
Charge-Based Proportional Scheduling

Umesh Maheshwari

Technical Memo MIT/LCS/TM-529
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139
January, 1995

Abstract

Most priority-based schedulers lack the ability to control the
relative execution rates of applications. A recent scheme,
called lottery scheduling [WW94], uses randomization to
control the execution rates of threads in proportion to the
tickets allocated to them. However, randomization does not
afford sufficient control over short periods of time; e.g., it
would fail to provide the intended execution rates for threads
that run for less than 10 timeslices. This paper presents a
new scheme that controls execution rates over much smaller
intervals and provides better service guarantees. Simula-
tion results prove its advantage over lottery scheduling. The
scheme is based on charging threads for CPU usage and occa-
sionally skipping some threads to keep the usage close to the
intended proportion. Unlike earlier charge-based schemes,
which adjust the priorities of running threads, this scheme
schedules threads in round-robin order. Despite its improved
quality of service, the scheduler processing overhead is low.
Keywords:
scheduling, resource allocation, proportional share

1 Introduction

Most thread schedulers are based on some variant of priority
scheduling. Such schedulers provide crude control over the
relative execution of application threads. As long as a higher
priority thread is runnable, the lower priority threads are ig-
nored. Most systems try to solve this problem by adding
usage-charging techniques, which reduce the priorities of
threads with processor usage. While this allows some degree
of fairness, it does not provide control over the relative ex-
ecution rates of applications. The effect of usage-charging
varies wildly with the values of parameters chosen, and de-
pends unpredictably on the particular runtime situation. For
instance, if the charge parameter is not set correctly, two
high priority threads can keep alternating and starve a lower
priority thread.

Proportional scheduling has been proposed for predictable
control over execution rates [WW94]. Here, threads are al-

located tickets in order that runnable threads will execute
at rates proportional to their tickets. Proportional execution
rates are useful in situations where services of varying im-
portance must proceed concurrently. This is the case, for
example, in a server handling multiple clients, a multi-media
application processing audio and video, or a multi-threaded
scientific computation where accuracy is governed by the
amount of processing.

The implementation of proportional scheduling in
[WW94] is called lottery scheduling. It uses randomiza-
tion to select threads in proportion to the tickets allocated
to them. However, randomization does not afford sufficient
control on the execution rates over short periods of time such
as 10 timeslices. As a result, threads that live for a short
time, as are common in graphical user interfaces, may fail to
receive the intended execution rates. Further, randomization
provides poor service guarantees: even if a newly runnable
thread has a large number of shares, it may not be scheduled
for an unbounded time, albeit the probability of this hap-
pening decreases with time. This makes lottery scheduling
unsuitable for handling high-priority tasks, which priority
scheduling handles quite well.

I present a new implementation of proportional scheduling
that is based on charging threads for processor usage. Threads
are considered for scheduling in round-robin order, and some
are skipped to keep their execution rates close to the intended
proportion. The scheme is different from usage-charging
schemes added on top of priority scheduling, which adjust the
priorities of running threads and schedule the thread with the
highest priority. The fair share scheduler proposed in [KL88]
also works through adjusting priorities, and therefore suffers
from unpredictable execution rates. Actually, this work is
focused on providing fairness on a per-user basis over longer
periods of time, not on controlling the execution rates of
individual threads.

Charge-based proportional scheduling is capable of pro-
viding proportional execution rates over periods as short
as 10 timeslices. The deterministic nature of the scheme
provides significantly strong service guarantees and handles
high-priority threads just as well priority scheduling. De-
spite these advantages, the scheme has very little processing

1



overhead — less than lottery scheduling in most cases.
This paper focuses on efficient and fine-grained control

over execution rates of individual threads. The simplicity of
the scheme lends itself to the addition of techniques proposed
for other aspects of a full-fledged scheduler. For example,
many of the supplementary techniques proposed for lottery
scheduling, such as modular decomposition, are also appli-
cable to the proposed scheme.

The paper is organized as follows. Section 2 introduces
the charge-based algorithm in a simple setting, and Section 3
discusses issues such as creation and deletion of threads in
a realistic situation. Section 4 gives simulation results to
prove the advantage of the charge-based scheme. Section 5
compares the scheme with earlier schemes, especially lottery
scheduling.

2 Charge-Based Scheduling

This section describes the basic algorithm behind the pro-
posed scheme. It deals with scheduling a given set of
runnable threads to achieve some desirable ratio of execu-
tion rates. Issues such as creation or blocking of threads are
discussed in Section 3.

Each thread is allocated some shares, with the intention
that runnable threads will execute at rates proportional to their
shares. (Shares are like tickets in lottery scheduling.) The
scheduler does not change the allocation of shares by itself;
it manipulates another value associated with each thread: the
thread’s account. The scheduler initializes the account of a
thread with the thread’s shares. It schedules timeslices, or
quanta, to runnable threads in round-robin order. Each time
a thread receives a quantum, the scheduler deducts a charge
from its account. During the round-robin scheduling, any
thread with a non-positive account is skipped. When there are
no threads left with positive account, the scheduler refunds
the accounts of all runnable threads with the number of shares
they have. The concept of a refund is similar to “aging” of
the usage charge in priority scheduling [LMKQ89], except
that a refund is targeted to achieve a more predictable effect.
The algorithm is depicted in Figure 1. Setting the appropriate
level of charge is crucial for the efficacy of the algorithm and
is discussed in Section 2.1.

The result of the above scheduling is that, over a suffi-
ciently long period of time, threads receive quanta in ratio
of their shares. For example, consider two threads, S with
3 shares and T with 2. The scheduling of these threads is
shown below. Here, the notation [Ta] means that T ’s account
was refunded up to a; Ta means that T received a quantum
and its account dropped down to a; (Ta) means that T was
skipped, so its account remained at a. Assuming a charge of
1 per quantum, T and S are scheduled as follows:

[S3 T2]S2 T1 S1 T0 S0 (T0) [S3 T2]S2 T1 S1 T0 S0(T0) : : :

While true do
found = false
For each runnable thread T do

If T.account > 0 then
Run T for a quantum
found = true
T.account = T.account - charge

end
end
If not found then

For each runnable thread T do
T.account = T.account + T.share

end
end

end

Figure 1: Charge-based proportional scheduling.

which results in the sequence, STSTS; STSTS; : : : . Here,
the threads are refunded after every 5 quanta, of which S
receives 3 and T receives 2.

Analysis

I define the execution rate of a thread over a period as
the ratio of the quanta allocated to the thread and the total
quanta scheduled in that period. Given the shares allocated
to various threads, si, the intended execution rate of a thread
with s shares is s=Σsi. Over any given period of time, the
actual execution rate may deviate from the intended rate.
In both lottery scheduling and charge-based scheduling, the
actual execution rates get closer to the intended rates over
longer periods of time. The smaller the period required to
limit the deviation in the rates, the better the scheme.

In this paper, I measure time periods in quanta because it
factors out the differences in the absolute time interval used
for a quantum on different systems. I refer to a pass made by
the scheduler over the set of runnable threads as a round. In
Figure 1, a round is one iteration of the while loop. In any
round, each thread is either given one quantum or skipped.
The period between two refunds is a term. In the example
where S has 3 shares and T has 2 and the charge is 1, a term
involves 3 rounds, with T skipped in the third. In general, if
the charge, c, is greater than 1, the accounts of some threads
may be negative at the end of a term (ranging from �(c� 1)
to 0). Therefore, the actual execution rates over a term may
differ from the intended rates. The duration of a term can
vary between Σd si

c
e and Σb si

c
c depending on the values of

the accounts at the beginning of the term.
Consider a period of time such that the accounts of all

threads at the end of the period are identical to their values at
the beginning. I refer to such a period as a cycle. (A special

2



case is when the accounts are all zero at the beginning as
well as at the end.) By definition, the refund granted to a
thread during a cycle must be equal to the charge applied to
it. Since the refund is proportional to the allocated shares and
the charge is proportional to the number of quanta received,
during each cycle, the threads receive quanta in exact propor-
tion to their shares. Thus, the actual execution rates over the
duration of a cycle are exactly equal to the intended rates.

In the example with 3 and 2 shares, each term constitutes
a cycle, but this need not be true in general. Given the shares
allocated to various threads, si, and the charge, c, the length
of the cycle in quanta can be computed analytically, although
the computation may be non-trivial. In the simple case when
the charge is 1, a period of Σsi quanta constitutes a cycle.

2.1 How much to Charge

Applying a charge of 1 works fine only as long as the shares
held by runnable threads are small integers. The problem is
obvious from the following example, where S has 30 shares
and T has 20:

[S30 T20]S29 T19 : : : S10 T0 S9 (T0) : : : S0 (T0)

which results in the sequence,
STSTSTSTSTSTSTSTSTSTSSSSSSSSSS; : : : .
Here, for the first 20 rounds, both S and T are scheduled
once per round. For the next 10 rounds, only S is scheduled.
Thus, the period of time over which S and T receive propor-
tional execution rates (the cycle) is as long as 30 quanta. If
S terminates in only 10 quanta, it would not live to see its
advantage over T .

I have considered two ways to compute the appropriate
level of charge in the general case. While the first is more
intuitive, the second results in more uniform scheduling as
well as a simpler scheduling algorithm. Analysis and sim-
ulation results show that even the first performs better than
lottery scheduling.

2.1.1 Fixed-Term Charging

This technique aims to provide approximately proportional
execution rates over short periods by constraining the term
size. It fixes a target term size and computes a charge such
that most terms are about that long. Given a target term size,
k, a suitable value for the charge is dΣsi

k
e. (All computation

proposed in this paper is integral.) Here, k can be chosen to
be a power of 2 for quick integer division.

With this charge applied for each quantum, all threads will
have non-positive accounts in about k quanta. The exact term
size may differ from k depending on the rounding-off of the
charge, the divisibility of the individual share values by the
charge, and the number of threads. First, consider a simple
example where the term size is indeed k. If S has 30 shares

and T has 20, and the term size is 10, then the charge should
be (30+20)

10 , or 5. The scheduling happens as follows:

[S30 T20]S25 T15 S20 T10 S15 T5 S10 T0 S5 (T0)S0 (T0)

which results in the sequence, STSTSTSTSS; : : : . In the
above example the accounts of S and T at the end of the
term are zero, so the term constitutes a cycle. In general, the
accounts of threads whose share values are not divisible by
the charge will be negative at the end of the term. Although
such terms do not provide exactly proportional rates, they
come close in practice. Furthermore, the execution rates
over a larger period of time indeed converge to the allocated
shares. This happens because negative accounts at the end
of one term affect scheduling during the next terms in a self-
corrective manner. As an example, consider thread S with
7 shares and thread T with 4, and an intended term size of
6. The desired charge is (7+4)

6 or about 2. The first term is
scheduled as follows:

[S7 T4]S5 T2 S3 T0 S1 (T0)S�1 (T0)

In this term, S received 4 quantum and T received 2. The
next term is scheduled as follows:

[S6 T4]S4 T2 S2 (T0)S0 (T0)

Note that the refund added 7 to S’s account of -1. In this
term, S received 3 quantum and T received 2. Thus, the
quanta received in the two terms combined are in proportion
to the allocated shares. This is to be expected since the two
terms form a cycle. In addition, the execution rates within
each term is close to the intended rate.

There is a tradeoff involved in choosing the target term
size, k. A small k results in shorter terms, which is desirable
for fine-grained control over execution rates, but results in
larger deviations from the intended rates over the term. Sim-
ulation results in Section 4 show that setting k to 10 results in
deviation of less than 0.05 in execution rates over a 10 quanta
period.

2.1.2 Maximum-Share Charging

Here, the charge is set so that the threads are refunded after
every round. That is, each round acts as a term. To exhaust
all accounts within a round, the charge is set to the maximum
share of any thread. Since all threads are refunded after
each round, the account of the thread with the maximum
shares remains constant. Therefore, this thread is run in each
round. The accounts of other threads may remain negative
even after a refund; such a thread is not run until successive
refunds increase its account above zero. If S has 30 shares
and T has 20, the charge is 30 and the scheduling happens as
follows:

[S30 T20]S0 T�10 [S30 T10]S0 T�20 [S30 T0]S0 (T0) : : :

3



which results in the sequence, STSTS; : : : . This automati-
cally gives the smallest possible cycle size of 5 and is better
than the fixed-term technique. Even when the cycle size in
the two techniques is the same, this one results in a more uni-
form distribution of quanta, resulting in less deviation from
the intended rates over sub-cycle periods. As an example,
consider the scheduling of S with 5 shares and T with 2.
Using maximum-share, the charge is 5:

[S5 T2]S0 T�3 [S5 T�1]S0 (T�1) [S5 T1]S0 T�4 [S5 T�2]

S0 (T�2) [S5 T0]S0 (T0) : : :

resulting in the sequence STSSTSS; STSSTSS; : : : . On
the other hand, using a target term-size of 7 (or 10), the charge
would be 1:

[S5 T2]S4 T1 S3 (T0)S2 (T0)S1 (T0) : : :

resulting in the sequence: STSTSSS; STSTSSS; : : :.
Here, T’s quanta are clumped together into the the first 2
rounds.

Analysis
Perhaps surprisingly, the maximum-share algorithm given
above is similar to Bresenham’s digitized line-drawing algo-
rithm, which is used heavily in computer graphics [Bre65].
The line-drawing algorithm plots pixels in a 2-D grid so as to
approximate a line between two points in the grid. Suppose
the line is to be drawn from the point (0; 0) to (X;Y ). The
algorithm works by maintaining variables x and y for the last
point plotted. If X > Y , the algorithm increments x at each
step, and decides whether or not to increment y depending
on their current values. Figure 2 shows the result of drawing
a line from (0; 0) to (10; 4). The algorithm is effective: it
limits the deviation of pixels from the intended line due to
quantization error. It is also very efficient: it involves only
integer addition and subtraction.

0 1 2 3 4 5

0

1

2

6 7 8 9 10

3

4

x

y

Figure 2: Digitized line drawing.

Just as the line-drawing algorithm approximates a line by
plotting pixels, proportional scheduling approximates the in-
tended execution rates by allocating quanta, except that the

latter may involve more than 2 variables (threads). The coun-
terparts of the constants X and Y are the allocated shares,
and those of the variables x and y are the accounts. The
counterpart of the test (X > Y ) is the selection of the max-
imum share. Like the line-drawing algorithm, maximum-
share charge-based scheduling is both effective in limiting
deviation and efficient in limiting processing overhead.

Performance
The following analyzes the processing overhead of the sched-
uler. The goal is to find the amount of work done per quanta
scheduled. Suppose there are n threads and thread Ti has
si shares. Let the maximum shares be sm. Then, roughly
speaking, in sm consecutive rounds, thread Ti is scheduled
si times. Thus, total quanta scheduled in sm rounds are Σsi.
The work done during these rounds is n � sm units, where
each unit of work involves reading an account, adding or sub-
tracting to it, and writing it back. The work done per quantum
allocated is n � sm=Σsi, or sm=sa, where sa is the average
shares held by the threads. Note that this value would be a
small constant for most distributions of shares; for example,
it is 2 for a uniform distribution of shares. In the worst case,
when the shares are highly skewed, it is upper-bounded by n.
The overhead in real time is expected to be low because the
unit of work considered above has very little overhead.

3 Dynamic Changes

The previous section focused on scheduling a fixed set of
runnable threads according to the shares allocated to them.
This section considers issues regarding addition and removal
of runnable threads. Since maximum-share charging is more
effective and simpler than fixed-term charging, this section
concentrates on only that technique.

3.1 Creation/Termination of Threads

There are several options to handle new runnable threads.
Probably the simplest is to incorporate the new thread right
away so that it gets to run as part of the ongoing round
(and therefore, in the ongoing term). A potential problem
with this approach is that a continual supply of low-share
threads can keep a round going for ever. For instance, one
low-share thread could create another low-share thread and
then terminate, while keeping the number of threads at any
time roughly the same. This can starve higher-share threads.
Further, it is unclear as to when the charge should be updated
to reflect the new thread: immediately, or when the next term
starts. Neither alternative is perfect, although the choice is
not expected to have substantial impact on performance.

Another option is to wait until the ongoing term is over
before incorporating the new thread into the run queue. The
wait can be implemented by simply initializing the account of
the new thread to zero, so that the thread is skipped until the

4



next refund. This technique is more suitable for maximum-
share charging because there the terms are short (one round
each), so the wait is shorter. Even so, it is undesirable for a
new high-share thread to have to wait until the round is over.

It is possible to get the better of the above options with the
following approach:

1. If the new thread has more shares than any other runnable
thread, it is scheduled immediately in the ongoing round.
The charge is updated and the difference (if any) applied
to the threads that have already run during the current
round.

2. Otherwise, the new thread waits until the ongoing term
has finished. (Its account is initialized to zero.) The
charge is updated when the next term begins.

The above approach incorporates a desirable element of
priority-based scheduling: often, a high-priority thread must
be run immediately in response to an external event. The
desirable effect can be achieved by allocating a large number
of shares to such a thread, so that the above approach will
ensure that the thread is run immediately. It may seem at
first that this approach might cause a high-share thread to
wait for lower-share threads if another, higher-share, thread
is runnable. Actually, this is unlikely because the higher-
share thread must have resulted in a high charge, so that the
accounts of the low-share threads are expected to be negative
for most rounds (terms) and such threads will be skipped.

The removal of a runnable thread is simple. The charge is
updated at the end of the ongoing term. In maximum-share
charging, after the thread with maximum shares is removed,
the accounts of the remaining threads may need to be re-
funded multiple times (say, m) before any of them becomes
positive. This procedure can be expedited by computing m
using integer division and then applying m times the normal
refund at once.

3.2 Blocking/Unblocking of Threads

A simple way to handle blocking and unblocking of threads
would be to treat them exactly as termination and creation
of threads. Under this approach, when a thread blocks, its
account is forgotten and is reinitialized when the thread un-
blocks. However, this can distort execution rates away from
the intended proportions if some threads block and unblock
often. For example, a low-share thread that blocks and un-
blocks after every round (term) will get to run in every round.

Therefore, a better approach is to retain the account of a
blocked thread. Unlike newly created threads, there is no dan-
ger of a continual sequence of unblocking threads; therefore,
an unblocked thread can be incorporated into the ongoing
round. As in the case of new threads, when a maximum-
share thread unblocks, it is scheduled immediately.

A pertinent issue is the amount of refund to grant a thread
when it unblocks. If a thread unblocks in the same term as

it blocked in, it is not granted any refund. Otherwise, the
thread is granted a single refund. (A more fancy scheme can
be imagined that grants refund in proportion to the terms for
which the thread blocked, while ensuring that the resultant
account of the thread is not more than its shares.) This
approach requires a mechanism to check for the condition
when a thread blocks and unblocks in the same term, which
can be implemented using a term counter.

The charge is updated as in the case of creation and dele-
tion of threads. When a thread blocks, the charge is updated
when the next term begins. When a thread unblocks, the
charge is updated immediately and the difference (if any) is
applied retroactively to threads that have already run in the
ongoing round.

3.3 Fractional Quanta

If a thread blocks or yields the CPU after using only a fraction
of a quantum, it may receive less than its proportional share
of the CPU time. Charge-based schemes can easily fix this
by prorating the charge applied according to the fraction of
the quantum actually used by the thread.

One implication of prorating the charge is that maximum-
share charging might not actually exhaust the accounts of
some threads in one round. If a thread with a positive account
at the end is still runnable (say, because it yielded instead of
blocking), it will be scheduled again before the next refund,
as desired.

Prorating of the charge can be implemented without re-
sorting to floating point numbers. A fixed number of lower
order bits, b, in the charge and the account variables can
be used to track the fractional usage. Each quanta is divided
into 2b subquanta. The charge to be applied is then computed
based on the per-quantum charge and the actual number of
subquanta used.

4 Simulation

This section contains simulation results for lottery, fixed-term
charge-based, and maximum-share charge-based schedulers.
The goal is to assess the proportionality of execution rates
over small periods.

4.1 Model and Implementation

The model simulates a simplistic scenario where a number of
threads with different shares are introduced at the beginning
and allowed to run without blocking. The model also ignores
the processing overhead due to the scheduler and the clock
interrupt handler in accounting for time. However, it is ap-
parent from the charge-based algorithm that it involves only a
few integer operations and loads and stores for each runnable
thread considered in round-robin order. Therefore, I believe

5



that ignoring the overhead of charge-based scheduling does
not distort the execution rates in real time.

Each scheduler is simulated as a function: the input is
the shares allocated to various threads, and the output is a
sequence identifying the threads that should be scheduled in
successive quanta.

I found that lottery scheduling was sensitive to the quality
of the random number generator used, especially when deal-
ing with small number of tickets, such as two threads with
1 and 2 tickets. Poor random number generators resulted
in perceptibly worse deviations in execution rates. I used
the Park-Miller pseudo-random number generator [PM88],
which is fast and yet of high quality and is the one used
in [WW94].

For fixed-term charging, the target term size was fixed at
10. The choice of the target term size favors certain com-
binations of shares. For example, a term size of 10 is well
suited for 20-30 shares, because then the charge is 5, which
exactly divides both 20 and 30. I have avoided such favored
combinations in the results presented.

4.2 Measurables

I have used the following variables to present the output from
the experiments. Note that time is measured in quanta.

The cumulative quanta, qt, received by a thread at any
time t is simply the number of quanta scheduled to the thread
by that time.

The execution rate, ep;t, of a thread over a period p and at
time t is the ratio of the quanta received by the thread over
a period p starting at time t to the total number of quanta in
that period.

ep;t = (qt+p�1 � qt�1)=p

The intended execution rate, e, of a thread is the ratio of
the shares held by the thread to the total number of shares
held by runnable threads.

e = s=Σsi

The mean absolute deviation of the execution rate, dp,
over a period p is the expected deviation of the execution rate
over a period p from the intended rate.

dp = E(jep;t � ej) =

NX

t=1

jep;t � ej=N

The value of N used in the experiments was 1000.

4.3 Results

The following results were obtained from scheduling two
threads with 50 and 20 shares. Figures 3-5 plot the cumu-
lative quanta received (qt) by the two threads against total
quanta scheduled (t). The dotted lines represent the intended

allocation. By and large, all of the three schemes seem to ad-
here to the intended allocation. The max-share charge-based
scheme follows the intended lines the best, which is not sur-
prising, given its similarity with the line-drawing algorithm.

Figures 6-8 plot the execution rates over a period of 10
quanta (e10;t) of the two threads against time (t). It is apparent
that lottery scheduling can result in quite erratic execution
rates when they are measured over 10 quanta. For example,
at times the execution rate of the second thread dropped to
zero (it was not scheduled for more than 10 quanta). On
the other hand, there are times when the execution rate of
the second thread was more than that of the first. Since the
outcome of lottery scheduling is not deterministic, it must
be noted here that the result shown is only typical: results
in other runs were sometimes worse and sometimes better.
Both of the charge-based schemes seem to be distinctly better
than lottery scheduling. Further, the maximum-share scheme
outperforms the fixed-term scheme.

Figure 9 provides the definitive comparison between the
various schemes. It plots the deviation in the execution rates
(dp) against the period (p) over which the execution rates
are measured. When only two threads are scheduled, the
absolute deviations in the execution rates for the two are equal
by definition. Hence, only one curve is shown per scheme.
Note that the mean deviation for lottery scheduling is largely
free of a chance factor (unlike execution rates) because it is
computed by averaging deviations over 1000 periods.

As expected, the deviations decrease as the period over
which the execution rates are measured is increased, modulo
some fluctuations in the case of the charge-based schemes
due to the periodicity of their quantization errors. The mean
deviation in the execution rates for lottery scheduling over 10
quanta is about 0.11, while that for maximum-share charging
is 0.025. Again, maximum-share charging has lower devia-
tions than fixed-term charging. The deviation for maximum-
share charging drops to zero at every multiple of 7 because
the scheme effectively achieves the smallest possible cycle
size, which is 7.

As an example of scheduling of more than two threads,
Figures 10 and 11 show the cumulative quanta received by
four threads with shares 47, 31, 23, and 11.

5 Related Work

The fair-share scheduler proposed in [KL88] is based on
usage charging but it works through adjusting priorities and
running the process of highest priority. Processes with higher
priority get charged more for same execution time. This
work is focused on providing fairness on a per-user basis
over longer periods of time, not on controlling the execution
rates of individual threads.

At the time this paper was originally written (January
1995), the only existing work aimed at proportional schedul-

6



0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 3: Lottery scheduling (50:20)

0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 4: Fixed-term charging (50:20)

0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 5: Maximum-share charging (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

1.0

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 6: Lottery scheduling (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 7: Fixed-term charging (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 8: Maximum-share charging (50:20)

7



0 20 40 60 80 100

time period

0.00

0.05

0.10

0.15
m

ea
n 

de
vi

at
io

n 
fr

om
 in

te
nd

ed
 r

at
e 

(d
) lottery

fixed-cell
max-share

Figure 9: Deviation from intended rates (50:20)

0 20 40 60 80 100

quanta scheduled

0

10

20

30

40

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Thread3

Thread4

Figure 10: Lottery scheduling (47:31:23:11)

0 20 40 60 80 100

quanta scheduled

0

10

20

30

40

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Thread3

Thread4

Figure 11: Maximum-share charging (47:31:23:11)

ing over small intervals was lottery scheduling. Since
then three other deterministic schemes have appeared [FS95,
SAW95, WW95]. A comparison between them and charge-
based scheduling is found in [WW95].

Comparison with Lottery Scheduling

The charge-based scheme provides proportional execution
rates over smaller time periods than provided by lottery
scheduling. This is evident from simulation results, which
show that the charge-based scheme achieves lower deviations
over 10 quanta than what lottery scheduling achieves over 100
quanta. The advantage of the charge-based scheme is intu-
itive because it corrects for skews in the past allocation of
quanta to move closer to the desired allocation, while lottery
scheduling relies on Bernoulli trials, which are independent
of past decisions.

The deterministic nature of charge-based scheduling pro-
vides significantly stronger service guarantees. In lottery
scheduling, there is a finite chance that even a thread with a
large number of shares may not run for a while. Consider the
situation when there are 8 threads with 10 shares each, and
a thread with 20 shares is created. The expected number of
quanta for which the 20-share thread will have to wait before
it gets its first quantum is (Σsi=s)�1, or 4. There is a 10.7%
probability that the 20-share thread will have to wait for 10 or
more quanta. In maximum-share charge-based scheduling,
the maximum-share thread runs in every round. Even other
threads are guaranteed to run every so often depending on
their shares. When a new maximum-share thread starts up, it
is guaranteed to run immediately.

Lottery scheduling requires generating a random number
(modulo Σsi) and then checking for the winner by running
down the list of runnable threads. A binary search tree can be
used to decrease the search time from linear to logarithmic
in the number of threads, but I believe that it would have a
higher constant overhead. In charge-based scheduling, for
each quantum scheduled, threads are considered in round-
robin order until a thread with a positive account is found.
As discussed in Section 2.1.2, the average amount of work
done is n � sm=Σsi, where each unit involves reading an
account, adding or subtracting to it, and writing it back.
Without experimental results it is difficult to predict with
certainty which scheme would result in lower overhead, and
whether the difference is significant. I expect the charge-
based scheme to be better because it avoids random number
generation.

Fortunately, many of the supplementary techniques pro-
posed for lottery scheduling in [WW94] are also applicable
to the charge-based scheme presented in this paper. Note
that the charge-based scheme only replaces the randomized-
selection aspect of lottery scheduling with a deterministic
accounting method. For example, the charge-based scheme
admits the same kind of modular decomposition as lottery

8



scheduling. As is true of tickets in lottery scheduling, the
shares used in this scheme can be associated with a currency,
and each currency backed by shares in some more primi-
tive currency. Similarly, priority inversion problems can be
avoided by a transfer of shares.

One advantage of lottery scheduling over the charge-based
scheme is that it does not require any special treatment for
changes to the set of runnable threads,and is therefore simpler
in this aspect.

6 Conclusions

I have presented a scheduling algorithm that controls the
relative execution rates of threads in proportion to the shares
allocated to them. The algorithm is based on charging threads
for CPU usage, but unlike previous usage-charging schemes
that schedule the highest priority thread, it schedules threads
in round-robin order with selective skipping. Further, I pro-
posed two competitive methods for setting the charge that
should be applied for each quantum of processor usage. In
particular, setting the charge to the maximum number of
shares held by any runnable thread results in very low devia-
tion in the execution rates.

Simulation results have shown that the proposed algorithm
is effective: it keeps the execution rates close to the intended
proportions over periods as short as 10 quanta. At the same
time, the algorithm is efficient: the threads are considered in
round-robin order and the scheduling decision requires only
a few integer operations.

While proportional scheduling has distinct advantages
over priority scheduling, previous implementations such as
lottery scheduling had some drawbacks that made it unlikely
for them to replace priority scheduling. I believe that this
work pushes proportional scheduling a step forward as a bet-
ter alternative than priority scheduling for general-purpose
computing.

References

[Bre65] J. E. Bresenham. Algorithm for computer control of
a digital plotter. IBM Systems Journal, 4(1):25–30,
1965.

[FS95] L. L. Fong and M. S. Squillante. Time-functions:
A general approach to controllable resource manage-
ment. Working draft, IBM Research Division, T. J.
Watson Research Center, March 1995.

[KL88] J. Kay and P. Lauder. A fair share scheduler. CACM,
31(1):44–55, January 1988.

[LMKQ89] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley
Publishing Company, 1989.

[PM88] S. K. Park and K. W. Miller. Random Number Gen-
erators: Good ones are hard to find. CACM, October
1988.

[SAW95] I. Stoica and H. Abdel-Wahab. A new approach to pro-
portional share resource allocation. Technical Report
95-05, Department of Computer Science, Old Domin-
ion University, Norfolk, VA, April 1995.

[WW94] C. A. Waldspurger and W. E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource manage-
ment. In Proceedings of the First OSDI, November
1994.

[WW95] Carl A. Waldspurger and William E. Weihl. Stride
scheduling: Deterministic proportional-share resource
management. Technical Memo MIT/LCS/TM-528,
MIT Laboratory for Computer Science, Cambridge,
MA, June 1995.

9


