
Temporally Coherent Conservative Visibility�

(Extended Abstract)

Satyan Coorg Seth Teller

Synthetic Imagery Group

MIT Laboratory for Computer Science

Cambridge, MA 02139

fsatyan,sethg@graphics.lcs.mit.edu

Abstract

E�ciently identifying polygons that are visible from a chang-
ing synthetic viewpoint is an important problem in com-
puter graphics. Even with hardware support, simple algo-
rithms like depth-bu�ering cannot achieve interactive frame
rates when applied to geometric models with many poly-
gons. However, a visibility algorithm that exploits the occlu-
sion properties of the scene to identify a superset of visible
polygons, without touching most invisible polygons, could
achieve fast frame rates while viewing such models.

In this paper, we present a new approach to the visibility
problem. The novel aspects of our algorithm are that it is
temporally coherent and conservative; for all viewpoints the
algorithm overestimates the set of visible polygons. As the
synthetic viewpoint moves, the algorithm reuses visibility
information computed for previous viewpoints. It does so
by computing visual events at which visibility changes oc-
cur, and e�ciently identifying and discarding these events as
the viewpoint changes. In essence, the algorithm implicitly
constructs and maintains a linearized portion of an aspect
graph, a data structure for representing visual events.

Keywords: Conservative visibility, temporal coherence, hi-
erarchical representations, octrees, visual events, linearized
dynamic aspect graphs.

1 Introduction

In computer graphics, identifying visible polygons or elim-
inating hidden polygons is an important component of ef-
�cient scene rendering algorithms. Despite the availability
of the depth-bu�er algorithm in hardware [2], the number
of polygons in many geometric models is larger than hard-
ware alone can process at interactive frame rates. One way
to address this problem is by developing algorithms that
resolve visibility at a higher level, and render only the vis-
ible portions of the model. Approximation algorithms that
overestimate the set of visible polygons are useful, if they

�The research described in this paper was funded in part by the
Advanced Research Projects Agency of the Department of Defense
under O�ce of Naval Research contract N00014-92-J-1310.

To appear in the Twelfth Annual ACM Symposium on
Computational Geometry, Phildadelphia, May 24{26,
1996.

run in time comparable to the rendering time, and produce
supersets which are only slightly larger than the true visi-
bility. Synthetic observers in visual simulation applications
typically move smoothly through the model, experiencing
little change in visibility between viewpoints. Thus, there
is ample spatial and temporal coherence to be exploited in
most such applications.

1.1 Visibility Algorithms

Given a viewpoint and a polyhedral scene, the problem of
computing the exact visibility, i.e., computing an exact de-
scription of the visible portions of the scene, has been ex-
tensively researched [22, 16, 17]. Due to the availability of
cheap memory, the simple depth-bu�er algorithm, typically
implemented in hardware [2], is widely used. This algorithm
resolves visibility at each pixel. Along with its color, each
pixel stores the distance of the represented surface fragment
from the viewpoint; all pixel depths are set to some far away
distance at the start of each frame. Each polygon to be ren-
dered is rasterized into pixels along with its depth values.
A newly computed pixel color replaces an existing color i�
its depth value is less than the old depth value; that is, if
the fragment is closer to the eye than the existing fragment.
A disadvantage of resolving visibility at this late stage is
that expensive operations like coloring and texturing are
performed even on invisible fragments, and there is no obvi-
ous way to exploit the presence of large occluders near the
observer to avoid rendering invisible polygons..

The well-known aspect graph encodes a representation
of exact visibility for every qualitatively distinct region of
viewpoints [19, 12, 11]. One drawback of this approach is
that the visible portion of the scene may have higher com-
plexity than the input scene itself { a scene with n polygons
can have a visible portion of size �(n2). Also, the number
of qualitatively distinct viewpoint regions may be very large
(�(n9)).

Given the availability of fast hardware to resolve visibil-
ity per pixel, it seems promising to design algorithms that
overestimate the visible polygons in the scene. The output
of such an algorithm could then be fed into the depth-bu�er
to synthesize a �nal image. The overestimation guarantees
that the generated image is identical to that which would be
generated by rendering every polygon in the scene. The chal-
lenge, of course, is to produce a useful tight upper bound on
the visible polygons. This idea of conservative visibility has
been exploited to design fast architectural walkthrough sys-
tems [1, 23, 10]. The idea in [23, 10] is that the input scene
can be divided into cells, roughly corresponding to rooms

in a building, and cell-to-cell, eye-to-cell, and eye-to-object
visibility can be used to bound exact visibility from above.
Though this method eliminates most invisible polygons in
architectural models, its generalization to models with less
apparent cell structure seems di�cult.

Conservative visibility has also been used in [14] to design
an optimal algorithm for determining visibility in a scene
containing only rectangles with sides parallel to the x and y
axes. Exact visibility algorithms have also been developed
for viewpoints moving along pre-speci�ed paths (e.g., lines
[18, 5]).

The hierarchical z-bu�er algorithm [13] makes some use
of temporal coherence by maintaining a list of polygons that
are visible from the current viewpoint. For the next view-
point, the algorithm draws polygons from this list �rst. The
contents of the hierarchical z-bu�er can then be used to cull
invisible polygons. To exploit spatial coherence, this algo-
rithm requires that the z-bu�er support visibility queries.
Such queries are not e�ciently supported in most graphics
hardware, and simulating the z-bu�er in software involves
signi�cant overhead. Because it operates in image space,
this algorithm is also susceptible to aliasing artifacts.

A temporally coherent visibility algorithm for scenes
comprised only of convex objects is presented in [15]. The
algorithm is complex, as it computes exact visibility, and no
implementation is described.

Our algorithm represents an advance over existing e�orts
in the following respects. First, our construction of immi-
nent visual events enables us to avoid checking for events
that are unlikely to occur in the near future. Second, object
hierarchies enable us to avoid processing large sets of in-
visible polygons or their pairwise interactions. Finally, our
algorithm exploits the availability of fast depth-bu�ers in its
generation of conservative visibility sets, greatly simplifying
the algorithmics of visibility determination.

1.2 Overview

This paper describes a novel algorithm for visibility deter-
mination, based on the following ideas:

� Polygons may usefully be de�ned as \visible" accord-
ing to any superset visibility criterion. Here, we say
that a polygon is visible if it is not occluded by any
single convex object.

� Under this de�nition of visibility, visual events {
changes in the visibility status of a polygon { occur
only when the viewpoint crosses speci�c planes. Thus,
these planes partition 3-dimensional space into regions
of constant visibility in a manner analogous to, but
much simpler than, that of an aspect graph.

� From a particular viewpoint, only a small subset of
such planes are relevant; as the viewpoint changes, it
is su�cient to consider only these planes to detect a
visual event.

� Dynamic, hierarchical data structures can be e�ec-
tively used to both detect and maintain the set of
relevant planes, without ever constructing the entire
arrangement of visual event surfaces.

Given an initial viewpoint, our algorithm computes the
polygons visible from that viewpoint as well as the relevant

planes there. As the viewpoint changes, the algorithm de-
tects the relevant planes that have been \crossed", and re-
ports any visibility changes so caused. The maintained set
of polygons is periodically fed to a depth-bu�ering algorithm
for per-pixel visibility computations and rendering.

The paper is organized as follows. Section 2 de�nes the
notion of conservative visibility and visual events. Section 3
considers the interaction of two convex polyhedra, and com-
putes the relevant planes for a given viewpoint. Section 4
describes an algorithm based on octrees, for e�cient de-
tection and maintenance of occlusion relationships between
pairs of objects. Section 5 describes techniques for e�ciently
maintaining visual events and inspecting them for crossings.
Section 6 discusses an implementation of the algorithm, and
its performance characteristics. Finally, Section 7 concludes.

2 Conservative Visibility and Visual Events

We assume that the input model is static, and speci-
�ed as a set of convex polygons, and that incident polygons
are grouped together to form polyhedra. In the degenerate
case, each polyhedron could consist of a single polygon. We
assume no a priori knowledge of observer motion.

In this paper, we make a distinction between occluder
and occludee objects, and our algorithm considers only those
interactions between occluders and occludees. This is moti-
vated by the observation that, in many scenes, a few objects
cause most occlusion and checking other objects for occlu-
sion increases the overhead of the algorithm, without in-
creasing the number of polygons found to be occluded. Cru-
cially, the occluder/occludee determination is made dynam-
ically as a function of the viewpoint. In particular, an object
will typically act as an occluder for nearby viewpoints, and
as an occludee for remote viewpoints.

Consider the following de�nition of visibility:

De�nition 1 (Conservative Visibility) A polygon is in-
visible i� all its vertices are occluded by a single convex poly-
hedron.

Figure 1-a shows an example of an invisible polygon un-
der this de�nition of visibility. This de�nition of visibility is
justi�ed by the following observations. First, the test for vis-
ibility of a polygon is greatly simpli�ed; if all the vertices of
a polygon are occluded by the same convex polyhedron, then
the polygon is invisible. Second, our assumption greatly re-
duces the complexity of the visibility algorithm relative to
that of an analogous exact visibility algorithm (see below).
Of course, this de�nition fails to encompass some kinds of
occlusions: those caused by collusions among convex polyhe-
dra (Figure 1-b) and those caused by non-convex polyhedra
(Figure 1-c). However, this is a reasonable tradeo� for many
scenes encountered in practice.

Any dynamic visibility algorithm must track changes in
visibility that occur as the viewpoint moves. The space of
viewpoints can be partitioned into regions such that, within
each region, the visibility remains constant. The bound-
aries separating these regions are called visual events. Un-
der De�nition 1, there is only one kind of visual event { that
in which the projection of a vertex of the scene lies in the
projection of an edge of the scene (Figure 2). This event is
called a vertex-edge or VE event in [19, 12]. For example,
this event could cause a change in visibility if polygon B was
completely occluded by the object A, and some eye motion
results in polygon B becoming (partially) exposed.

2

A
B

(c)

A
B

(a)

A B

C

(b)

Figure 1: Figure (a) shows an invisible polygon B according to our de�nition of conservative visibility. Figures (b) and (c)
show cases where B is determined visible, even though it does not contribute any pixels to the rendered image.

 E

 V

V V E

 V

 E

 B
 B

 B
 A A A

Figure 2: A VE event.

2.1 A Naive Visibility Algorithm

From the observer's point of view, VE events occur when
the eye crosses the plane formed by the vertex V and the
edge E. This observation immediately leads to a naive al-
gorithm for tracking visibility changes. First, the algorithm
generates planes formed by all pairs of scene vertices and
edges. Using these planes, it divides 3-dimensional space
into an arrangement of cells (see, e.g., [9]). Then, the al-
gorithm associates with each cell the set of polygons visible
from the cell, and associates cell boundaries with changes
in the visibility set. Such a data structure is a \linearized"
version of an aspect graph [12, 19].

Such a data structure could be used in an interactive
setting as follows. For some initial viewpoint, the arrange-
ment cell containing the viewpoint is located, and the visi-
ble polygons associated with that cell are reported. Given
subsequent eye motion, any cell boundary crossings by the
eye cause the visibility to be updated according to informa-
tion stored with the boundary. In this way, the algorithm
spends time reporting only visibility changes, rather than
recomputing visibility for each new viewpoint.

However, a major drawback of the algorithm is the ex-
cessive time and storage cost of the preprocessing step. A
scene of size n generates �(n2) planes, which partition the
3-dimensional space into �(n6) cells, requiring at least that
much time for generating the linearized aspect graph. Also,
the algorithm must store and read the arrangement when
the scene is being viewed, making it impractical for scenes
containing more than a few tens of polygons. In the next
few sections, we describe a modi�ed, practical (and imple-

mented) version of the algorithm. The underlying idea is
that any short sequence of viewpoints will typically visit a
very small fraction of the arrangement cells. The naive algo-
rithm can be modi�ed to (implicitly) construct and (explic-
itly) examine only these cells, greatly reducing its storage
and time complexity.

Finally, we reiterate that any algorithm that maintains
exact visibility must also consider EEE events, in which
three scene edges meet at a single image point [12, 19]. A
data structure analogous to the one above, but incorporating
EEE events, would have to consider �(n3) triples of edges,
and an induced arrangement of �(n9) cells. Moreover, the
event boundaries of EEE events are not planes, but quadric
surfaces, greatly complicating the robust maintenance of cell
boundaries in any practical implementation.

3 Relevant Planes

One way to reduce the complexity of the naive algorithm
is to maintain only O(n2) planes and check each visual event
after every viewpoint change1. We can do better by observ-
ing that the viewpoint must cross those planes that de�ne
the containing arrangement cell before crossing any other
planes. As noted in Section 2, computing all possible cells is
prohibitively expensive. However, it is possible to identify a
subset of planes (called relevant planes) which is guaranteed
to contain those planes which de�ne the arrangement cell.

1Even with an e�cient data structure such as that in [6], this
prospect is impractical due to the space requirement. Also, as we
describe, not all of these O(n2) planes are relevant.

3

 V2

(a)

 A

 E

 B
 V3 V4

 V1

 V5

 V6

(b)

 A
 E

 B
 V3 V2

 V4

 V1

 V5

 V6

(c)

 A

 E

 B
 V3 V2 V4

 V1

 V5

 V6

(d)

 A

 E

 V4

 V7

 B
 V3 V2

 V1

 V5

 V6
V1

V4

V3

 V2

 A

B

(e)

E1
E2

E3

Figure 3: Interaction between polyhedra A and B, with A occluding B (shown as they would appear to the observer).

In this section, we consider the occlusion characteristics
of two convex polyhedra. Later, in the context of n polyhe-
dra, we show how our observations about pairwise occlusion
lead to a selection algorithm that classi�es only a fraction of
the O(n2) arrangement planes as relevant for typical view-
points.

Here is a brief overview of the terminology used below. A
silhouette edge of a convex polyhedron A from a viewpoint is
an edge E of A such that the projection of A lies completely
on one side of the projection of E. An edge E1 overlaps an
edge E2 if the projections of E1 and E2 intersect. [V; E]
denotes the plane formed by vertex V and edge E of the
scene, and [V 1; V 2; V 3] denotes the plane formed by the
three vertices V 1, V 2, and V 3. We also use the plane cor-
responding to an event to label the event itself; event [V; E]
refers to the event which occurs when the eye crosses the
plane [V;E]. Separating planes of two convex polyhedra are
planes formed by an edge of one polyhedron and a vertex
of the other such that the polyhedra lie on opposite sides
of the plane [20]. Supporting planes are similar, except that
both polyhedra lie on the same side of the plane.

Consider the occlusion relationship of two polyhedra A
and B shown in Figure 3-a. For this viewpoint, only the
separating planes of polyhedra A and B are relevant; the
�rst visual event that can happen is for these two polyhedra
to (begin to) overlap in the image. Similarly, supporting
planes are relevant when A completely occludes B (Figure 3-
b) as they detect the event during which the status of the
occluded object changes from being completely occluded to
being partially occluded.

The above mentioned events are su�cient for detecting
(complete) invisibility of convex polyhedra. However, for de-
termining visibility of individual polygons, events involving
internal vertices of the occluded polyhedron are also rele-
vant. Consider Figure 3-c. Clearly, the plane formed by an
edge [E; V 3] is relevant; a small change in the viewpoint can
result in the event [E; V 3], and the disappearance of poly-
gon V 3; V 5; V 6. Similarly, the planes formed by the edge
E of A and vertices V 2 : : : V 5 of B are relevant. These are
the vertices of B that are \closest" to E; that is, some edge
incident with a vertex in this set overlaps E in the image.
However, the plane [E; V 1] is irrelevant, as any continuous
motion of eye must cause one of the above events to occur
�rst.

The listed planes determine exactly those visual events
that occur when the observer moves from the current view-
point. It is su�cient to maintain these planes to track visi-
bility changes. However, as this set of planes itself changes
with the viewpoint, the algorithm must also track events
that cause any change to the relevant set. In addition to the
events mentioned, two other kinds are relevant, as they af-
fect the set of edges that overlap in the image. In Figure 3-d,
the planes [V 7; V 3; V 5], [V 7; V 5; V 6] and [V 7; V 6; V 3] are
relevant. If an event corresponding to one of these planes
occurs, the edge E will overlap a new edge of B, changing
the set of relevant planes. Finally, any change in the silhou-
ette edges of the two polyhedra can also result in changes to
edges that overlap (Figure 3-e), and thus events that detect
changes to silhouette edges are relevant. For a silhouette
edge E, the two planes formed by faces adjacent to E detect
exactly this event.

To summarize, to maintain the occlusion relation be-
tween two convex polyhedra A (the occluder) and B (the
occludee), the following planes are relevant:

� For each silhouette edge E of A or B, the planes cor-
responding to the faces adjacent to E;

� For each silhouette edge E of A:

{ Supporting and separating planes containing E;

{ For each edge E0 = (V; V 0) of B overlapping E,
the planes formed by [V;E] and [V 0; E].

� For each silhouette vertex V of A:

{ Supporting and separating planes containing V ;

{ For each edge E of B adjacent to face F that
contains V , the plane [V; E];

The following theorem demonstrates that the set of rel-
evant planes from a given viewpoint is su�cient to capture
all the visual events that occur when the viewpoint changes.

Theorem 2 (Relevant Planes) Let A (occluder) and B
(occludee) be two polyhedra and RP be the set of relevant
planes from a viewpoint P1. Let P2 be a di�erent viewpoint
corresponding to a visual event. Then, either the visual event
at P2 is in RP or there exists a viewpoint in the segment
[P1; P2] that corresponds to a visual event in RP .

4

Proof: (Sketch) We prove the theorem by contradiction.
Suppose a visual event occurs at viewpoint P2, but none
of the relevant planes intersect the line segment [P1; P2].
We refer to the 2-dimensional images of the two polyhedra
as seen from P1 and P2 as IP1 and IP2, respectively.

First, for a convex polyhedra, any change to the set of
silhouette edges (and any corresponding change to the set
of \front" faces) can occur only if the viewpoint crosses
the plane of some face adjacent to one of the silhouette
edges. As these planes are present in RP , it follows that
individually, A and B are topologically identical in IP1
and IP2. In addition, they are also identical in the image
generated for any viewpoint between P1 and P2. This
fact ensures that the trajectory of vertices of A and B on
the image plane as the viewpoint moves from P1 to P2 is
a continuous line segment.

Let the visual event at P2 be [V;E]. Any visual event
must involve a silhouette edge or vertex of the occluder;
i.e., either V is a silhouette vertex of A or E is a silhouette
edge of A. We consider two cases:

(a)

 B
 V3 V4

 V1

 V5

 V6

 V

 B
 V3 V4

 V1

 V5

 V6

 V E
 E’

(b)

 V2 V2 E

 F A
 A

Figure 4: Silhouette vertex case

� (V is a silhouette vertex of A) First, consider the case
when V lies in some face F of B in IP1 (Figure 4-a).
As the visual event at P2 is not in RP , E is not one of
the edges bounding F , and thus E lies outside F . By
continuity, there must be an intermediate viewpoint
between P1 and P2 such that V overlaps one of the
edges bounding F , a contradiction.

Second, let V lie outside B in IP1 (Figure 4-b).
Again E cannot be one of the silhouette edges of
B, as planes corresponding to such events (separat-
ing planes) are present in RP . Thus E lies inside
B. Then, by continuity, there should be an inter-
mediate viewpoint where V overlaps one of the sil-
houette edges of B (say E0). As the plane [V; E0] is
a separating plane, it is contained in the set RP , a
contradiction.

A corollary to the above observations is that each
vertex of A projects onto precisely the same face of
B in IP2 as in IP1.

� (E is a silhouette edge of A) First, consider the case
when E intersects some set of edges of B in IP1
(Figure 5-b). The crucial property is that if E in-
tersects an edge in IP1, it also intersects it in IP2.
For example, consider the edge [V 3; V 5]. If E does
not intersect this edge in IP2, by continuity, there
must exist a viewpoint from where the edge E over-
laps either V 3 or V 5, a contradiction. Thus, the set

(a) (b)

 B
 V3 (V) V4

 V1

 V6

 V5

 V2

 A

 B
 V3 V4

 V1 (V)

 V5

 V6

 V2

 E

 A

 B
 V3 V4

 V1

 V6 (V) V5

 V2

 E

 A

(c)

 E
 F

Figure 5: Silhouette edge case

of edges intersected by E in IP1 is a subset of the
set of edges intersected by E in IP2. In addition, the
incident vertices of E lie in the same faces both in
IP1 and IP2. This implies that E intersects exactly
the same edges in IP2, and E cannot participate in
a visual event.

If E does not intersect any edge of B, either E lies
completely inside a face F of B (Figure 5-b) or E lies
outside B (Figure 5-c). In the �rst case, E should
also lie in F in IP2, as its incident vertices are con-
strained to lie in F . As F is convex, E cannot be a
participant in a visual event with one of F 's vertices.
In the second case, the visual event corresponds to
a separating plane (supporting plane, if V was oc-
cluded by A) { which is present in RP , a contradic-
tion.

In each case, we have proved that either the visual event
at P2 does not exist, or it corresponds to one of the planes
in RP , which proves the theorem. 2

A naive algorithm for relevant plane maintenance be-
tween two objects of size m and n (whose faces are bounded
by a constant number of edges) would maintain all nm
planes. However, it is straightforward to show that the num-
ber of relevant planes is �(n+m). In practice, we need main-
tain even fewer planes, as the number of silhouette edges
is always less than the total number of edges. Given two
objects and a viewpoint, the set of relevant planes can be
computed in �(n+m) time, by combining an algorithm for
identifying supporting and separating planes of two convex
polyhedra with an algorithm for computing the intersection
of two convex 2-dimensional polygons [20].

When visual events occur due to a change in the view-
point, the algorithm must update either the visibility or the
set of relevant planes or both. Using a winged-edge data
structure [3], we can update the visibility using only \local"
computation. For example, in Figure 3-a, the edges adja-
cent to vertex V 6 can be used to identify the edges of B
that overlap E, and thus the new set of relevant planes. We
omit detailed description of the various changes that occur
when the eye crosses the di�erent types of relevant planes.
However, these are implemented in our system (described in
Section 6).

The events that do not involve any changes in silhou-
ette edges cause the insertion (deletion) of �(1) planes into
(from) the set of relevant planes. However, an event that
a�ects a silhouette edges could result in
(n +m) changes
to the set of relevant planes, so the worst-case complexity
of maintaining the occlusion relation is �(n +m) for each

5

(a) (b)

shadow volume

occludees

occluder

1
2

3

T1

T3 T4

T2

T

A

occluder

shadow
volume

eye
 1

 2

 4

 3

 5

 6

(c)

occluder

occluder
 plane

Octree
 Nodesupporting

separating

Figure 6: Figure (a) shows the octree nodes visited by the algorithm Visible. For clarity of the �gure, we plase the occluder
outside the octree. Figure (b) shows a worst-case input to the algorithm. Figure (c) shows the separating and supporting
planes formed by an occluder A and an octree node T .

change in the viewpoint. In practice, we have found that the
relevant plane set changes slowly with viewpoint (Section 6).

4 Object Hierarchies

Section 3 described techniques to e�ciently maintain the
occlusion relationships between two objects. For a set of n
objects, maintaining all �(n2) pairwise interactions is too
expensive. It is also wasteful; most of the relationships are
probably between objects that do not occlude each other
from the instantaneous viewpoint, and such relationships
can cause no polygons to be classi�ed as invisible. Thus, it
is advantageous to maintain relations between objects that
are actually occluding or likely to occlude in the near future.
This section describes an e�cient hierarchical method for
maintaining these relationships.

Consider the problem of identifying visible objects in the
presence of a single occluder. One e�cient way to achieve
this is by organizing all objects in an octree data structure
[21]. A simple way to build an octree is to associate the
bounding box containing all the objects in the scene with the
root node of the octree, and then recursively subdivide until
some termination criteria is satis�ed (e.g., the number of
objects in a leaf is less than some constant, or the dimensions
of octree node are less than some constant).

Given an octree, the following algorithm gathers the ob-
jects in an octree that are not occluded by the occluder.
Gather(T; S) simply collects all objects reachable from an
octree node T and unions them to the set S. Also, O(T)
denotes the set of objects associated with a leaf T .

Visible(Octree Node T , Occluder A, View Point P ,
ObjectSet S)

if A completely occludes T then
return

else if T is a leaf then
for each B 2 O(T) do

if A does not occlude B
S = S [fBg

else if T is visible with respect to A then
Gather(T; S)

else if T is partial with respect to A then
for each child T 0 of T do

Visible(T 0; A; P; S)

The algorithm Visible exploits spatial coherence in two ways.
If an octree node is completely occluded, no further pro-
cessing is made on its subtree. If the octree node is not
occluded at all, the whole subtree is reported visible, with-
out any further processing. In other words, the algorithm
visits only those nodes T in the octree whose visibility sta-
tus is di�erent from T 's parent (Figure 6-a). The region of
space occluded by the occluder is its shadow volume [8].

If the number of octree leaves is m, the worst-case com-
plexity of this algorithm is �(m), that is, the algorithm
might make �(m) constant-time occlusion tests without re-
porting any occlusion relations. In Figure 6-b, the shadow
volume does not intersect any objects, so there are no occlu-
sion relations. However, the shadow volume intersects the
bounding box of every two objects. Thus, the algorithm de-
generates to an occluder test against each object, requiring
�(m) time. In practice, the algorithm performs better, as
many octree nodes are either fully occluded, or not at all
occluded, by the occluder (Section 6).

An ine�cient way of invoking Visible would be to com-
pute new occlusion relations using the entire octree for ev-
ery change in the viewpoint. However, this strategy can be
modi�ed to exploit coherence in observer motion, process-
ing only those octree nodes whose visibility status changes.
This modi�cation involves maintaining a set of relevant sep-
arating and supporting planes corresponding to an occluder
and an octree node. This idea is illustrated in Figure 6-c.
First, occluder A can occlude octree node T only if the view-
point and T are on opposite sides of the plane (set of planes)
formed by the polygon(s) of A. This region can be divided
into three qualitatively distinct regions as shown in the �g-
ure. If the viewpoint is in region 1, the planes formed by A
and T1 : : : T4 are irrelevant. Such planes lie completely out-
side region 1, except at its boundary, and hence need not
be considered as long the eye remains in region 1. These
planes become relevant only if there is partial occlusion be-
tween A and T (i.e., the viewpoint is in region 2). If the
observer moves into region 3, where A fully occludes T , the

6

(a)

eye

planes

r

(b) (c)

current
 cell

new
cell

lowest common
ancestor

Figure 7: Illustration of the ball and octree algorithms for maintaining planes. The ball algorithm maintains a set of planes
that intersect the sphere. The octree algorithm maintains the octree nodes along the path from the root node to the current
viewpoint. Figure (c) shows the execution of the UpdateEye operation using the octree algorithm.

planes formed by A and T1 : : : T4 are again irrelevant; they
can at most form the boundary of region 3, but region 3's
boundary is already determined by the supporting planes of
A and T .

The above observations suggest the following method of
identifying relevant planes corresponding to an octree and
an occluder. Using the algorithm Visible the nodes of an
octree can be classi�ed into four di�erent categories (Fig-
ure 6-a). First, the octree contains non-visited nodes, the
set of nodes T for which the test for occlusion is resolved
by some ancestor of T . Examples are nodes 2 and 4, whose
visibility can be determined by checking nodes 1 and 3. Vis-
ited nodes can further be classi�ed into fully occluded (e.g.,
node 3), not occluded (e.g., node 1), and partially occluded
(e.g., nodes 5 and 6). When the observer moves, the state of
a non-visited node can change only after the state of its an-
cestor changes. Thus, the separating/supporting planes of a
non-visited node are irrelevant. For visited nodes, the set of
relevant planes depends on the type of the node. For fully
occluded nodes, they are the supporting planes (boundaries
of region 3 in Figure 6-c); for nodes that are not occluded,
they are the separating planes (boundaries of region 1); and
for partially occluded nodes, they are the union of support-
ing and separating planes (boundaries of region 2).

When the viewpoint crosses a relevant plane and enters a
new region, the status of any a�ected octree nodes must be
updated. For example, if the eye crosses a separating plane
of an octree node and enters a region of partial occlusion
(e.g., region 1 to region 2, in Figure 6-c), the algorithm
updates the status of the octree node corresponding to the
separating plane (node T), as well as the status of any of its
children (nodes T1 : : : T4), terminating whenever the status
is found to be unchanged. Thus, using these relevant planes
the algorithm processes only changes in octree status, rather
than the entire octree, for each viewpoint.

Multiple occluders can be handled by using the above
algorithm individually for each occluder, or by organizing
the occluders into a hierarchy and using an algorithm similar
to Visible to report occlusion relations.

5 Dynamic Plane Maintenance

In previous sections, we have shown that maintaining occlu-
sion relations in a scene can be cast as a problem of main-
taining a set of relevant planes with respect to a changing
viewpoint. In this section, we discuss some e�cient data

structures for maintaining the relevant plane set under the
motion of the eye. The data structure should implement the
following operations e�ciently:

� Insert and Delete { As the set of planes varies from one
viewpoint to the next, the data structure should sup-
port the appropriate insertions and deletions of planes
to the set.

� UpdateEye { If the observer moves from the current
viewpoint CV to a new viewpoint NV , the data struc-
ture should report all planes P that intersect the line
segment [CV;NV]; that is, all planes that are crossed
by the observer's motion.

In this section, p is used to denote the number of planes in
the set.

A naive algorithm that simply maintained these planes
as a set (e.g., with a hash table) would result in e�cient �(1)
Insert/Delete operations. The UpdateEye operation would
make �(p) plane checks for each new viewpoint.

An alternative would be to construct the arrangement of
the planes in the set. Using this data structure, the opera-
tion UpdateEye is very e�cient, requiring only �(k) time if
k planes are crossed [9]. However, the operations Insert and
Delete take �(p2) time. Since these operations occur at least
as frequently as the UpdateEye operation, maintaining an
arrangement would be impractical in our application. Also,
the �(p3) storage cost quickly becomes prohibitive. A sim-
ple improvement would be to maintain two sets of planes;
the set of planes maintained by the naive algorithm as well
as the set of planes (called near planes) that intersect a ball
of radius r around some sample point (Figure 7-a). If the
viewpoint remains inside the ball after an UpdateEye op-
eration, the algorithm only checks whether any of the near
planes have been crossed. Otherwise, the algorithm reexam-
ines all the planes with respect to the new viewpoint, and
generates a new set of near planes. The worst-case complex-
ity of this algorithm is �(1) for Insert and Delete and �(p)
for UpdateEye, and its space requirement is �(p).

A generalization of the above algorithm is to maintain
planes with respect to a hierarchy (Figure 7-b). The idea
is to maintain a path of an octree node formed by a root
node (we elaborate on choosing the dimensions of the root
node later) and log p descendants of the root node, each
node containing the viewpoint. Each octree node in the
path is associated with the set of planes that intersect the

7

node. When the observer moves to a new viewpoint, the
algorithm ascends the tree to the lowest common ancestor
(LCA, Figure 7-c) of the current leaf node and the leaf node
that contains the new viewpoint. The algorithm then re-
ports the planes that are crossed by checking against the
planes that are associated with the LCA, and updates the
octree nodes to re
ect the viewpoint change. The worst-case
complexity of this algorithm is �(log p) for Insert and Delete
and �(p log p) for UpdateEye. The algorithm uses �(p log p)
space in the worst-case.

Although the worst case complexities of these data struc-
tures are high, it is possible to show that these algorithms
perform well under certain assumptions. If we assume that
the number of planes that intersect a ball of radius r is
proportional to r and the observer moves only a constant
distance in each UpdateEye operation, the ball algorithm
takes O(

p
p) expected time and the octree algorithm takes

O(log p) expected time for an UpdateEye operation. Brie
y,
the worst case behavior of the octree algorithm results if the
LCA of the current and the new viewpoint is the root of the
octree node. The lower the LCA is in the tree, the smaller
the number of planes checked. For a viewpoint moving in
constant sized steps, it is more likely for the LCA to be lower
than higher in the tree. The expected complexity, that is,
the total cost of visiting a node at some level (the number
of planes associated with a node), weighted with probability
of reaching that level, is O(log p).

In practice, we employ a dynamic strategy to choose the
radius r in the ball algorithm and the dimensions of the
root node in the octree algorithm. For the ball algorithm,
it is advantageous to increase r as long as the bene�t (more
UpdateEye operations are inside the ball) outweighs the cost
(more planes need to be checked). For the octree algorithm,
it is advantageous to expand the root node until it intersects
all relevant planes.

6 Implementation

We have implemented the algorithms described in this pa-
per in about 3,500 lines of C++ code. The programs are
embedded in the SGI OpenInventor toolkit, and run on a
SGI Indy workstation with one 133 MHz R4000 processor
and 64 Mb of physical memory. The timings presented in
this section re
ect only time spent in the visibility algorithm
and exclude time required to draw the visible polygons.

Vertices Init. (sec) Planes
32 0.04 49
64 0.05 69
128 0.07 93
256 0.10 133
512 0.16 184

Table 1: Initialization times and relevant plane set sizes, for
di�erent sized polyhedra.

Our �rst experiment was designed to analyze the per-
formance characteristics of the algorithm presented in Sec-
tion 3. The scene consists of two polyhedra of equal size
generated by choosing points on the surface of a sphere of
unit radius and computing the convex hull of these points.
The observer moves in a circle of �xed radius around the two
polyhedra. Table 1 reports the number of relevant planes

maintained by the algorithm and the time spent by the al-
gorithm in initialization for polyhedra of increasing com-
plexity. Note that the number of relevant planes increases
sub-linearly with the size of the polyhedra (and proportional
to the silhouette complexity), in contrast to the quadratic
behavior of the naive algorithm.

Speed Insert Delete Cross
64 0.314 0.314 0.114
32 0.157 0.157 0.061
16 0.079 0.079 0.031
8 0.039 0.039 0.015
4 0.020 0.020 0.008
2 0.010 0.010 0.004
1 0.005 0.005 0.002

Table 2: This table gives the average fraction of relevant
planes inserted, deleted, and crossed for a change in the
viewpoint. The observer moves at di�erent speeds (given
relative to the slowest speed).

Table 2 shows some important performance characteris-
tics of the algorithm: the fraction of relevant planes that are
inserted/deleted/crossed for varying speeds of the observer.
The results are reported for polyhedra containing 512 ver-
tices and the speeds are chosen such that they correspond to
the range of speeds of an observer smoothly walking through
the scene. Note that a change in viewpoint causes only small
changes to the relevant set of planes, re
ecting the temporal
coherence exploited by the algorithm.

Speed View Change (msec)
Naive Ball Octree

64 13.60 17.39 22.03
32 6.81 8.63 10.7
16 3.52 4.34 6.01
8 1.87 2.17 3.28
4 1.03 1.08 1.65
2 0.57 0.52 0.83
1 0.30 0.25 0.40

Table 3: This table gives time spent in the algorithm to pro-
cess a viewpoint change for an observer moving at di�erent
speeds.

Table 3 shows the time spent in the algorithm for pro-
cessing a viewpoint change in the above experiment. The
table also compares the various techniques of dynamic plane
maintenance described in Section 5. We do not provide data
about the polygons culled in this experiment as it is highly
dependent on the viewpoint.

Table 4 shows the fraction of relevant planes that inter-
sect a ball of radius r centered around the viewpoint (av-
eraged over di�erent input sizes). Note that the fraction
of planes that intersect this sphere is very nearly linear in
the radius of the sphere. Thus, for slowly moving observers,
the ball and octree algorithms check only a fraction of rele-
vant planes for each viewpoint change (Table 5). However,
for faster speeds of the observer, the advantage is o�set by
the additional complexity of Insert and Delete, and the ball
and octree algorithms perform better only for slower speeds
(Table 3).

8

Radius Fraction of
of Sphere Relevant Planes

1 0.02
2 0.05
4 0.10
8 0.19
16 0.34
32 0.53
64 0.73
128 0.86

Table 4: This table illustrates the (almost) linear relation
between the radius of a sphere and the fraction of relevant
planes that intersect it. The radius is given relative the
distance the viewpoint moves in a step.

Speed Frac. of. Planes Checked
Naive Ball Octree

64 1.000 0.775 0.853
32 1.000 0.641 0.682
16 1.000 0.495 0.481
8 1.000 0.374 0.310
4 1.000 0.279 0.189
2 1.000 0.204 0.109
1 1.000 0.148 0.063

Table 5: This table compares the fraction of relevant planes
checked by the algorithms Naive, Ball, and Octree.

We also studied the performance of the algorithm on ac-
tual scenes: the �fth
oor model of the Berkeley Soda Hall
building (Soda), and a city database from Viewpoint Data-
Labs (City). Though we described the algorithm in terms
of octrees, the actual implementation used kD-trees [4], a
similar hierarchical data structure. For these experiments,
the objects are just single polygons. The height of the oc-
tree containing the polygons and the number of occluders
(k) are inputs to the program; these were chosen to achieve
interactive frame rates. As the viewpoint changes, the pro-
gram automatically chooses k occluders based on their ap-
proximate area in the image. For these two scenes, initial-
ization took about 3 seconds of CPU time, about half of
which was spent constructing the octree. On average, the
algorithm took around 0.03{0.07 seconds of CPU time to
process each viewpoint change. Table 6 shows other perfor-
mance characteristics of the algorithm averaged over many
\random walks" of an observer walking through these two

Scene Polys Octree Nodes Frac. of
Initial Final Total Relevant Invis. Polys

Soda 1685 2971 255 31 0.68
Town 2857 4722 255 35 0.36

Table 6: In the table, the column Final denotes the to-
tal number of polygon fragments after octree construction.
Relevant octree nodes are presented per occluder. The last
column shows the fraction of truly invisible polygons culled
by the algorithm (averaged over viewpoints visited in the
random walks).

scenes. Note that the number of relevant octree nodes de-
tected by the algorithm is signi�cantly less than the total
number of octree nodes.

Using depth-bu�er hardware, we computed the \true"
set of visible polygons (and its complement, the truly invis-
ible polygons) at each viewpoint visited by the observer. As
the observer has a spherical �eld of view, we used the fol-
lowing method to compute the truly visible polygons. The
polygons were drawn on the six faces of a unit cube centered
at the viewpoint. Polygons that paint some pixel in one of
the faces of the cube are truly visible from that viewpoint.
The average fraction of truly visible polygons varied between
5% and 10% of the number of (�nal) input polygons. The
e�cacy of the culling algorithm, as de�ned by the fraction
of truly invisible polygons culled by the algorithm, is shown
in Table 6. Note that the algorithm is e�ective in culling
away a signi�cant fraction of the scene, even for models like
City, where the cell/portal technique of [23] is less e�ective.

7 Conclusions and Future Work

This paper described a visibility algorithm that exploits the
temporal coherence in the motion of an observer through a
geometric model. Casting the algorithm as one of conserva-
tive visibility maintenance greatly simpli�ed its design, and
reduced its time and storage complexity. Nevertheless, the
polygons output by the algorithm can be used to synthesize
the correct image using a depth-bu�er. Our results show
that temporal coherence can be exploited to design an e�-
cient algorithm for visibility that is able to support viewing
of actual scenes in interactive frame rates, for scenes much
larger than exact visibility algorithms can handle.

An alternate approach to this problem, using dynami-
cally chosen sets of connected polygons to perform visibility
culling, and caching across viewpoints to exploit temporal
coherence is presented in [7]. This algorithm tends to have
a better response to occasional \jumps" in the movement
of the observer, albeit at the expense of performing slightly
worse for smooth motion of the observer.

One idea to improve the e�ciency of the algorithm is
to make it asynchronous, that is, predict the motion of the
observer a few frames in advance and use this prediction
to compute the visible polygons for some region before the
observer reaches the region. Also, there may be some utility
in precomputing the relevant planes and visible polygons for
all points on some 3D grid, and using the nearest grid point
to \reinitialize" the dynamic data structure whenever the
viewpoint changes abruptly.

Another way to extend the algorithm is to identify some
invisible polygons that are occluded by multiple colluding
convex objects or non-convex objects. One possible ap-
proach is to �nd a region where sets of objects \act" as
a single convex object, and process them appropriately.

8 Acknowledgements

We thank Viewpoint Datalabs for providing the City model.
Also, thanks to Nina Amenta, Tom Funkhouser, Doug
Voorhies, and the anonymous referees for their useful com-
ments, and to Prof. Arvind for his continuing support.

9

References

[1] Airey, J. M., Rohlf, J. H., and Brooks, Jr., F. P.
Towards Image Realism with Interactive Update Rates
in Complex Virtual Building Environments. ACM Sig-
graph Special Issue on 1990 Symposium on Interactive
3D Graphics 24, 2 (1990), 41{50.

[2] Akeley, K. RealityEngine Graphics. Computer
Graphics (Proc. Siggraph '93) (1993), 109{116.

[3] Baumgart, B. G. A Polyhedron Representation for
Computer Vision. In Proc. AFIPS Natl. Comput. Conf.
(1975), vol. 44, pp. 589{596.

[4] Bentley, J. Multidimensional binary search trees used
for associative searching. Communications of the ACM
18 (1975), 509{517.

[5] Bern, M., Dobkin, D., Eppstein, D., and Gross-
man, R. Visibility with a Moving Point of View. Algo-
rithmica 11 (1994), 360{378.

[6] Clarkson, K. L. New Applications of Random Sam-
pling in Computational Geometry. Discrete Computa-
tional Geometry 2 (1987), 195{222.

[7] Coorg, S., and Teller, S. A Spatially and Tempo-
rally Coherent Object Space Visibility Algorithm. Tech.
Rep. TM-546, Laboratory for Computer Science, MIT,
1996.

[8] Crow, F. C. Shadow Algorithms For Computer
Graphics. Computer Graphics (Proc. Siggraph '77) 11,
2 (1977), 242{248.

[9] Edelsbrunner, H., Brauer, E. W., Rozenberg,
G., and Salomaa, A. Algorithms in Combinatorial
Geometry. EATCS Monographs on Theoretical Com-
puter Science, 1987.

[10] Funkhouser, T., S�equin, C., and Teller, S. Man-
agement of Large Amounts of Data in Interactive Build-
ing Walkthroughs. In Proc. 1992 Workshop on Inter-
active 3D Graphics (1992), pp. 11{20.

[11] Gigus, Z., Canny, J., and Seidel, R. E�ciently
Computing and Representing Aspect Graphs of Poly-
hedral Objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence 13, 6 (1991), 542{551.

[12] Gigus, Z., and Malik, J. Computing the Aspect
Graph for Line Drawings of Polyhedral Objects. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 12, 2 (1990), 113{122.

[13] Greene, N., Kass, M., and Miller, G. Hierarchical
Z-Bu�er Visibility. In Computer Graphics Proceedings,
Annual Conference Series, 1993 (1993), pp. 231{240.

[14] Grove, E., Murali, T. M., and Vitter, J. The Ob-
ject Complexity Model for Hidden-Surface Elimination.
In Proc. 7th Canad. Conf. Comput. Geom. (Qu�ebec
City, Canada, 1995), pp. 273{278.

[15] Hubschman, H., and Zucker, S. W. Frame to Frame
Coherence and the Hidden Surface Computation: Con-
straints for a Convex World. ACM Trans. on Graphics
(USA) 1 (Apr. 1982), 129{162.

[16] McKenna, M. Worst-case Optimal Hidden Surface
Removal. ACM Transactions on Graphics 6, 1 (1987),
19{28.

[17] Mulmuley, K. An E�cient Hidden-Surface Removal
Algorithm, I. Computer Graphics (Proc. Siggraph '89)
23, 3 (1989), 379{388.

[18] Mulmuley, K. Hidden Surface Removal with Respect
to a Moving View Point. In Proceedings of the Twenty
Third Annual ACM Symposium on Theory of Comput-
ing (New Orleans, Louisiana, 6{8 May 1991), pp. 512{
522.

[19] Plantinga, W., and Dyer, C. Visibility, Occlusion,
and the Aspect Graph. Int. J. Computer Vision 5, 2
(1990), 137{160.

[20] Preparata, F. P., and Shamos, M. I. Computational
Geometry: an Introduction. Springer-Verlag, 1985.

[21] Samet, H. Applications of Spatial Data Struc-
tures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, 1990.

[22] Sutherland, I. E., Sproull, R. F., and Schu-
macker, R. A. A Characterization of Ten Hidden-
Surface Algorithms. Computing Surveys 6, 1 (1974),
1{55.

[23] Teller, S., and S�equin, C. H. Visibility Preprocess-
ing for Interactive Walkthroughs. Computer Graphics
(Proc. Siggraph '91) 25, 4 (1991), 61{69.

10

