Language for High-L evel, Efficient, and
M achine-independent Dynamic Code Generation

Dawson R. Engler Wilson C. Hsieh M. Frans Kaashoek

Abstract

Dynamic code generation allows specialized code sequencesto be crafted using runtime information. Since this
information is by definition not available statically, the use of dynamic code generation can achieve performance
inherently beyond that of static code generation. Previous attempts to support dynamic code generation have been
low-level, expensive, or machine-dependent. Despite the growing use of dynamic code generation, no mainstream
language providesflexible, portable, and efficient support for it.

We describe ‘C (tick C), a superset of ANSI C, that allows high-level, efficient, and machine-independent
specification of dynamically generated code. ‘ C provides many of the performance benefits of pure partial evaluation
in the context of a complex, statically-typed, but very widely-used language. Our experiments with a prototype
compiler show that ‘ C enables excellent performanceimprovement (in some cases, more than an order of magnitude)
and easy specification of dynamically generated code.

Keywords: dynamic code generation, C

1 Introduction

Dynamic code generation (i.e., generation of executable code at runtime) alows the use of runtime information to
improve code generation. For instance, the propagation of runtime constants may be used to feed optimizations such
as strength-reduction, dead-code elimination, and constant folding. As another example, interpreters can compile
frequently used code and execute it directly [2]; this technique can improve performance by an order of magnitude,
compared to even heavily tuned interpreters[5].

Unfortunately, current dynamic code generation systems are not satisfactory. Programmers must choose among
portability, ease of programming (including debugging), and efficiency: efficiency can be had, but only by sacrificing
portability, ease of programming or, in the case of the fastest dynamic code generators [12], both. We attack al
three of these problems by adding support for dynamic code generation directly to ANSI C: portability and ease of
programming are achieved through the use of high-level, machine-independent specifications; efficiency is achieved
from static typing, which alows the bulk of dynamic code generation costs to be paid at compile time. We call our
language ‘ C (tick C).

‘Cinheritsmany of the performance advantagesof partia evaluation[3 9]. ‘ C differsfromlanguagesthat usepartia
evalution in two ways. First, our language extensions and prototypeimplementation have been done in the context of
ANSI C, acomplex, statically-typed, but very widely-used language. Second, it is not a source-to-source translation,
but rather gives the programmer powerful, flexible mechanisms for the construction of dynamically generated code.
This control allows programmers to use dynamic code generation both for improved efficiency in situations where it

{engl er | wchsi eh| kaashoek}@cs. m t. edu, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, 617-253-7436. This work was supported in part by the Advanced Research Projects Agency under Contract N00014-94-1-0985; the last
author is partially supported by an NSF National Young Investigator award. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. government.

would not normally be applicable (i.e., in the context of aiased pointers) and for simplicity (e.g., by using the act of
dynamic code generation to simplify an application’s implementation). In fact, ‘C should be an excellent substrate
with which to implement partial evaluators for more modern and advanced languages.

This paper describes ‘' C, a superset of ANSI C that provides support for specifying dynamically generated code
through the addition of two type constructors and three unary operators. The contributions of thiswork are twofold:
we have designed an efficient, flexible, high-level means of specifying dynamically generated code in ANSI C, a
statically-typed language. The language design has been challenging since a static type system makes the runtime
specification of arbitrary code difficult (e.g., expressing functionswhose number and type of arguments are not known
at compile time). While our language design has taken place in the context of ANSI C, we believe the mechanisms
used to specify dynamically generated code can also be mapped onto other statically typed languages. Our second
contribution is a prototype ‘C compiler. This compiler alows us to demonstrate how ‘C both ssmplifies the use of
dynamic code generation and improves application performance by upto an order of magnitude.

The paper is structured as follows: We describe the C language in Section 2. We give two examples programsin
Section 3, and show how our prototype implementation performs on these examples in Section 4. We outlinea more
efficient implementationin Section 5; we discuss rel ated work in Section 6; and we summarize our resultsin Section 7.
The ‘' C grammar isgiven in Appendix A.

2 ‘CLanguage
Three conflicting goa s have driven our design:

1. ‘C must be a clean extension to ANSI C, both syntactically and semantically. Extensions must not affect the
syntax and semantics of ANSI C, and should be in the spirit of the ANSI C language.

2. 'Cmust alow flexible specification of dynamically generated code. For instance, it must alow the construction
of functionswhose parameters are unknown (both in number and in type) at static compile-time.

3. ‘C must dlow an efficient implementation. The most important effect of this goa is that the mgjority of code
generation costs must be paid at compile-time.

Designing alanguage that can satisfy all three goalsisadifficult problem. For example, achieving god twoismore
difficult than may be apparent. It was responsible for our abandonment of functional composition as a methodol ogy
for specifying dynamically generated code. We found that whilefunctional compositionis conceptually eegant, it had
very clumsy mechanicsin practice.

Another issue that we faced was deciding between a dynamic or a static type system for dynamically generated
code. A dynamic type system aids in the flexible specification of dynamically generated code, as it adds a form of
polymorphism to the language. However, a static type system is more efficient, since it allowsthe bulk of instruction
selection and optimization to occur at compile-time; in addition, it isaso morein the spirit of ANSI C.

We choseto use a static type system for * C. The resulting lossin flexibility is minor, especially since ANSI C does
not provide any mechanisms for polymorphism. The gain in performance should be large: the information provided
by a static type system alows usto push more dynamic code generation costs to compile-time. Asaresult, we believe
an aggressive compiler for * C should achieve performance close to that of hand-crafted dynamic code generators.

2.1 Language Modificationsfor ‘C

We use the term dynamic code to mean dynamically generated code; we use static code to mean al other code. In‘C
dynamic codeis specified at runtime; these specifications can then be either composed to build larger specifications or
instantiated (compiled at runtime) to produce executable code. We use the term compile-time to mean static compile-
time, specification-timeto mean when codeis being specified and composed, instantiation-timeto mean when dynamic
iscompiled, and runtimeto mean when dynamic code isexecuted. Dynamic codeisconstructed onefunction at atime;
each invocation of the library function conpi | e ends one function definition. This restriction reduces bookkeeping
complicationsthat would otherwise be necessary in the language.

We have added two type constructorsand three unary operatorsto ANSI C. Thetwo new type constructors, cspec
and vspec, are both postfix-declared types (similar to pointers). A cspec or vspec has an associated evaluation
type, which is analogous to the type to which a pointer points; the evaluation type allows to dynamic code to be
statically typed, which in turn alows usto select instructionsat compile-time.

The new unary operators, * , @ and $, have the same precedence as the standard unary prefix operators.

211 The' Operator

Dynamically generated code is specified using the* (backquote) operator. * “ can be applied to an expression or a
compound statement. However, backquote expressions may not nest (i.e., we do not allow the specification of dynamic
code that in turn may specify dynamic code). Some simple usages of backquote are:

‘4 [+ specification of dynamic code for the integer 4 =/

/* specification of dynamic code for acall to printf
j must be declared in an enclosing scope */
‘printf(“%d”, j)

/* specification of dynamic code for a compound statement «/
“finti;for (i = 0;i < 10; i++) printf(“%d\n",i); }

Dynamic code islexically scoped: variables in enclosing static code can be captured by free variablesin dynamic
code. The use of such a variable after its scope has been exited leads to undefined behavior; in other words, only
downward funargsare legal. Lexical scoping allows type-checking and instruction selection to occur at compile-time.

The use of severa C constructs is restricted within backquote expressions. In particular, br eak, cont i nue,
case and got o cannot be used to transfer control outside of the expression. For example, the destination label of a
got o statement must be contained in the backquote expression. Thisrestriction is present so that a‘C compiler can
statically determine that acontrol flow changeislegal. The useof r et ur nisnot similarly restricted because dynamic
code is always associated with a function.

212 cspec Types

The type of adynamic code specification isacspec type (for code specification); the evaluation type of thecspec
isthetype of the dynamic value of the code. For example, thetype of theexpression* 4 isi nt cspec. By staticaly
typing dynamic code specifications, we can type-check code composition (described in Section 2.1.3) statically.

IThisusageof * isbased on Lisp’susageof * for specifying list templates.

Applying* to acompound statement yieldsaresult of typevoi d cspec. Weadso usethetypevoi d cspec
asagenericcspec type (analogoustotheuseof voi d * asageneric pointer). The code generated by © may include
implicit casts used to reconcile the result type of © with its use; the standard promotion rules of ANSI C apply.

cspecs can be compiled using the conpi | e function. conpi | e returnsavoi d function pointer, which can
then be cast to the appropriate type. The following code fragment dynamically constructsand instantiates a traditional
greeting:

void cspec ¢ = “{ printf(“hello world\n"); };
[+ Compile and call the result; the *‘v'’ indicates that the return typeis void. */
compile(c, “v")();

2.1.3 The@Operator

The @operator allows dynamic code specifications to be combined into larger specifications. @can only be applied
inside a backquote; legal operands must be cspec’s or vspec’s (vspec'’s are described in Section 2.1.4), and
are evaluated at specification-time. @"dereferences’ cspec’sand vspec’s: it returns an object whose type is the
evaluation type of @s operand. The returned object is incorporated into the cspec in which the @occurs. For
example, in the following fragment, ¢ isthe additive composition of two cspec’s:

/x Compose ¢l and c2; evaluation yields ‘9. */
int cspec cl = ‘4, c2 = ‘5, ¢c = ‘(@cl + @c2);

Statements can be composed through concatenation:

/* Concatenate two null statements. /
voidcspec sl = “{}, 2 ={},s="*{ @sl; @2, };

214 vspec Types

An object of typevspec (for variable specification) represents a dynamically generated lvalue; its evaluationtypeis
the type of the Ivalue. Vspec’salow Ivauesto be statically typed, so that we can perform instruction selection at
compile-time. Objectsof typevspec may beinitialized by calling the‘ Clibrary functionspar amor| ocal . Par am
isused to create aparameter for the function under construction; | ocal isused to reserve spaceinitsactivation record
(or alocate aregister if possible).

The @operator is used to incorporate vspec’sinto cspec’s, avspec (likeavariablein ANSI C) can be used
both as an lvalue and an rvalue inside a backquote expression. The following function returns code that takesasingle
integer argument, adds one to it, and returns the result:

void cspec plusl(void) {
/* The arguments to param are the argument index and its type. */
int vspec i = (int vspec) param(O, “i");
return ‘{ return @i + 1; };

}

Vspec's alow us to construct functions that take a runtime-determined number of arguments; this power is
necessary in applications such as our compiling interpreter (described in Section 3.2). Consider a function sumthat
takes a runtime-determined number of integer arguments, sums them, and returns the result. Whileit is possible to
congtruct such afunction using C'svariable argument facilities, or by requiring that the arguments be marshaled in an
integer vector, such solutionsare clumsy and inefficient. With vspec’swe can easily construct the desired function:?

[+ Construct function to sum n integer arguments. */
void cspec construct_sum(int n) {
inti,cspecc="0;
for (i=0;i<ni++){
int vspec v = (int vspec) param(i, “i”); /x create a parameter */
c="'(@c + @v); /x Add param 'V’ to current sum. x/
}
return ‘{ return @c; };
}

215 The$ Operator

The $ operator is used to specialize dynamic code. $ may be applied to expressions within dynamic code that are not
of typecspec or vspec. Theoperand of $ isevauated at specification-time, and the resulting vaue isincorporated
as aruntime constant. Thisisillustrated in the code fragment below.

/* Demonstrate use of $. */
int cspec cl, c2;

void cspec ¢;

intx=1;

/* Bind x as aruntime constant; i.e., its value (1) at this point. */

cl = ‘$x;

/* Bind x a runtime; i.e., use value in x when the code for c2 is run. x/
Cc2 = 'X;

c="‘{ printf(“$x = %d, x = %d\n", @cl, @c2); };

X = 14;

[+ Compile and run: will print ““$x = 1, x = 14", «/

compile(c, “v”)();

2.2 The'C Standard Library

We provide asmall library in order to minimize changes to ANSI C; for example, we do not want to change ANSI C
to allow the construction of function callsat runtime. Appendix B describes the library in more detail.

2.3 Discussion

‘Cisadtrict superset of ANSI C. There are, however, necessary departures from the spirit of C at some points. For
example, the memory required to represent a cspec istheresponsibility of the * C runtime system. Hence, cspec’s
are objects whose all ocation and manipulation is not controlled by the programmer. This isa marked departure from
ANSI C, inwhich dynamic allocation of objectsis controlled by the programmer (e.g., by using mal | oc).

2As written, this function does not work in our implementation: due to limitations of dcg, our compiler target, parameter allocation must be
factored into a separate loop.

[+ Construct code to scale matrix m of size n by constant ‘s’ =/
void cspec mkscale(int s, int n, int xxm) {
return ‘{
intij;
/% $n can be encoded directly in the loop termination check +/
for (i =0;i < $n;i++) {
int «v = ($m)[i];
for =0;j < $n; j++)
/x multiplication by ‘$s' can be strength—reduced */
V[jl = Vv[i] * $s;

Figure 1: *C code for scaling amatrix by a runtime constant

In addition, there is some runtime checking in *C that is not present in ANSI C: for example, the compiler must
guard against conflicting parameter definitions. Currently, the return type of the dynamically constructed functions
is specified dynamically as well (there seems to be no good way to do it statically); this requires that checking and
promotion of return types must be done at runtime. Thisisinconvenient, but localized.

3 Examples
Toillustrate how ‘ C makes dynamic code generation easy to use, we present two examples.

3.1 Matrix Scaling

Scaling amatrix by aruntimeconstant all ows ample opportunity for speedup from the use of dynamic code generation.
For instance, multiplication can be strength-reduced to shifts and adds; division can be strength-reduced to multiplica
tion (and then to shiftsand adds). Additionally, loop bounds can be encoded in branch checks as constants, which can
alleviateregister pressure. The‘ C code for expressing matrix scaling by aruntime constant isshownin Figure 1. This
example can be viewed as programmer-expressed partia evaluation.

3.2 Compiling Interpreter

Interpreters can use dynamic code generation technology to improve performance by compiling and then directly
executing frequently interpreted pieces of code[2, 4]. To show that * C can be used to do this easily and efficiently we
present a recursive-descent compiling interpreter that accepts a subset of C that we call Tiny C[5]. Tiny C hasonly an
integer type; it supportsmost of C'srelationa and arithmetic operations(/, -, <, etc.) and providesi f statements,
whi | e loops, and function calls as control constructs.

A subset of the parser is shown in Figure 2. What should be noted is the degree to which the flexibility of ‘Cis
exercised: functionshaving an arbitrary number of parameters and local variables can be created, and code is specified
and composed in adiffuse fashion. Without the flexibility afforded by ‘ C, this example would be difficult to write and
inefficient in its generated code. In addition, our experience has been that specifying dynamically generated code in
‘C iseaser then constructing an efficient interpreter.

4 Implementation

We have a prototype‘ C compiler that emits ANSI C code augmented with callsto dcg’s[5] dynamic code generation
primitives. Our compiler parses, semantically checks, and generates code for * C. It generates code correctly for all of
the examples in this paper except one, which isdueto an artifact of dcg.

Our prototype alows us to demonstrate the ease of using ‘C to specify dynamic code generation. In addition,
despite our lack of optimization and dcg’s rudimentary optimization (it does not perform instruction scheduling nor
peephol e optimization) we still achieve good performance. In Section 5 we describe a futureimplementation that will
give better performance than our prototype.

In the rest of this section we present performance results for the code generated by our prototype compiler. We
ran our compiler on the examples in Section 3. Our experiments were conducted on a SPARC 10 system that does
integer divide and multiply in software. Times were measured using the Unix system call get r usage and include
both “user” and “system” time. The times given are the median time of threetrials. Static compilation was done using
gce versions 2.5.8.

4.1 Matrix Scaling

We compare a static matrix scaling routine against the ‘C routine given above. We run two experiments, one for
division, the other for multiplication. Multiplicationis done on a matrix of typei nt ; division on a matrix of type
short. The experimenta times given in Figure 3 measure the summation of the time required to scale 1024x1024
meatrix by the integers 1 through 1024; in the * C implementation we include the time to generate the code at runtime.

The performance of multiplying a 1024x1024 integer matrix by aruntime constant improved by afactor of 3. The
performance of dividing a 1024x1024 matrix of type short by a runtime constant improved by a factor of 35%.3
More dramatic i mprovements would be possible with a more sophisticated factorization scheme for strength-reducing
division.

4.2 Compiling Interpreter

A recursive Fibonacci program is used to measure the performance of four implementations of Tiny C (which was
described in Section 3.2).

Tree-interpreter: We wrote a simple interpreter that trandates Tiny C into abstract syntax trees, which it then
recursively evaluates.

gce -02: We compile Tiny C using gcc with optimization level “-02”. This gives an upper bound on the quality of
local code.

‘C: Werun the‘C compiling interpreter described in Section 3.2.

Our test computes the 30" Fibonacci number; Figure 4 summarizes the results. The code that is generated using
our simple backend isfairly efficient: its performance is 85% of gcc's performance. Since these numbersinclude the
cost of dynamic code generation, these numbers are lower bounds on the performance of our code. Comparing our
resultsto the interpreter, we see that using dynamic code generation is 50 times faster than the evaluator. From amore

30ur matrix scaling code is approximately a factor of 2-3 slower than hand-optimizeddcg. Thisis because as we emit naivedcg IR, and we
do no global optimization.

global perspective, this same technique can give order of magnitude improvements in the performance of operating
system extension languages such as packet filters[1, 13].

5 FutureWork

We are developing a ‘C compiler that will generate code using templates [12]; this implementation will take full
advantage of our static type system, which allowsinstruction sel ection to occur at compile-time. Templates are highly
specialized code emitterswhere the instructionshave been chosen statically; any holesin theinstructions(e.g., runtime
constants and addresses of variables) arefilled at runtime. Since templates allow the bulk of code generation anaysis
to be done at compile-time, they can emit code very quickly. For example, register alocation can be done at statically
through symbolic register specifications; software register renaming isused at runtime to select the actual registers.

To implement template-driven code generation, our compiler will capture the closure of each cspec. A closure
consists of apointer to atemplate and to the collection values within the cspec that cannot be determined at compile-
time: operands of $ and @ and addresses of free variables in the code specification. A closure is later used a
specification-time to create the specified code. We expect the use of templates to improve the speed of dynamic code
generation by an order of magnitude [12].

6 Redated Work

Dynamic code generation has along history. It has been used to increase the performance of operating systems[15],
windowing operations[14], dynamically typed languages| 2, 8, 4], simulators[18] and matrix manipulations[5]. These
systems have typically used low-level, non-portable dynamic code generation techniques. With ‘C applications can
now specify codein asimple, portable, and efficient manner.

‘C grew out of our previouswork withdcg [5], an fficient, retargetabl e dynamic code generation system. ‘ C offers
several improvements over dcg, but retains dcg’s portability and flexibility. First, ‘ C provides a high-level interface
for code specification, whereas dcg’s interface is based on the intermediate representation of | cc [6]. Second, it
providesthe opportunity for static analysis, which reduces the cost of dynamic compilation; because it has no compiler
support, dcg must do runtime analysis. Finaly, by making dynamic code generation a first-class capability of a
high-level language, both profiling and debugging facilities can be added.

Many languages, such asmost Lisp didects[17, 16] and Perl [19], providean “eval” operation that allows code to
be generated dynamically. This approach is extremely flexible but, unfortunately, comes a a high price: since these
languages are dynamically typed, little code generation cost can be pushed to compile-time.

Many of the language design issues involved in * C also appear in designing macro languages, such as Weise and
Crew’'s work [20]. The difference is that macro languages allow programmers to specify code templates that are
compiled statically, whereas dynamic code templates are compiled at runtime. Interestingly, although not surprisingly,
the syntax we chose turned out to be similar to that used by Weise and Crew.

Massalin et a. briefly note that they are designing a language for code synthesis, Lambda-C [15]. They do not
discuss design or implementation issues other than to note that “type-checking of synthesized code is non-trivia”.

Leone and Lee [11] describe the use of programmer-supplied hints to perform compile-time specidization in a
primitive functional language (e.g., data-structures are not mutable, and its only heap alocated data structures are
pointers and integers). They achieve low code generation costs through templates. In contrast to the rudimentary

/* Set of helper parsing functions */

/* Remove token from the input stream; returns type. */
int gettok(void);

/* Put a token back into the input stream. */

void puttok(void);

/* Result of compare of tok to next input symbol. x/
int look(int tok);

/* Consumes expected token or gives parse error. #/
void expect(int tok);

/* Pointer to current token. */

char xcur_tok;

/* Symbol table functions */

/* Associate v with name; error to insert duplicate. */
void insert_sym(char *name, int vspec v);

/* Return the vspec associated with a given name. */
int vspec lookup(char *name);

/* Return function pointer associated with name. */
int (+fptrlookup(char *name))();

/* parse unary—expressions and ‘(’ expr ’)’ */
int cspec expr(void) {
switch(gettok()) {
case CNST: return exprl(‘$atoi(cur_tok));
case ‘+’: return expr();
case ‘=" return ‘—@Qexpr();
case ‘I’: return ‘!@expr();
case ‘(> {
int cspec e = expr();
expect(‘)’);
return e;
}
case ID: /* 1D or function call */
if (! look(‘("))
return exprl(‘@lookup(cur_tok)) ;
else
return exprl(fcall());
default: parse_err(“bogus expr”);
}
}

/% name ‘(" { arg { ’,” arg }x }?)/
void cspec feall(void) {
int (xip)() = fptr_lookup(cur_tok);
void cspec args = ‘{};
gettok(); /* consume ‘(’ %/
/* epsilon ’) x/
if (look()")) {
gettok(); /* consume °)’ */
return ‘($ip)();

Jrarg {5 arg Jx)4/
while (1) {
/* get argument list */
args = push(args, “”, (void cspec) ‘@expr());
if (look(¢,’)) gettok();
else if (look(*)’)) break;
else parse_err(“malformed arg list”);

gettok(); /* consume)’ x/
return ‘($ip)(@args);

/* Consume zero or more declarations: “int ID {, ID}« * 7 «/

void declare(void) {
/* no more declarations */
if(! look(INT)) return;
gettok();
while(gettok() == ID) {
insert(cur-tok);

switch(gettok()) {

case ‘,’: break; /* another declaration =*/
case ‘;’: declare(); return; /* start next decl_seq */

default: parse_err(“malformed declaration”);

}
}

parse_err(“expecting TD”);

}

/* binary expressions */
int cspec exprl(int cspec €) {
switch(gettok()) {
case ‘+: return ‘(Qe + (,expr(
% return ‘(@e — @expr(
return ‘(@e x @expr(]
return ‘(@Qe / @expr(]
return ‘(@Qe < @expr(
(
(
()
(

case LE: return ‘(Qe < @expr
case > return ‘(@Qe > @expr
case GE: return ‘(@Qe Z @expr
case NE: return ‘(@e != @expr
case EQ: return ‘(@Qe == @expr());
case ‘)’

case ;" pushtok(); return e;

default: parse_err(“bogus exprl”);

}

/* simple iteration and control flow statements x/
void cspec stmt(void) {
int cspec e;
void cspec s, s1, s2;
switch(gettok()) {
case RETURN: /* return expr ’;” x/
s = { return Qexpr(); };
expect(;’);
return s;
case WHILE: /+ while ‘(" expr ¢)’ stmt %/
expect(‘(’); e = expr(); expect(‘)’); s = stmt();
return ‘{ while(@e) @s; };
case IF: /#if ‘(" expr)’ stmt { else stmt }? %/
expect(‘(’); e = expr(); expect(‘)’); s1 = stmt();
if (Nlook(ELSE))
return ‘{ if (Qe) @s1; };
gettok(); s2 = stmt();
return ‘{ if (Qe) @sl; else @s2; };
case ‘{: /x ‘{* stmt* ‘}’ x/
push_scope(); declare();
s="{}
while (!look(‘}’)) s = { @s; @stmt(); };
expect('}'); pop.scope():
return s;
case %
return ‘{};
case ID: /+ ID ‘=" expr ; */
{
int vspec lvalue = lookup(cur_tok);
expect(*="); e = expr(); expect(‘;’);
return ‘{ @lvalue = @e; };

default: /+ expression statements not allowed */
parse_err(“expecting statement”);

Figure2: A Subset of the Tiny-C Recursive-Descent Parser

9

Description ‘C | Statically compiled C code
Multiplication | 390 1100
Division 570 770

Figure 3: Matrix scaling routines; times are in seconds.

‘C | gcc-0O2 | Tree-Interpreter
21 1.8 102

Figure4: Calculation of the 30th Fibonacci number; times are in seconds.

control provided by hints, ‘ C gives the programmer powerful, flexible mechanisms for the construction of dynamically
generated code: it is difficult to see how the compiler in Section 3.2 could be easily or efficiently realized using their
system. Additionally, our language extensions and prototype implementation have been done in the context of ANSI
C, acomplex non-functional language.

Keppel addressed some issues relevant to retargeting dynamic code generation in [10]. He developed a portable
system for modifying instruction spaces on a variety of machines. His system dealt with the difficulties presented by
caches and operating system restrictions, but it did not address how to select and emit actua binary instructions.

Many Unix systems provide utilitiesto dynamically link object files to an executing process. Thus, a retargetable
dynamic code generation system could emit C code to afile, spawn a process to compile and assembl e this code, and
then dynamically link in the result. Preliminary tests on gcc indicate that the compile and assembly phases alone
require approximately 30,000 cycles per instruction generated. Our current implementation of ‘C is two orders of
magnitude faster than this.

7 Conclusions

Dynamic code generation should be efficient and portable; specifying dynamically generated code should be flexible
and simple. We have described ‘ C, a superset of ANSI C, that satisfies both of these constraints; we have aso paid
close attention to preserving the semantics and spirit of ANSI C. We have given two examples of ‘C programs that
demonstrate the expressiveness of our language; our prototype compiler demonstrates that we can achieve excellent
performance (the use of dynamic code generation can improve performance by up to an order of magnitude), even
with alow level of optimization. The reliance on static type-checking reduces the cost of runtime compilation: code
generation operations such asinstruction sel ection are performed at compile-time. Furthermore, since types are known
statically, the compiler can optimize dynamic code as well as static code.

References

[1] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage, and E. Sirer. SPIN - an
extensible microkernel for application-specific operating system services. TR 94-03-03, Univ. of Washington,
February 1994.

[2] C. Chambers and D. Ungar. Customization: Optimizing compiler technology for SELF, a dynamically-typed
object-oriented programming language. In Proceedings of PLDI ' 89, pages 146-160, Portland, OR, June 19809.

10

[3] C. Consd and O. Danvy. Tutoria notes on partia evaluation. In Proceedings of 20th POPL, pages 493-501,
Charleston, SC, January 1993.

[4] P. Deutsch and A.M. Schiffman. Efficient implementation of the Smalltalk-80 system. In Proceedings of 11th
POPL, pages 297-302, Sdt Lake City, UT, January 1984.

[5] D.R.Engler and T.A. Proebsting. DCG: An efficient, retargetable dynamic code generation system. Proceedings
of ASPLOS VI, pages 263-272, October 1994.

[6] C.W. Fraser and D.R. Hanson. A code generation interface for ANSI C. Technical Report CS-TR-270-90,
Princeton University, Dept. of Computer Science, Princeton, New Jersey, July 1990.

[7] SP. Harbison and G.L. Stele Jr. C, A Reference Manual. Prentice Hall, Englewood Cliffs, NJ, third edition,
1991.

[8] UrsHolzleand David Ungar. Optimizing dynamically-dispatched callswith run-timetype feedback. In Proceed-
ingsof PLDI ' 94, pages 326-335, Orlando, Florida, June 1994.

[9] N.D. Jones, P. Sestoft, and H. Sondergaard. Mix: aself-applicable partiad evaluator for experimentsin compiler
generation. LISP and Symbolic Computation, 2(1):9-50, 1989.

[10] David Keppel. A portable interface for on-the-fly instruction space modification. In Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 86-95, April
1991.

[11] M. Leone and P. Lee. Lightweight run-time code generation. In Proceedings of the Workshop on Partial
Evaluation and Semantics-Based Program Manipul ation, pages 97—106, Copenhagen, Denmark, June 1994.

[12] H. Massdlin. Synthesis: an efficient implementation of fundamental operating system services. PhD thesis,
ColumbiaUniversity, 1992.

[13] JC. Mogul, R.F. Rashid, and M.J. Accetta The packet filter: An efficient mechanism for user-level network
code. In Proceedings of 11th SOSP, pages 39-51, Austin, TX, November 1987.

[14] R.Pike, B.N. Locanthi, and J.F. Reiser. Hardware/software trade-offsfor bitmap graphics on the Blit. Software—
Practice and Experience, 15(2):131-151, February 1985.

[15] C. Pu, H. Massdin, and J. loannidis. The Synthesiskernel. Computing Systems, 1(1):11-32, 1988.

[16] J. Rees, W. Clinger (editors), et al. Revised* report on the algorithmic language Scheme. AIM 848b, MIT Al
Lab, November 1992.

[17] G.L. Stede Jr. Common Lisp. Digital Press, second edition, 1990.

[18] JE. Veenstraand R.J. Fowler. MINT: afront end for efficient simulation of shared-memory multiprocessors. In
Modeling and Simulation of Computers and Tel ecommuni cations Systems, 1994.

[19] D. Wall. The Perl Programming Language. Prentice Hall Software Series, 1994.

[20] D.Weiseand R. Crew. Programmable syntax macros. In Proceedings of PLDI ’ 93, pages 156-165, Albuquerque,
NM, June 1993.

11

A ‘C Grammar

The grammar for ‘C consists of the grammar specified in Harbison and Steele's C reference manua [7] with the
following additions:

unary-expression :
backquote-expression
at-expression
dollar-expression

backquote-expression :
‘ unary-expression
* compound.statement

at-expression :
@ unary-expression

dollar-expression :
$unary-expression

pointer :
cspec type — qualifier — listyy,
vspec type — qualifier — listy,
cspec type — qualifier — list,y, pointer
vspec type — qualifier — list,, pointer

B ‘C standard library

This appendix describes the * C standard library.

B.0.1 Type Specifications

A number of functionsin the ‘C standard library expect types (e.g., | ocal , par am push and conpi |). This
type information specified through a rudimentary string specification (similar to that of pri nt f). Built-intypesare
specified by the first letter(s) of their type. For example, unsi gned short isspecified by “us”. All pointersare
represented by “* " operationally, they aretreated asvoi d * pointersfor purposes of storage and register alocation.
Aggregates (arrays and structures) are specified by asingle “A”; their size must be given as an additional argument.
Finally, the character “r” can be appended to the type strings to indicate that the allocated object will not have its
addresstaken. Whileinformation about addressing could be derived at runtime, doing so quickly would add complexity
to the code generator.

12

B.0.2 Library Description

void (*conpil e(void cspec code, char *type-spec [, int type-size]))(void)
conpi | e generates machine codefromcode. t ype- spec givesthereturntypeof generated function;
t ype- si ze isan optiona argument used to give the size of aggregate types. In the future, conpi | e
will take a number of flags relating to optimization, debugging and profiling.

voi d vspec | ocal (char *type-spec [, int type-size])
| ocal returns a vspec to access a loca variable of typet ype- spec, and reserves space in the
activation record of the function currently being specified.

voi d vspec param(int param num char *type-spec [, int type-size])
par amreturnsavspec to access aparameter of typet ype- spec and number par am num

voi d cspec push(void cspec args, char *type-spec, void cspec code-spec [, int type-size])

push returnsacspec that pushescode- spec onto the cal stack as an argument.

voi d cspec junmp(void cspec target)
j unp returnsthe cspec of ajumptot ar get . Thisisuseful for constructing “hard-coded” finite-state
machines.

void (*self(void))(void)

sel f returns a pointer to the function that the next invocation of conpi | e will return. Thisalowsthe
construction of recursive cals.

B.0.3 Runtime-constructed function calls

Function calls can be constructed “on the fly” by using the library function push; it takesacspec of the argument
list constructed so far, the type of the next argument, acspec of that argument, and possibly the size of the argument.

Consider our function sum which sums a runtime-determined number of integer arguments. To cal sumwe
congtruct the argument list a runtime by using push. In addition, we alow avoi d cspec (which we assume
represents an argument list) to beincorporated asasingleargumentinacal: * sum(@r gs) specifies code that calls
sumusing the argument list specified by ar gs:

int cspec construct_cal(int nargs, int xarg_vec) {
void cspec args = ‘{}; /x initiaization /
inti;
/x For each argument in arg_vec, */
for(i=0; i < nargs, i++)
/* create cspec that pushesit on call stack. */
args = push(args, “i”, ‘$arg_vec|i]);
return ‘sum(@args);

13

