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Abstract

We introduce the natural class SI’ containing those languages which may be ex-
pressed in terms of two symmetric quantifiers. This class lies between AL and I NTIY
and naturally generates a “symmetric” hierarchy corresponding to the polynomial-time
hierarchy. We demonstrate, using the probabilistic method, new containment theorems
for BPP. We show that MA (and hence BPP) lies within S, improving the con-
structions of [10, 8] (which show that BPP C ¥ N 1II§). Symmetric alternation is
shown to enjoy two strong structural properties which are used to prove the desired
containment results. We offer some evidence that S¥ # Y1 N 1IL by demonstrating an
oracle so that Sf’o + 25’0 N Hf’o assuming that the machines make only “positive”
oracle queries.

1 Introduction

Since the inclusion of randomness among those resources for which we have agreeable com-
putational models, determination of the exact relationship between randomness and other
such computational resources has become a major project. The relationship between space
and randomness, elucidated by startling pseudorandom constructions ([1, 9]), is remark-
ably well understood. These constructions demonstrate that space-bounded computation
benefits little by the use of randomness. The analogous relationship with time has proved
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less tractable: the only (non-trivial) relationships depend on unproven complexity-theoretic
assumptions ([7, 12]). We continue the study initiated by Sipser [10] of the relationship
between randomness and quantification, that is, the relationship between BPP and classes
arising by appropriate quantification of polynomial-time predicates (e.g. NP, coNP and
other classes in the polynomial-time hierarchy [11]).

BPP was first shown to lie in the polynomial-time hierarchy in [10] which demonstrates
that BPP C ¥ (and hence that BPP C Y N1IIY). We introduce a natural quantified
class, S¥, and demonstrate that

BPP c S{ c i nIif.

Given the unnaturality of X1 N 11, the naturality of SI’ suggests that S’ C %P N 1IL and
hence that this containment is more than a solely conceptual improvement.

The class S consists of those languages £ which may be decided by a polynomial-
time machine that receives counsel from two provers in such a manner that when the input
x € L there is a “witness” wy which the first prover may provide so that regardless of
the information provided by the second prover, the machine accepts and, similarly, when
x & L, there is a “witness” wy which the second prover may supply so that, regardless of the
information supplied by the first prover, the machine rejects. The special sort of alternation
involved here we refer to as symmetric alternation. The S, operator enjoys some remarkable
structural properties:

oS, -BP-PCS, P,

o P52P) =§,.p.

We use these structural properties to conclude that
e BPP C MA C S¥, and

o AP =PNP C S

Considering the strong structural properties which SZ enjoys, it seems unlikely that
SI' = ¥ n Y. In light of the above containment theorems, however, we would like to
present as much evidence as possible in this direction. One standard method of offering
evidence that two classes are different is to demonstrate an oracle which separates them. In
§3 we construct an oracle which separates SI from X2 N 11} under the assumption that the
machines involved are monotone. The framework we develop to build this oracle can be used
to simplify the construction given by [3] of an oracle separating Y% and I1%.

2 Definitions and Containment Results

¥ is used to denote the alphabet and may be assumed to be {0, 1} without loss of generality.
Throughout, the variable n denotes |w|, the length of the input in question. For m € N, we
use 372 as shorthand for Jx(|z| = m), 3"z if such x is unique. V™ and ¥"lx is similarly
used.



Definition 2.1 (Sy - &) For a complexity class € we define Sy - € to be the complexity class
consisting of those languages L for which there exists C € &€ and a polynomial ¢ so that

o wc L= My viy (w x,y) €C, and

0w L= Fy Vi (1 2,y) ¢ C.

Notice that the acceptance criteria for the Sy operator has the form of the acceptance
criteria for X1, The rejection criteria is similarly related to that of IIL. S, - P, then, is
clearly inside £ N 1IY. Notice that S like BPP and IP, is a promise class — the criteria
for acceptance and rejection are not complements of each other.

Definition 2.2 (ST) ST ¥'s, . P.

k
€
Definition 2.3 (S7) S2 ¥'§,.S,..-S,.P.

Theorem 2.4 XYY c ST c xNy.

Proof: ¥ c SI' € ¥ and S is closed under complement. O

Corollary 2.5 X [ JIIf c S&, < X5 N1IL,.

This allows us to conclude that PH %' U, 25 = U, S%,, so that SE, for & =1,2... form

a hierarchy which collapses if and only if the polynomial hierarchy collapses.
Theorem 2.6 PS ¢ sP

Proof: Let & € ST and S(-,-,-) be a polynomial time machine accepting & according
to the definition of SI'. Let £ € P® and let D® be a deterministic polynomial-time machine
deciding £. A computation suggestion of D®(w) consists of a sequence of pairs (0;,a;) for
1 =1,...,% so that

e cach D; is an instantaneous description (see [6]) of D®,

e 0, is the initial instantaneous description of D®(w),

e 0, is a final instantaneous description of D®,

e if D; does not find D® in its query state, then 0; Fp 041,

e if 9; finds D® querying ¢;, then there is a response r; so that 9; Fp 0;41 with response
r; and a; is a string of length appropriate for the quantified inputs of S on input w.



We construct a machine T'(+, -, -) accepting £ according to the definition of SI'. T'(w, z, y) first
examines x, rejecting unless x is a computation suggestion for D® so that @ = (07, a7)i<y, .
T then examines y, accepting unless y is a computation suggestion for D® (so that y =
(v, a )Z<ty) Ift,=t,and Ve € {1,...1,} we have that 97 = 0Y then T accepts exactly when
0f, = 0j, is an accepting description. Otherw1se there is 79 so that 0f =0} but df ., # 07 ;.
Evidently, 07 is a query state of DS (otherwise there is a unique next state, upon which both
x and y must agree if they are computation suggestions). Let ¢, be the query appearing
in this description. Assume without loss of generality that the computation suggestion of
¢ claims that ¢;, € &. T then simulates S(g;,,af,ay ) accepting exactly when S accepts.

Notice that for input w, there is a correct Computloa?tlon suggestion A, = (0;,a;)i<¢ (that is,
one in which every oracle query is answered correctly) so that for each query ¢;,

o if ¢ € & then Vz, S(¢;, a;, z) accepts, and

o if ¢ & then Vz,5(q;, 2, a;) rejects.
Then

o if w e L, then V*Wy, T(w, A,,y) accepts, and

o if w¢ L, then ‘v’q(”)x,T(w,x,Aw) rejects,

as desired. O

Corollary 2.7 AP = PNP PS¢ ST
Corollary 2.8 Al | C SI,

The proof of Theorem 2.9 below is a generalization of the argument of Lautemann [8].
Theorem 2.9 S, -BP-P CS,-P.

Proof: Let L€ S;-BP -P. Let D € P and ¢, r be polynomials such that
o we L = Jng yalr y,PrTEREr(n)[<w,x,y,r> eD] >1—2 )
o w¢ L = FMy vy Pr oowm[(w, 2, y,r) € D] <2790

Fix w € ¥* and let & € 29" be so that for all y € X9, Pr.c srm[(w,2,y,7) € D] >

1 —277=" Let W, C ¥ be the collection of random strings r for which (w,&,y,r) € D

and let W & (1, Wy (these are the random strings r such that (w,&,y,r) € D for all y).

For a set B let u(B) denote the measure of the set. Then Yy, u(W,) > 1 — 274=" 5o that

p(W) > 1 —27". As in [8], we demonstrate that there exists a set {o Lo, .. ,On(n)} Of
elements of X7 so that for every 7 € ZT(”), there is some ¢ so that o; &7 € W (@ stands for
the binary operator that returns the bitwise XOR of the operands). Selecting oy,... , 0,



uniformly and independently at random from 7" let B, be the event that for each 7,
o; © 7 ¢ W. Then Pr[B,] <277 so that

Pr| \/ B, < ZPI’[BT] _ or(n)g=nr(n) _ gr(n)(1—n) _ |
rexr(n) T

Hence there is a set {0 = 01,... ,0,(,)} so that for all 7, there is 7 so that o; &7 € W.

Suppose now that w & L. There is then §j € %4 so that for all x € X4, Pr,[(w, z,§,7) €
D] < 271" As before, let W, aef {r e X0 | (w,x,9,7) € D}. Define W &' U, Ws so
that (W) < 27", Then we show that there is a set 7 o {71, To(np} of elements of ya(n)
so that for all o = {oy,... 0,4}, 37,Vi,0,® 7, € W. Selecting 71,. .., 7,(n)2 independently
and uniformly at random, let B, be the event that Vy,3:,0,® 7, € W. Then

r(n) r(n)
Pr[B,] < H ZPI’[UZ' DT EW]= H ZQ—H _ (r;:f) )T(n)2‘
J =1 joi=1

Hence,
Pr[\/B,] < 3 Pe[B,] = 27’ )\ <1
r o] < r[B,] = — :
g g 2n
Therefore, there is a set {7y,...,7,(,)2} with the property that for any set {oy,... 0.},
there is some j so that o; & 7; € W for all 2. In light of this, consider the deterministic
polynomial time machine M(-,-,-) which, on input (w, a, 3),
o checks the format of «, rejecting unless a = (z;01,... ,0,0,),
o checks the format of 3, accepting unless 3 = (y; 71,... , T,(n)2), and
e accepts iff for each 7;, there is some o; so that (w,x,y,0;, & 7;) € D.
From above, if 2 € £ then setting o to be the (#;01,... ,0,(,)) promised in the first part of
the above discussion we have that D accepts regardless of 3. Similarly, if x ¢ £ then setting
B to be the (§;71,... ,7,(n)2) promised in the second part of the above discussion, we have

that D rejects regardless of a. O

Corollary 2.10 MA C SY.
Corollary 2.11 BPP C S¥

3 An Oracle Separating monotone S) and monotone
sPnyd

Definition 3.1 We shall call an oracle Turing machine M°(-,... ) monotone if for any
inputs of the machine x4, ... ,,,
01 C Oy A MO (q,... ,x,) accepts = M (xy,... ,x,) accepts.

We then define rnSf’O to be the class of languages accepted by some monotone machine
according to the SY acceptance rules with oracle O. me’O and me’O are defined similarly.



The above conclusion that BPP C S¥ C ¥I' N 11 is interesting commensurate with the
extent to which we believe that the inclusion ST € XFNIIY is strict. We offer evidence for the
strictness of this inclusion by demonstration of an oracle O so that mS2° € m¥y® NmII}°.

We begin with some definitions relevant to our construction. For n > 0, consider subsets
T of ¥ satisfying the 11 predicate V"x3%y, xy € T. This predicate is monotone. Collect
together the minterms to form

T ={T C £ |vaI'ly, oy € T).

This set has size 272", Given a family of minterms 7 C ¥ and a set W C £%" we define

def

Tw ={TeT |WCT}

which we shall call 7 pinched at W. A family 7 C ¥ is said to be e-concentrated at w
if Prreg[w € T] > e. We shall say that 7 # 0 is e-diffuse on S if for all w € S, 7T is
not e-concentrated at w. A family 7 which is e-concentrated at 7 may be pinched at {7},
resulting in 7y, with [Ty | > €|T|. A e-concentration sequence for a family T is a sequence
Ti,...,T, such that

e 7 is e¢-concentrated at 7,
o forve {l,... ,r =1}, Ty, ) is e-concentrated at 7,41,

o and Tp,, .3 is e-diffuse on ¥** — {7,... 7. }.

Lemma 3.2 Let 71,...,7, be an e-concentration sequence for T C X. Then
o ~logu(T)
loge+n

where u(7T) is the density of T in .
Proof: Let 7 ={m,...,7.}. Since T C T, 7, C %, so that
CH(T) < p(T) < p(T.) = 27
and hence
o ~log u(7T)
~ loge+n

as desired. O

Theorem 3.3 There exists an oracle O so that rnSf’O - me’O N me’O.

Proof: For a pair of oracles Oy, 0y C ¥*, define O1 & Os o {0z |2z € O1}U{ly | y € O,}.
Let C be the set of all oracles O = O B O, so that Vn > 0,

F*aVy, xy € O <= V'z3A"y,zy € Os.



Let A, = {Co® Cy € C | F"x,V"y,zy € Cy}. Define ££O1 & 0) = {1" | F"aV"y, 2y € Oy}
and notice that for O € C, we have that £(0) € mX)° NnmII>°. We shall construct an
oracle C = Cy @ Cy € C so that £(C) & mSPY. Let {Di(-,-,-)} be an enumeration of
monotone oracle-SI” machines so that for every O, me’O = {L(D?)}. Define Q;(n) to be
the maximum size, over all oracles, « values, and y values, of any query made by D;(1", x,y).
C shall be constructed in stages C; C Cy C --- so that C' = |, C;, stage ¢ constructed to
foil a specific monotone SY machine. We shall have that

o fori < j,C; C Cjand C; — C; C XM for some k;,
0 1<) = ki <ky,
e for any oracle O with O N Yk = O, L(0) # L(D?) for any i < s.

Assume we have constructed the first ¢ — 1 stages, thus defining the oracle to length k;_; and
foiling the first £ — 1 machines. We shall construct C4, foiling D;. Let p(n) be the running
time of D;. Select n so that 2n > ki1, 2n > Qu—1(ki—1), and 2" > 2p(n). Set k; = 2n.
Assume, for contradiction, that regardless of our choice of C; € C (with C; N Yk — Ci1),

DY (17, -, ) accepts exactly when Cy € A,.

For each u € ¥, let 5, &' {uv | |[v] =n} and consider the family of oracles

(G US, aT|Te%).

Associate with each oracle O in this family an appropriate x so that Vy, D?(1", z, y) accepts.
There are at most 2°(") various values for x, so some ,, is associated with a fraction of this
family of density at least 277("), Let F(u) be the (sub) family so associated with this z,.
Then define 7 (u) = {T | C4oy U S, & T € F,}. Let 7(u)y, 7(u)2, ..., 7(u)yw) be a p(n)~'-
concentration sequence for T(u) and 7(u) = {7(u)1, 7(u)2, ..., 7(u)su}. By lemma 3.2 the
length of this sequence, t(u), is at most

—log (T (u)) _ p(n)( ) (%) p(n)

logp(n)=*+n =~ n—logp(n

(%)
where the inequality < follows because 2" > 2p(n). Reiterating, for each u € ¥, we have
selected a family of minterms F(u) all associated with a certain z, and a p(n)™*
sequence 7(u) for T (u).
We similarly construct such sets of maxterms. For a subset X C 3?7, let X &y x
be the relative complement of X. For each v € X", consider

-concentration

{C,,UT® S, |Te%).

As above, let y, be associated with a family of these maxterms G(v) def {Ci1 U Tad S, |
T € T(v)} so that u(7T(v)) > 277" (so that for any oracle O in this set and any z,
DY (1™, x,y,) rejects). Let 7(v)1,...,7(v)yw be a p(n)~'-concentration sequence for 7 (v)

and 7(v) = {7(v)1,... ,7(V)s}. Again t(v) < p(n).



Selecting v and v uniformly and independently at random from ", we have that

1) +1(0) _ 2p(n)

<1
2m - 2n

Pr[de, 7(u); € S, or 3j,7(v); € 5, <

so that there exists a pair (@, ) with the property that
o Vi, 7(u); ¢ S, and
L \V/j,T(f))]‘ € Su

Notice that an oracle O selected from F(u)UG(v) is accepted by D (1", x4, y;) exactly when
O € F(u). Let M = ¥* — 7(3) & 7() and consider the behavior of DM (1", x4, y;). Suppose
that DM(1" 24, y5) accepts. Since D is monotone, every oracle O € {C;_; U T&S; |
T € T(9),(z)} must disagree with M in one of the at most p(n) places which DM (1", z4,y5)
queries, which contradicts that 7 (0),@) is p(n)~'-diffuse on ¥** — 7(v). The case when
DM(1" ;. y5) rejects is handled dually. O

4 Conclusions and Open Problems

In this note we studied the notion of symmetric alternation by defining the complexity class
SP. We observed certain structural properties of the S, operator which allowed us to prove
some interesting containment results. We were able to show that BPP C SI using a clever
twist of Lautemann’s proof [8].

The original motivation for defining and studying the notion of symmetric alternation
was a question posed by Uriel Feige. [4] and [5] study situations, in an interactive setting,
where the provers do not have complete access to each other’s strategies. As a step towards
characterizing the class of languages accepted by such interactive proof systems we, in this
paper, decided to formalize and study the associated non-interactive version.

It is an interesting open problem to construct an oracle separating S¥ and %2 N TIZ.
This would provide more evidence of the fact that the two classes are indeed different. The
interactive version of symmetric alternation, the original motivation for this study, has not
been characterized exactly and continues to remain an area of active study.
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