A Spatially and Temporally Coherent
Object Space Visibility Algorithm

SATYAN COORG SETH TELLER
Synthetic Imagery Group
MIT Laboratory for Computer Science
Cambridge, MA 02139
{satyan,seth}@lcs.mit.edu

Abstract

Efficiently identifying polygons that are visible from a changing synthetic viewpoint is an impor-
tant problem in computer graphics. In many complex geometric models, most parts of the model
are invisible from the instantaneous viewpoint. Despite this, hidden-surface algorithms like the z-
buffer or BSP tree often expend significant computation resources processing invisible portions of
the model.

In this paper, we present a new approach to the visibility problem that exploits the presence of
large occluders near the viewpoint to identify a superset of visible polygons, without touching most
invisible polygons. The salient features of this algorithm are: it is conservative, i.e., it overestimates
the set of visible polygons; it exploits spatial coherence by using a hierarchical data structure; it
exploits temporal coherence by reusing visibility information computed for previous viewpoints; and
it is easily parallelizable.

Keywords: Conservative visibility, temporal coherence, spatial coherence, octrees, multi-processing.

1 Introduction

In computer graphics, identifying visible polygons or eliminating hidden polygons is an important com-
ponent of efficient scene rendering algorithms. Despite the availability of the z-buffer algorithm in
hardware [2], the number of polygons in many geometric models is larger than hardware alone can
process at interactive frame rates. One way to address this problem is by developing algorithms that
efficiently identify, then render, only the visible portions of the model. Synthetic observers in visual sim-
ulation applications typically move smoothly through the model, experiencing little change in visibility
between viewpoints. There is thus ample spatial and temporal coherence to be exploited in most such
applications. Algorithms that exploit the availability of the z-buffer by overestimating the set of visible
polygons are useful, if they run in time comparable to the rendering time, and produce supersets which
are only slightly larger than the true visibility.

Due to the availability of cheap memory and its simplicity, the z-buffer algorithm, typically imple-
mented in hardware, is widely used for visibility determination. Each polygon in the model is rasterized
into fragments, and z-values are computed for each fragment from the z-values of the polygon’s vertices.
This algorithm resolves visibility at each pixel by comparing the new fragment’s z-value to that stored
at the pixel, writing a new color value to the framebuffer only if the fragment is closer to the viewpoint
than the stored value. By structuring the computation of z-values as a “slow” set-up computation per
polygon and a “fast” interpolation per pixel, this algorithm makes good use of image space coherence.

However, the disadvantages of resolving visibility at this late stage are that expensive operations like
shading and texturing are performed even on invisible fragments, and there is no obvious way to exploit
the presence of large occluders near the observer.

Ray tracing and ray casting methods resolve visibility in object space by casting a ray through each
pixel. That polygon which first intersects the ray is visible at the pixel. Spatial subdivisions have been
used to exploit spatial coherence and accelerate ray tracing [12, 6]. Algorithms that exploit temporal
coherence in this context have also been described [15, 6]. However, a major drawback of these algorithms
is that a large number of rays must be cast to generate each image, making them impractical for current
interactive display systems.

In this paper, we describe a novel algorithm that maintains a set of large occluders near the viewpoint,
and uses the set to cull away occluded portions of the model. The algorithm operates entirely in object
space, using fast (conservative) visibility tests. It uses an octree-based spatial subdivision, and eliminates
large portions of the model without touching most invisible polygons. The algorithm works by classifying
each octree node as invisible, visible, or partially occluded with respect to the set of occluders. Once
the state of each octree node is known, a final traversal issues visible and partially visible polygons to
the rendering hardware for per-pixel visibility determination.

The rest of the paper is organized as follows. The remainder of this section discusses existing research
work in visibility algorithms. Section 2 describes the conservative visibility tests used in our algorithm.
Section 3 describes the visibility algorithm, based on octrees, that efficiently detects occlusion and main-
tains visibility information for a moving viewpoint. Section 4 presents the algorithm’s implementation
and performance characteristics. Section 5 concludes and discusses future work.

1.1 Related Work

In principle, for static models, it is possible to precompute the visibility from every viewpoint, and use
the precomputed values to render the model during an interactive walkthrough. The well-known aspect
graph encodes a representation of exact visibility for every qualitatively distinct region of viewpoints
[17, 11, 10]. One drawback of this approach is that the visible portion of the scene may have higher
complexity than the input scene itself — a scene with O(n) polygons can have a visible portion with
descriptive complexity O(n?). Also, the large number of qualitatively distinct viewpoint regions, O(n?)
in the worst case, makes this exact approach impractical for complex models.

Given the availability of fast z-buffer hardware to resolve visibility per-pixel, it seems promising to
design algorithms that owverestimate the polygons visible from any specified viewpoint. The output of
such an algorithm could then be fed into the z-buffer to synthesize a final image. The overestimation
guarantees that the generated image is identical to that which would be generated by rendering every
polygon in the scene. The challenge, of course, is to produce a usefully tight upper bound on the
visible polygons. This idea of “conservative” visibility has been exploited to design fast architectural
walkthrough systems [1, 20, 8]. The idea in [20] is that the input scene can be divided into cells, roughly
corresponding to rooms in a building, and cell-to-cell/eye-to-cell visibility can be used to bound exact
visibility from above. Though this method eliminates most invisible polygons in architectural models,
its generalization to models with less apparent cell structure seems difficult.

An approach using octree-based spatial subdivision is used in [9] to render only those polygons that
lie within the viewing frustum. However, this algorithm does not exploit occlusion properties of the
model, and can end up drawing many invisible polygons.

The hierarchical z-buffer algorithm [13] makes some use of temporal coherence by maintaining a list
of polygons that are visible from the current viewpoint. For the next viewpoint, the algorithm draws
polygons from this list first. The contents of the hierarchical z-buffer can then be used to cull invisible

polygons. To exploit spatial coherence, this algorithm requires that the z-buffer support visibility queries.
Such queries are not efficiently supported in most graphics hardware, and simulating the z-buffer in
software involves significant overhead. Because of its reliance on image space queries, this algorithm is
also susceptible to aliasing artifacts.

A temporally coherent visibility algorithm for scenes comprised only of convex objects is presented
in [14]. The algorithm is complex, as it computes exact visibility, and no implementation is described.

A dynamic temporally coherent conservative visibility algorithm, described in [7], identifies relevant
visibility events, i.e., changes in visibility that will occur in the near future. One drawback of this
algorithm is that it must reconstruct visibility information for the continuous sequence of points between
each discrete pair of subsequent viewpoints assumed by the moving observer.

Our work represents an advance over existing efforts in the following respects. First, our algorithm
exploits the availability of fast z-buffers by generating conservative (superset) visibility, greatly simpli-
fying the algorithmics of visibility determination. Second, we use object hierarchies to avoid processing
large sets of invisible polygons or their pairwise interactions. Third, our algorithm is naturally parallel,
yielding an efficient implementation on multi-processors. Finally, our algorithm handles an observer
moving along an arbitrary (not prespecified) path, and incorporates advanced culling features such as
frustum-based culling and occlusion due to multiple connected occluders.

2 Conservative Visibility

We assume that the input model is static, and is specified as a list of convex polygons. We assume that
the number of vertices in each polygon is bounded by some constant. Our system uses a preprocessing
step to merge identical input vertices. This is useful in identifying polygons that share edges; the
resulting connectivity information is represented by a winged-edge data structure [3]. We assume no a
priori knowledge of observer motion.

In this paper, we distinguish occluder polygons from occludee objects. This distinction is motivated
by the observation that, in many models, from any instantaneous viewpoint, a few polygons cause most
of the occlusion, and checking other polygons for occlusion increases the overhead of the algorithm,
without identifying many more occluded polygons. Crucially, occluders are chosen dynamically, as the
viewpoint changes. Polygons typically act as occluders for nearby viewpoints, and as occludees for
remote or oblique viewpoints (Figure 1). Usually, an occludee is not just a single polygon, but a convex
region of space (e.g., a hierarchical bounding box) containing many polygons.

Occludees

Occluder

Eye

Figure 1: This figures shows occluder and occludee polygons for a viewpoint.

We present the algorithm in two parts. First, we describe algorithms for conservative visibility
determination. These algorithms are then used as the basis of a visibility oracle in the dynamic algorithm
presented in Section 3.

2.1 Visibility Testing

In this section, we address the following problem: given a viewpoint, a set of convex occluders and a
convex occludee, is the occludee visible? That is, is there a line segment from the viewpoint to some point
on the occludee that meets no occluder? A naive algorithm would perform a computation equivalent to
projecting the occluders and occludee onto the image plane, then “clipping” the images of the occluders
away from that of the occludee (Figure 2). The occludee is invisible if and only if it is clipped away
completely by the set of occluders. This process must be repeated for each new viewpoint, making this
approach inefficient in practice.

T
T T §>

(a) (b) (© (d)

Figure 2: The figure shows a naive way of detecting occlusion. The polygons in Figure (a) are shown
as they would appear in the image, i.e., the reader is at the viewpoint. The occludee T is behind all
the occluders A, B, and C. Figures (b)—-(d) show successive clipping of the occludee to each occluder to
determine its visibility.

Instead, we describe two simple (and fast) tests that conservatively guarantee the invisibility of an
occludee. Our methods use the notion of supporting and separating planes. Separating planes of two
convex polyhedra are planes formed by an edge of one polyhedron and a vertex of the other such that
the polyhedra lie on opposite sides of the plane [18]. Supporting planes are analogous, except that both
polyhedra lie on the same side of the plane.

Figure 3 shows the three ways in which a set of occluders can complete occluded an object. Figure 3-a
shows the simplest case, when the occlusion is caused by a single occluder. Figure 3-b shows occlusion
caused by multiple connected occluders, and Figure 3-c shows the most general case, in which occlusion
occurs due to arbitrary disconnected occluders.

First, consider the interaction between a single occluder and an occludee, which can be completely
described in terms of the plane of the occluder, and the supporting and separating planes of the occluder
and occludee (Figure 4-a). First, the occluder A can occlude T only if the viewpoint and T are on
opposite sides of the plane of polygon A. This region can be divided into three qualitatively distinct
regions as shown in the figure. In region 1, T is not occluded. In region 2, T is partially occluded, and
in region 3, T' is completely occluded.

The supporting and separating planes of A and T can be used to detect which of these cases is
occurring. First, the planes are oriented “towards” the occluder to form half-spaces (Figure 4-a). We

(b) (©)

@
Occlusion caused by connected occluders (b)

Figure 3: Occlusion caused by a single occluder (a)
Occlusion caused by a set of (general) occluders (c). The polygons are shown as they would appear in

the image.
supportin d
PR 9 '.' Occludee '
. :'. T e |%?;r:gg OchTudee Occl_lqdee
Occluder \ _'.'_ _______
A . A
JPPTt e A,’ separating A e
> B B
‘ ‘\ Occluder &
& '.' eye\ plane
2 W 1 \
[3

(b) (c)

Figure 4: Figure (a)—(c) show occlusion in two dimensions. Figure (a) shows separating and supporting
planes of a single occluder. Figure (b) shows supporting planes that are ignored for two connected
occluders. Figure (c¢) shows a common edge which is also a silhouette edge; thus its supporting plane

cannot be ignored.

say that a viewpoint satisfies a plane if it is inside the plane’s positive halfspace; this relation can be
checked by performing an inner product of the viewpoint with the plane equation. Full occlusion occurs
when all of the supporting planes are satisfied; that is, when the viewpoint is in the intersection of the
supporting halfspaces (region 3). Partial occlusion occurs when all the oriented separating planes are
satisfied, but some supporting plane is not (region 2). Otherwise, there is no occlusion (region 1).

Figure 4-b shows occlusion caused by two connected occluders, i.e., two occluders that share a vertex
(an edge in 3D). If the viewpoint is in the shaded region, T is occluded by both A and B, even though
neither occludes it alone. Testing for occlusion by A and B in the shaded region is equivalent to checking

all the supporting planes of A and B except those through e. Note that this is true only if A and B lie on
opposite sides of e, as seen from the viewpoint — intuitively, e is relevant only when it is a silhoutte edge
of the occluder as seen from the viewpoint. Figure 4-c shows a case in which ignoring the supporting

plane through e would cause T to be classified, incorrectly, as fully occluded.

In general, a set of occluders Ay, ..., A jointly occludes T if:

o Ay, ..., Ay partially occlude T', and none fully occludes T';

e If two occluders A; and A; share an edge e, they lie on opposite sides of e as seen from the
viewpoint; and

e All planes other than those supporting common edges are satisfied.

Figure 5: This figure shows occlusion in 3D, as seen from the viewpoint. Figure (a) shows occlusion
caused by connected occluders whose silhouette is convex in the image. Figure (b) shows occlusion by
connected occluders having a non-convex silhouette.

Figure 5-a shows occlusion in 3D by a set of connected occluders. The supporting planes through
“internal” edges can be ignored, and full occlusion is caused when the viewpoint satisfies all the sup-
porting planes through silhouette edges. Since the silhouette edges form a convex polygon in the image,
the supporting planes through them are satisfied if and only if the image of the occludee lies entirely
within the convex silhouette, i.e., when there is full occlusion. Thus, checking for inclusion within the
supporting planes through silhouette edges is an exact test for occlusion.

However, this test can fail if the silhouette edges form a non-convex polygon (Figure 5-b). Consider
the silhouette edge e shown in the figure. The supporting plane of T' through e is not satisfied, as T
does not lie completely to the “left” of the line through e. Thus, the above test fails to conclude that T’
is fully occluded. Again, the test is conservative — it will never misclassify a visible or partially visible
polygon as invisible. Our algorithm defines conservative visibility operationally as:

Definition 1 (Conservative Visibility) A convez occludee is invisible with respect to a viewpoint and
a set of occluders if either

o The occludee is completely occluded by a single occluder in the set, or

o The occludee is occluded by a set of connected occluders such that the supporting planes of their
silhouette edges are satisfied.

This definition precludes the algorithm from detecting more complex occlusions such as in Figure 3-c.
This is a reasonable tradeoff for models in which most occlusion is due to large occluders acting alone
or with a number of connected occluders.

The final algorithm for visibility testing is given below. It classifies the occludee as VISIBLE, IN-
VISIBLE, or PARTTAL.

TestOcclusion(0ccluderSet S, Occludee T, Viewpoint P)
partial = FALSE
for each 4; € S do // compute occlusion relations
compute separating and supporting planes of A; and T
check for full and partial occlusion by A;
if (A; fully occludes T) then
return INVISIBLE
else if (A; partially occludes T')
partial = TRUE
combine occluders in S into sets of connected occluders
if (a connected set fully occludes 7') then
return INVISIBLE
else if (partial) then
return PARTIAL
else
return VISIBLE;

The two major steps in the algorithm are the computation of separating and supporting planes of
occluders and the occludee, and the detection of connected sets of occluders. The rest of the algorithm
involves computing dot products of planes, and is straightforward. Connected sets of occluders are
detected using the connectivity information in the winged-edge data structure. Enumeration of the
separating/supporting planes is described below.

First, the algorithm considers separating/supporting planes only through edges of the occluders and
vertices of the occludee. Checking only these planes is an exact test for full occlusion by a single
occluder, but a conservative one for partial occlusion. Second, for a convex occluder, this computation
can be performed by computing separating/supporting planes through each occluder edge. Third, the
occludees in our visibility queries are axial octree nodes; computing their separating/supporting planes
with respect to any occluder edge can be implemented as a fast table lookup.

The time spent in each step of TestOcclusion is proportional to the number of occluder edges, which
is O(k), where k is the number of occluders involved in the query.

3 The Visibility Algorithm

Section 2 described techniques to efficiently classify the occlusion relationships between a set of occluders
and an occludee. For n polygons, individually maintaining each of the O(n?) interactions is too expensive.
It is also wasteful, since most polygons do not occlude each other from the instantaneous viewpoint. Thus,
it is advantageous to maintain relations only between polygons that are actually occluding or likely to
occlude in the near future. This section describes our visibility algorithm, which is based an efficient
hierarchical method for maintaining PARTTIAL and INVISIBLE relationships.

We first turn to the problem of identifying those polygons visible from a specified viewpoint in the
presence of a set of occluders. Our approach organizes all polygons in an octree [19]. A simple way to
build an octree is to associate the bounding box containing all the polygons in the scene with the root
node of the octree, and then recursively subdivide until some termination criterion is satisfied (e.g., the
number of polygons in each leaf is less than some constant or the dimensions of the octree node are less
than some constant).

Given an octree, the following algorithm reports those polygons in the octree that are not occluded

by the specified occluders. In the algorithm, Gather(T,OS) simply collects all polygons reachable from
an octree node 7" and unions them to the set OS.

Visible(OccluderSet S, Octree Node T, Viewpoint P, ObjectSet OS)
state = TestOcclusion(S, T, P);

if (state == VISIBLE) then // all of subtree T is visible; report
Gather(T,08);

else if (state == INVISIBLE) then // all of subtree T is invisible; omit
return;

else if (state == PARTIAL) then
if T is a leaf then

Gather(T,0S8); // conservatively return all polygons as visible
else
S ={};
for (A; € S) do // determine occluder set S’
if (A; partially occludes 7') then
S’ = S'U{4;}
for each child 7" of T do // apply S’ to subtrees of T

Visible(S',T', P,OS)

The first step in algorithm Visible is to classify the top-level octree node with respect to the set of
occluders. If the state of the octree node is VISIBLE, the algorithm reports all polygons in the subtree
as visible without performing any further tests. If the state of the octree node is INVISIBLE, the
algorithm simply returns, without traversing the (invisible) descendant octree nodes. The algorithm
recurses on the octree node’s children only if the node’s state is PARTIAL. Even then, it recurses only
using the (typically smaller) set S’ of occluders that partially occlude the octree node, since only these
occluders can occlude any descendant octree node.

4

occluder A

eye

Figure 6: The octree nodes visited by the algorithm Visible (unshaded nodes are reported visible). For
clarity of the figure, we assume the occluder is not in the octree.

Figure 6 shows the set of octree nodes visited by Visible with a single occluder as input. Note the
avoidance of processing of large portions of the octree, if the octree node is either completely occluded
or not occluded at all.

The complexity of this algorithm is O(kv), where v is the number of octree nodes visited and k is the
number of occluders. In the worst-case, this complexity could be O(kn) if the algorithm tests all octree

nodes against all occluders. In practice, the complexity is lower, since only a fraction of the octree nodes
are tested against each occluder (Section 4).

3.1 Extensions for a Moving Observer

A naive way of extending algorithm Visible for a moving observer would be to apply it independently
to successive viewpoints. However, the temporally coherent nature of observer motion can be exploited
to design a more efficient approach. For each viewpoint, we cache the occlusion relations — a list
of supporting and separating planes — at each visited octree node. When the viewpoint changes, the
algorithm needs only check existing occlusion relations, updating only those octree nodes whose visibility
status has changed.

Note that this modification exploits temporal coherence in two ways. First, for nodes whose states
are identical for both the previous and current viewpoint, the algorithm only checks node state (by
computing inner products of the viewpoint with a list of plane equations); it does not recompute the
separating/supporting planes. Second, since the algorithm’s complexity depends on the number of nodes
whose state has changed, it runs faster when fewer visibility changes occur in the scene — for example,
when the observer moves slowly, or encounters a model region of relatively low visual complexity.

Finally, note that frustum culling [9] can be incorporated into the algorithm in a straightforward
way. The algorithm achieves this by lazily processing octree nodes. Only octree nodes that intersect
the viewing frustum are processed. For octree nodes that are outside the frustum, the set of occluders
that obscure such a node are retained, but no processing is performed on either the octree node or its
descendants. When a node that was previously outside is found to lie inside the viewing frustum, the
set of occluders stored at the octree node is used to determine the state of the octree node and its
descendants. Essentially, the node is “switched off” whenever it lies outside the instantaneous viewing
frustum; in this state, a fast rejection of the octree node is performed and its occlusion status is not
computed.

3.2 Parallelism

The algorithm Visible has natural parallelism. The parallel version of the algorithm exploits the fact
that unrelated octree nodes (i.e., nodes which are neither ancestors nor descendants of eachother) can
be processed independently.

A naive way of parallelizing algorithm Visible to run on m processors would be to assign m inde-
pendent subtrees of the octree to separate processors, with each processor responsible for updating the
status of all octree nodes in its subtree. However, in practice, this partitioning suffers from significant
load imbalance, as the work is unevenly partitioned across the processors.

To achieve load balancing, we have implemented a version of the work-stealing scheduling algorithm
described in [5], which is particularly well suited to independent subtree traversal. Each tree node is
packaged into a single unit of work. Processors are assigned a single unit at a time, moving to another
after they have completed processing their unit.

Unfinished work resides on per-processor queues. When a processor finishes its current unit, it chooses
to work on one of the current octree node’s children, and deposits the other children at the tail of its
queue (Figure 7). When the processor runs out of work, it removes the work unit at the tail of its work
queue, if it is non-empty. Otherwise, it picks another processor at random and steals work from the head
of that processor’s work queue.

This technique has several advantages with respect to load balancing. First, it ensures that a single

Processor q|= p

steal work
Processor p's w1l | head
work queue
w2
w3
w4 | tail

push work / \Jop work

Processor p

Figure 7: The per-processor load balancing work queue.

processor works in a depth first fashion, leaving sibling octree nodes to be stolen. Second, a steal by
another processor from the head of the queue yields a large “chunk” of work; such nodes are likely to
be at higher levels of the octree. In this way, work is distributed evenly across the processors avoiding
both congestion at a single queue or starving of processors. Using this technique, we have been able to
achieve good load balance among the processors (Section 4).

3.3 Dynamic Occluder Selection

The algorithm Visible described earlier maintains the state of an octree with respect to a fized set of
occluders. As the viewpoint moves, it is crucial to update the occluder set to contain those polygons
that are “large” in the image, and therefore likely to occlude substantial portions of the model. This
section describes the updating heuristics in our system; intuitively, small polygons are discarded from
the occluder set, whereas polygons that loom large, if not present, are added.

A simple metric for the usefulness of a polygon as an occluder is its subtended solid angle. A

reasonable estimate of this is the quantity

A-D

|DJ?
(called area-angle) where A represents the (directed) area of the occluder and D represents the vector
from the viewpoint to the center of the occluder (Figure 8-a). The area-angle metric captures several
properties of the subtended solid angle of the polygon, making it a useful approximation. First, larger
polygons have a larger area-angle. Second, area-angle falls as the square of the distance from the
viewpoint, as does subtended angle. Third, maximum area-angle occurs when the viewing direction D
is “head-on” with the occluder, and falls with the dot product as the occluder is viewed obliquely.

One simple way of using the area-angle metric would be to statically precompute the set of occluders
with maximum area-angle for every possible viewpoint. However, this approach involves significant
preprocessing time and storage. Instead, our system employs a combination of static preprocessing and
dynamic occluder selection.

10

normal viewpoints from
which polygon
A Occluder will act as occluder

subtended / P polygon

D
angle bounding
volume ™™
eye f |
@ (b) ()

Figure 8: The subtended angle for a 2D occluder, and the components of the area-angle metric (a).
The region of space in which the occluder is significant, i.e., where area-angle > threshold (b). Static
insertion of an approximate occluder volume into the octree (c).

The idea is to associate each octree leaf with those occluders that are likely to be most effective from
viewpoints in the leaf. First, a minimum threshold value for area-angle is chosen. The set of viewpoints
such that the area-angle of a given polygon is greater than the threshold value is some region in 3-
dimensional space (Figure 8-b). This viewpoint region is approximated by an axial bounding volume.
The polygon is then associated with all octree leaves that intersect this volume (Figure 8-c). This process
is performed for each input polygon, after which each octree leaf contains a list of (pointers to) occluders.

As interactive model viewing begins, the algorithm locates the octree leaf which contains the initial
viewpoint. This octree leaf indicates a set of potential occluders; k actual occluders are chosen among
them by computing area-angle for each occluder, and picking those k occluders with maximum area-angle
(k is a parameter to the real-time system). When the viewpoint moves, the area-angles of both potential
and actual occluders are updated; a potential occluder becomes an actual occluder if its area-angle value
becomes one of the k largest, and vice-versa. When the viewpoint crosses into a new octree leaf, the set
of potential occluders is reinitialized to the set associated with the newly entered leaf.

4 Implementation and Results

We have implemented the algorithms described in this paper inside the SGI Openlnventor toolkit, to
run on a SGI Onyx workstation with four 250 MHz R4400 processors and 512 MB of physical memory.
Excluding toolkits, the entire system comprises about 5000 lines of C++ code. The timings presented
in this section reflect only time spent in the visibility algorithm, and exclude time required to draw the
visible polygons.

We studied the performance of the algorithm on the following models: the fifth floor of Berkeley’s
Soda Hall building (Soda); a city from Viewpoint DataLabs (City); and a number of tetrahedra on a
plane (Tetra). Though we described the algorithm in terms of octrees, the actual implementation used
kD-trees [4], a similar hierarchical data structure. The number of occluders to be maintained dynamically
is a program input parameter; we set it at 32 to achieve interactive frame rates, and are experimenting
with heuristics for choosing it automatically. Figures 9, 10, and 11 show screen snapshots from the
system in action.

11

Figure 9: The three models used in our experiments: Soda, City and Tetra.

12

4.1 Input and Initialization

Scene | Polygon References | Construction | Initialization

Initial Final (msec) (msec)
Soda 1685 2971 160 510
City 2857 4722 270 480
Tetra 3601 4974 260 740

Table 1: The column Final denotes the total number of polygon references after octree construction.
Construction shows the time spent in octree construction, and Initialization shows the time spent ini-
tializing the algorithm to the first viewpoint.

Table 1 shows some characteristics of the models, which contain only major occluding features such

as exterior walls. The table also shows time spent in octree construction and initialization (including
occluder area-angle preprocessing).

4.2 Comparison to Exact Visibility

Scene Occ Single Occluder Multiple Occluders
Rel Vis | Cull | Rel Vis | Cull

(msec) (msec) (msec)
Soda 4.7 | 40 201 0.73 | 38 18 | 0.75
City 45| 36 231035 | 34 221 0.38
Tetra 4.6 | 57 32| 069 | 56 32| 0.69

Table 2: In the table, Occ shows the time spent on occluder processing at every viewpoint. Rel shows the
number of octree nodes tested per occluder. Vis shows the time spent in the algorithm Visible for each
change in viewpoint. Cull shows the efficacy of the culling algorithm as a fraction of (exact) invisible
polygons, as reported by the hardware z-buffer — that is, as a fraction of the number of polygons that
would be culled by a “perfect” visibility algorithm.

Table 2 illustrates the efficacy and efficiency of two conservative visibility tests. The observer has a
full spherical field of view, and moves smoothly through the model at walking speeds in model units.
Using z-buffer hardware, we computed the exact set of visible polygons from each viewpoint (and its
complement, the exact set of invisible polygons). The values shown in the table reflect averages over
many random walks, and tabulate the algorithm’s effectiveness (35 - 75%) in identifying truly invisible
polygons — that is, those that did not contribute any pixels to the rendered image. The algorithm culls
a significant fraction of invisible polygons, even for scenes like City and Tetra, where the cell/portal
technique of [20, 8] is less effective due to lack of obvious cell structure, and the presence of non-axial
polygons.

The relatively lower performance of the algorithm on the City model is due to the existence of
viewpoints from which most occluders are far away, and from which no single or connected occlud-
ers substantially occlude the model. However, for many models our algorithm will combine well with
techniques that visually approximate remote polygons (e.g. by substituting textures [16]).

An interesting observation is that the algorithm Visible performs better in terms of both culling
efficacy and efficiency when it uses the (more complex) connected occluder visibility test. This is due

13

K

b

LS

—

| fEH

Figure 10: Position-based culling performed by our system. Top views of the three models are shown for
the same viewpoints as in the previous figure. Green signifies the model portions classified as INVISIBLE;
cyan signifies the model portions classified as PARTTAL or VISIBLE. Black lines denote the active set
of occluders. The octree leaf containing the current viewpoint is shown in yellow.

14

Figure 11: Frustum-based culling performed by the system. Blue shows portions of the model which are
found to be completely outside the viewing frustum, and whose occlusion status therefore need not be
computed.

15

to octree nodes being classified as invisible at higher levels than before, avoiding the processing of
descendant nodes.

Incorporating frustum based culling to the algorithm reduced execution time by almost a factor of
four by avoiding the processing of octree nodes outside the viewing frustum.

4.3 Coherence

Time in Visible (msec)
Scene 1 2 4] 8 16
Soda | 17 |23 |30 | 43| 61
City 20 | 28 | 41 | 55 | 76
Tetra | 26 | 40 | 59 | 86 | 112

Table 3: Time spent in visibility processing for an observer moving at increasing speed. The speeds
are given as multiples of the slowest speed, which corresponds to the “walking” speed in the previous
experiment.

Table 3 shows the time spent in the algorithm Visible as the speed of the observer is varied. In this
experiment, the observer moves along a fixed straight-line path with different speeds. The table shows
that the algorithm spends less time for slower speeds of the observer, reflecting the temporal coherence
exploited by the algorithm.

4.4 Parallel Implementation

Scene Time (msec)
Speedup

1 proc. | 2 proc. | 4 proc.
Soda 17 13 8
1 1.3 2.13
City 20 14 9
1 1.43 2.22
Tetra 26 18 11
1 1.55 2.36

Table 4: This table shows speedups obtained using the parallel version of algorithm Visible. The times
and speedups are reported for 1, 2, and 4 processors.

Table 4 shows parallel performance of algorithm Visible, for an observer moving as in the previous
experiment. The speedups obtained are significant, though not optimal. After extensive instrumenting,
we have determined that even though the load is fairly well balanced (within a few percent of perfect load
balance), executing fundamental operations takes longer on more than one processor, due to contention
for the memory bus. The data cache size of the processor is fairly small (16KB), and is insufficient to
cache data across successive traversals of the octree!. We expect that the algorithm will be faster on a
machine with larger data caches.

IThis cache flushing is not due to “ping-ponging” of data between processors. An affinity parameter in the load
balancing algorithm ensures that octree nodes are likely to be assigned to the same processor as for the previous viewpoint.

16

5 Conclusions and Future Work

This paper described a parallel, conservative visibility algorithm that exploits spatial and temporal
coherence during the motion of an observer through a general polyhedral model. Our results show that
temporal and spatial coherence can be exploited to design visibility algorithm that is efficient enough
to support viewing actual scenes at interactive frame rates. Moreover, our system can handle scenes
with far more polygons than could exact object space visibility algorithms. Casting the algorithm as
one of conservative visibility maintenance greatly simplified its design and implementation, and reduced
its time and storage complexities, while maintaining the crucial correctness property that the polygons
output by the algorithm form the correct image after z-buffering.

Our implementation relies on user-supplied parameters to achieve real-time performance. The max-
imum octree depth and the number of dynamically maintained occluder polygons should be determined
automatically. Also, we plan to extend the visibility algorithm with prediction of observer motion a
few frames in advance. This information can be used to bound the set of visible polygons for future
viewpoint regions before the observer arrives, avoiding synchronous visibility determination.

Two types of occlusive scenes that are not handled well by our algorithm are those with many
connected small polygons (such as complex CAD meshes), and those with many disconnected polygons
(such as jungle scenes). For the first scene type, we propose to identify occlusive polygon sets, and replace
them with large, simplified “virtual” occluders, whose occlusion properties conservatively approximate
those of the set. For the second scene type, we have designed a method based on linear programming
to quickly detect occlusion in some special circumstances, and are studying the effectiveness of this
technique for more general models.

References

[1] AIREY, J. M., RoHLF, J. H., AND BrOOKS, JR., F. P. Towards Image Realism with Interactive
Update Rates in Complex Virtual Building Environments. ACM Siggraph Special Issue on 1990
Symposium on Interactive 3D Graphics 24, 2 (1990), 41-50.

[2] AKELEY, K. RealityEngine Graphics. Computer Graphics (Proc. Siggraph ’93) (1993), 109-116.

[3] BAUMGART, B. G. A Polyhedron Representation for Computer Vision. In Proc. AFIPS Natl.
Comput. Conf. (1975), vol. 44, pp. 589-596.

[4] BENTLEY, J. Multidimensional binary search trees used for associative searching. Communications
of the ACM 18 (1975), 509-517.

[5] BLuMOFE, R. D. Scheduling Multithreaded Computations by Work Stealing. In 35th Annual
Symposium on Foundations of Computer Science (Santa Fe, New Mexico, 20-22 Nov. 1994), IEEE,
pp. 356-368.

[6] CuAPMAN, J., CALVERT, T. W., AND DiLL, J. Exploiting Temporal Coherence in Ray Tracing.
In Proceedings of Graphics Interface 90 (May 1990), pp. 196-204.

[7] Coora, S., AND TELLER, S. Temporally Coherent Conservative Visibility. To appear in Twelfth
Annual ACM Symposium on Computational Geometry (1996).

[8] FUNKHOUSER, T., SEQUIN, C., AND TELLER, S. Management of Large Amounts of Data in
Interactive Building Walkthroughs. In Proc. 1992 Workshop on Interactive 3D Graphics (1992),
pp. 11-20.

17

[9]

[15]

[16]

GARLICK, B., BaumMm, D. R., AND WINGET, J. M. Interactive Viewing of Large Geometric
Databases Using Multiprocessor Graphics Workstations. Siggraph ‘90 Course Notes (Parallel Algo-
rithms and Architectures for 3D Image Generation) (1990).

Gi1Gus, Z., CANNY, J., AND SEIDEL, R. Efficiently Computing and Representing Aspect Graphs of
Polyhedral Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 6 (1991),
542-551.

GIqus, Z., AND MALIK, J. Computing the Aspect Graph for Line Drawings of Polyhedral Objects.
IEEFE Transactions on Pattern Analysis and Machine Intelligence 12, 2 (1990), 113-122.

GLASSNER, A. S. Space Subdivision for Fast Ray Tracing. IEEE Computer Graphics and Applica-
tions 4, 10 (1984), 15-22.

GREENE, N., KAss, M., AND MILLER, G. Hierarchical Z-Buffer Visibility. In Computer Graphics
Proceedings, Annual Conference Series, 1993 (1993), pp. 231-240.

HuBsCcHMAN, H., AND ZUCKER, S. W. Frame to Frame Coherence and the Hidden Surface
Computation: Constraints for a Convex World. ACM Trans. on Graphics (USA) 1 (Apr. 1982),
129-162.

JEvANs, D. A. Object space temporal coherence for ray tracing. In Proceedings of Graphics
Interface 92 (May 1992), pp. 176-183.

MacieL, P. W. C., AND SHIRLEY, P. Visual Navigation of Large Environments Using Textured
Clusters. In 1995 Symposium on Interactive 8D Graphics (Apr. 1995), P. Hanrahan and J. Winget,
Eds., ACM SIGGRAPH, pp. 95-102. ISBN 0-89791-736-7.

PrLANTINGA, W., AND DYER, C. Visibility, Occlusion, and the Aspect Graph. Int. J. Computer
Vision 5, 2 (1990), 137-160.

PrEPARATA, F. P., AND SHAMOS, M. I. Computational Geometry: an Introduction. Springer-
Verlag, 1985.

SAMET, H. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and
GIS. Addison-Wesley, 1990.

TELLER, S., AND SEQUIN, C. H. Visibility Preprocessing for Interactive Walkthroughs. Computer
Graphics (Proc. Siggraph ’91) 25, 4 (1991), 61-69.

18

