
Veri�cation of the Randomized Consensus Algorithm of Aspnes

and Herlihy: a Case Study�

Anna Pogosyantsy Roberto Segalaz Nancy Lynch�

Abstract

The Probabilistic I/O Automaton model of [20] is used as the basis for a formal pre-
sentation and proof of the randomized consensus algorithm of Aspnes and Herlihy. The
algorithm guarantees termination within expected polynomial time.

The Aspnes-Herlihy algorithm is a rather complex algorithm. Processes move through a
succession of asynchronous rounds, attempting to agree at each round. At each round, the
agreement attempt involves a distributed random walk. The algorithm is hard to analyze
because of its use of nontrivial results of probability theory (speci�cally, random walk
theory), because of its complex setting, including asynchrony and both nondeterministic
and probabilistic choice, and because of the interplay among several di�erent sub-protocols.

We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata. In doing
so, we decompose it formally into three subprotocols: one to carry out the agreement
attempts, one to conduct the random walks, and one to implement a shared counter needed
by the random walks. Properties of all three subprotocols are proved separately, and
combined using general results about automaton composition. It turns out that most of
the work involves proving non-probabilistic properties (invariants, simulation mappings,
non-probabilistic progress properties, etc.). The probabilistic reasoning is isolated to a few
small sections of the proof.

The task of carrying out this proof has led us to develop several general proof techniques
for probabilistic I/O automata. These include ways to combine expectations for di�erent
complexity measures, to compose expected complexity properties, to convert probabilistic
claims to deterministic claims, to use abstraction mappings to prove probabilistic proper-
ties, and to apply random walk theory in a distributed computational setting. We apply
all of these techniques to analyze the expected complexity of the algorithm.

This paper is written in memory of Anna Pogosyants, who died in a car crash in December
1995 while working on this project for her Ph.D. dissertation.

�Supported by AFOSR-ONR contract F49620-94-1-0199, by ARPA contracts N00014-92-J-4033 and F19628-
95-C-0118, and by NSF grant 9225124-CCR.

yLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,
lynch@theory.lcs.mit.edu

zDipartimento di Scienze dell'Informazione, Universit�a di Bologna, Piazza di Porta San Donato 5, 40127
Bologna - Italy, segala@cs.unibo.it

1

1 Introduction

With the increasing complexity of distributed algorithms there is an increasing need for math-
ematical tools for analysis. Although there are several formalisms and tools for the analysis of
ordinary distributed algorithms, there are not as many powerful tools for the analysis of ran-
domization within distributed systems. This paper is part of a project that aims at developing
the right math tools for proving properties of complicated randomized distributed algorithms
and systems. The tools we want to develop should be based on traditional probability theory,
but at the same time should be tailored to the computational setting. Furthermore, the tools
should have good facilities for modular reasoning due to the complexity of the systems to which
they should be applied. The types of modularity we are looking for include parallel composition
and abstraction mappings, but also anything else that decomposes the math analysis.

We develop our tools by analyzing complex algorithms of independent interest. In this
paper we analyze the randomized consensus algorithm of Aspnes and Herlihy [5], which guar-
antees termination within expected polynomial time. The Aspnes-Herlihy algorithm is a rather
complex algorithm. Processes move through a succession of asynchronous rounds, attempting
to agree at each round. At each round, the agreement attempt involves a distributed random
walk. The algorithm is hard to analyze because of its use of nontrivial results of probability
theory (speci�cally, random walk theory), because of its complex setting, including asynchrony
and both nondeterministic and probabilistic choice, and because of the interplay among several
di�erent sub-protocols.

We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata [20]. In doing
so, we decompose it formally into three subprotocols: one to carry out the agreement attempts,
one to conduct the random walks, and one to implement a shared counter needed by the random
walks. Properties of all three subprotocols are proved separately, and combined using general
results about automaton composition. It turns out that most of the work involves proving non-
probabilistic properties (invariants, simulation mappings, non-probabilistic progress properties,
etc.). The probabilistic reasoning is isolated to a few small sections of the proof.

The task of carrying out this proof has led us to develop several general proof techniques
for probabilistic I/O automata. These include ways to combine expectations for di�erent com-
plexity measures, to compose expected complexity properties, to convert probabilistic claims
to deterministic claims, to use abstraction mappings to prove probabilistic properties, and
to apply random walk theory in a distributed computational setting. We apply all of these
techniques to analyze the expected complexity of the algorithm.

Previous work on veri�cation of randomized distributed algorithms includes [18], where
the randomized dining philosophers algorithm of [13] is shown to guarantee progress with
probability 1, [15, 19], where the algorithm of [13] is shown to guarantee progress within
expected constant time, and [2], where the randomized self-stabilizing minimum spanning tree
algorithm of [3] is shown to guarantee stabilization within an expected time proportional to
the diameter of a network. The analysis of [18] is based on converting a probabilistic property
into a property of some of the computations of an algorithm (extreme fair computations); the

2

analysis of [15, 19, 2] is based on part of the methodology used in this paper. Other work is
based on probabilistic model checking (e.g, [21, 11]).

Prior to the algorithm of Aspnes and Herlihy, the best known randomized algorithm for
consensus with shared memory was due to Abrahamson [1]. The algorithm has exponential
expected running time. The algorithm of Aspnes and Herlihy was improved by Attiya, Dolev,
and Shavit [6] by eliminating the use of unbounded counters needed for the random walk.
Further improvements were proposed by Aspnes [4], and by Dwork, Herlihy, Plotkin, and
Waarts [7]. The best known algorithm [7] runs in an expected O(n(p2 + n)) total atomic
register operations, where n is the number of processes and p is the number of processes that
participate in the consensus protocol.

The rest of the paper is organized as follows. Section 2 presents the basic theoretical
tools for our analysis, including probabilistic I/O automata, abstract complexity measures,
progress statements and re�nement mappings; Section 3 presents a coin lemma for random
walks and a result about the expected complexity of a random walk within a probabilistic I/O
automaton; Section 4 presents the algorithm of Aspnes and Herlihy and describes formally
the module that carries out the agreement attempts; Sections 5 and 6 prove that the Aspnes-
Herlihy algorithm satis�es the validity and agreement properties; Section 7 proves several
progress properties of the algorithm that are not based on any probabilistic argument; Section 8
proves the probabilistic progress properties of the algorithm by using the results of Section 7;
Section 9 builds the module that conducts the random walk; Section 10 builds the shared
counter needed in Section 9; Section 11 derives the termination properties of the algorithm,
where the complexity is measured in terms of expected number of rounds; Section 12 studies
the expected time complexity of the algorithm; Section 13 gives some concluding remarks and
discusses the kinds of modularization that we use in the proof.

3

Part I: The Underlying Theory

2 Formal Model and Tools

In this section we introduce the formalism that we use in the paper. We start with ordinary
I/O automata following the style of [16, 14]; then we move to probabilistic I/O automata
by adding the input/output structure to the probabilistic automata of [20]. We describe
methods to handle complexity measures within probabilistic automata, and we present progress
statements as a basic tool for the complexity analysis of a probabilistic system. Finally, we
describe veri�cation techniques based on re�nements and traces.

2.1 I/O Automata

An I/O automaton A consists of �ve components:

� a set States(A) of states.

� a non-empty set Start(A) � States(A) of start states.

� an action signature Sig(A) = (in(A); out(A); int(A)), where in(A); out(A) and int(A)
are disjoint sets: in(A) is the set of input actions, out(A) is the set of output actions,
and int(A) is the set of internal actions.

� a transition relation Trans(A) � States(A)�Actions(A)� States(A); where Actions(A)
denotes the set in(A)[out (A)[int(A), such that for each state s of States(A) and each
input action a of in(A) there is a state s0 such that (s; a; s0) is an element of Trans(A).
The elements of Trans(A) are called transitions , and A is said to be input enabled .

� a task partition Tasks(A), which is an equivalence relation on int(A) [out(A) that has
at most countably many equivalence classes. An equivalence class of Tasks(A) is called
a task of A.

In the rest of the paper we refer to I/O automata as automata.

A state s of A is said to enable a transition if there is a transition (s; a; s0) in Trans(A); an
action a is said to be enabled from s if there is a transition (s; a; s0) in Trans(A); a task T of
A is said to be enabled from s if there is an action a 2 T that is enabled from s.

An execution fragment of an automaton A is a sequence � of alternating states and actions
of A starting with a state, and, if � is �nite, ending with a state, � = s0a1s1a2s2:::, such that
for each i � 0 there exists a transition (si; ai+1; si+1) of A. Denote by fstate(�) the �rst state
of � and, if � is �nite, denote by lstate(�) the last state of �. Denote by frag�(A) the set of

4

�nite execution fragments of A. An execution is an execution fragment whose �rst state is a
start state.

An execution fragment � is said to be fair i� the following conditions hold for every task
T of A:

1. if � is �nite then T is not enabled in lstate(�);

2. if � is in�nite, then either actions from T occur in�nitely many times in �, or � contains
in�nitely many occurrences of states from which T is not enabled.

A state s of A is reachable if there exists a �nite execution of A that ends in s. Denote by
rstates(A) the set of reachable states of A. A property � of states is said to be stable for an
execution fragment � = s0a1s1 � � � if, once � is true, � remains true in all later states. That is,
for every i � 0, �(si)) 8j�i�(sj).

A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =
snan+1sn+1 � � � of A can be concatenated . The concatenation, written �1

a �2, is the execution
fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of A is a pre�x of an execution
fragment �2 ofA, written �1 � �2, i� either �1 = �2 or �1 is �nite and there exists an execution
fragment �01 of A such that �2 = �1

a �01. If � = �1
a �2, then �2 is called a su�x of �, and

it is denoted alternatively by �.�1.

2.2 Probabilistic I/O Automata

2.2.1 Preliminaries on Probability Theory

A probability space is a triplet (
;F ; P) where

1.
 is a set, also called the sample space,

2. F is a collection of subsets of
 that is closed under complement and countable union
and such that
 2 F , also called a �-�eld , and

3. P is a function from F to [0; 1] such that P [
] = 1 and such that for any collection fCigi
of at most countably many pairwise disjoint elements of F , P [[iCi] =

P
i P [Ci].

The pair (
;F) is called a measurable space, and the measure P is called a probability measure.

A probability space (
;F ; P) is discrete if F = 2
 and for each C �
, P [C] =
P

x2C P [fxg].
For any arbitrary set X , let Probs(X) denote the set of discrete probability distributions whose
sample space is a subset ofX and such that all the elements of the sample space have a non-zero
probability.

A function f :
1 !
2 is said to be measurable from (
1;F1) to (
2;F2) if for each
E 2 F2, f�1(E) 2 F1. Given a probability space (
1;F1;P1), a measurable space (
2;F2),

5

and a measurable function f from (
1;F1) to (
2;F2), let f(P1), the image measure of P1,
be the measure de�ned on (
2;F2) as follows: for each E 2 F2, f(P1)(E) = P1(f

�1(E)).
Standard measure theory arguments show that (
2;F2; P2) is a probability space. If (
;F ; P)
is discrete, then we can de�ne f((
;F ; P)) as (f(
); 2f(
); f(P)).

For notational convenience we denote a probability space (
;F ; P) by P . We also use
primes and indices that carry over automatically to the components of a probability space.
Thus, for example, P 0

i denotes (

0
i;F

0
i; P

0
i).

Given a probability space P and a set X , we abuse notation and we write P [X] even if
X contains elements that are not in
. By writing P [X] we mean implicitly P [X \
]. Also,
given an element x, we write P [x] for P [fxg].

Given two discrete probability spaces P1 and P2, de�ne the product P1
P2 of P1 and P2 to
be the triplet (
1�
2; 2

1�
2 ; P1
P2), where, for each (x1; x2) 2
1�
2, P1
P2[(x1; x2)] =
P1[x1]P2[x2].

We conclude with some notions about random variables that are needed in some of the
proofs of our results. Let (<;F<) be a measurable space with the real numbers as sample
space. Given a probability space P , a random variable X for P is a measurable function from
(
;F) to (<;F<). As an example, a random variable could be the function that expresses the
complexity of each element of
. It is possible to study the expected value of a random variable,
that is, the average complexity of the elements of
, as follows: E[X] =

P
x2
X(x)P [x]. A

useful property of expected values is the following.

Proposition 2.1 Let P be a probability space and let X be a random variable for P. For
i � 0, let the expression X � i denote the event fx 2
 j X(x) � ig.

1. If the range of X is the set of natural numbers, then E[X] =
P

i>0 P [X � i].

2. E[X]�
P

i>0 P [X � i].

Proof. For i � 0, let the expression X = i denote the event fx 2
 j X(x) = ig. If the
range of X is the set of natural numbers, then the expression for E[X] can be rewritten as
E[X] =

P
i>0 iP [X = i]. That is, E[X] is a sum of terms such that each term P [X = i]

appears i times. By rearranging the terms we obtain E[X] =
P

i>0

P
j�i P [X = j], that is,

E[X] =
P

i>0 P [X � i]. This proves the �rst item. For the second item, let X be de�ned as
follows: for each x 2
, X(x) = bX(x)c. It is easy to show that X is a random variable. From
the de�nition of X, E[X]� E[X] and for each i > 0, P [X � i] = P [X � i]. Thus, using item
1, E[X]� E[X] =

P
i>0 P [X � i] =

P
i>0 P [X � i].

2.2.2 Probabilistic I/O Automata

A probabilistic I/O automaton M consists of �ve components:

6

� a set States(M) of states.

� a non-empty set Start(M) � States(M) of start states;

� an action signature Sig(M).

� a transition relation Trans(M) � States(M)�Actions(M)�Probs(States(M)) such that
for each state s of States(M) and each input action a of in(M) there is a distribution P
such that (s; a;P) is an element of Trans(M). We say that M is input-enabled.

� a task partition Tasks(M), which is an equivalence relation on int(M) [out(M) that
has at most countably many equivalence classes.

In the rest of the paper we refer to probabilistic I/O automata as probabilistic automata.

Execution fragments and executions are de�ned similarly to the non-probabilistic case. An
execution fragment of M is a sequence � of alternating states and actions of M starting with
a state, and, if � is �nite ending with a state, � = s0a1s1a2s2:::, such that for each i � 0 there
exists a transition (si; ai+1;P) of M such that si+1 2
. All the terminology that is used for
executions in the non-probabilistic case applies to the probabilistic case as well.

2.2.3 Probabilistic Executions

An execution fragment of M is the result of resolving both the probabilistic and the nonde-
terministic choices of M . If only the nondeterministic choices are resolved, then we obtain a
structure similar to a cycle-free Markov chain, which we call a probabilistic execution fragment
of M . From the point of view of the study of algorithms, the nondeterminism is resolved by
an adversary that chooses a transition to schedule based on the past history of the system. A
probabilistic execution is the result of the action of some adversary. A probabilistic execution
can be thought of as the result of unfolding the transition relation of a probabilistic automaton
and then choosing one transition for each state of the unfolding. We also allow an adversary to
use randomization in its choices, that is, a transition to be chosen probabilistically. This models
the fact that the environment of a probabilistic automaton may provide input randomly.

Formally, a probabilistic execution fragment H of a probabilistic automaton M consists of
four components.

� a set of states States(H) � frag�(M); let q range over the states of H ;

� a signature Sig(H) = Sig(M);

� a singleton set Start(H) � States(M);

� a transition relation Trans(H) � States(H)�Probs((Actions(H)�States(H))[f�g) such
that for each transition (q;P) ofH there is a family f(lstate(q); ai;Pi)gi�0 of transitions of
M and a family fpigi�0 of probabilities satisfying the following properties:

P
i�0 pi � 1,

P [�] = 1�
P

i�0 pi, and for each action a and state s, P [(a; qas)] =
P

ijai=a
piPi[s].

7

Furthermore, each state of H is reachable, where reachability is de�ned analogously to the
notion of reachability for probabilistic automata after de�ning an execution of a probabilistic
execution fragment in the obvious way. A probabilistic execution H of a probabilistic automaton
M is a probabilistic execution fragment of M whose start state is a state of Start(M).

A probabilistic execution is like a probabilistic automaton, except that within a transition
it is possible to choose probabilistically over actions as well. Furthermore, a transition may
contain a special symbol �, which corresponds to not scheduling any transition. In particular,
it is possible that from a state q a transition is scheduled only with some probability p < 1. In
such a case the probability of � is 1� p.

We now de�ne the probability space associated with a probabilistic execution fragment, so
that its probabilistic behavior can be studied. Given a probabilistic execution fragment H ,
the sample space
H is the limit closure of States(H), where the limit is taken under pre�x
ordering. The �-�eld FH is the smallest �-�eld that contains the set of cones Cq, consisting
of those executions of
H having q as a pre�x. The probability measure PH is the unique
extension of the probability measure de�ned on cones as follows: PH [Cq] is the product of
the probabilities of each transition of H leading to q. It is possible to show that there is a
unique probability measure having the property above, and thus (
H ;FH ; PH) is a well de�ned
probability space. The proof is analogous to the proof given in [20] for a similar probability
space.

An event E of H is an element of FH . An event E is called �nitely satis�able if it can
be expressed as a union of cones. A �nitely satis�able event can be represented by a set of
incomparable states of H , that is, by a set � � States(H) such that for each q1; q2 2 �, q1 6� q2
and q2 6� q1. The event denoted by � is [q2�Cq. We abuse notation by writing PH [�] for
PH [[q2�Cq]. We call a set of incomparable states of H a cut of H , and we say that a cut �
is full if PH [�] = 1. Denote by cuts(H) the set of cuts of H , and denote by full-cuts(H) the
set of full cuts of H .

An important event of PH is the set of fair executions of
H . We de�ne a probabilistic
execution fragment H to be fair if the set of fair executions has probability 1 in PH .

We conclude by extending the . operator to probabilistic execution fragments. Given a
probabilistic execution fragment H of M and a state q of H , de�ne H.q (the fragment of H
given that q has occurred), to be the probabilistic execution fragment of M obtained from H
by removing all the states that do not have q as a pre�x, by replacing all other states q0 with
q0.q, and by de�ning lstate(q) to be the new start state. An important property of H.q is the
following.

Proposition 2.2 For each state q0 of H.q, PH.q[Cq0] = PH [Cqaq0]=PH [Cq].

2.3 Parallel Composition

Two probabilistic automata M1 and M2 are compatible i� int(M1) \ acts(M2) = ; and
acts(M1) \ int(M2) = ;. The parallel composition of two compatible probabilistic automata

8

M1 and M2, denoted by M1 kM2, is the probabilistic automaton M such that

1. States(M) = States(M1)� States(M2).

2. Start(M) = Start(M1)� Start(M2).

3. Sig(M) = ((in(M1) [in(M2))� (out(M1) [out(M2)); (int(M1) [int(M2)); (out(M1) [
out(M2))).

4. ((s1; s2); a;P) 2 Trans(M) i� P = P1
 P2 where

(a) if a 2 Actions(M1) then (s1; a;P1) 2 Trans(M1), else P1 = U(s1), and

(b) if a 2 Actions(M2) then (s2; a;P2) 2 Trans(M2), else P2 = U(s2),

where U(s) denotes a probability distribution over a single state s. Informally, two probabilis-
tic automata synchronize on their common actions and evolve independently on the others.
Whenever a synchronization occurs, the state that is reached is obtained by choosing a state
independently for each of the probabilistic automata involved.

In a parallel composition the notion of projection is one of the main tools to support
modular reasoning. A projection of an execution fragment � onto a component in a parallel
composition context is the contribution of the component to obtain �. Formally, let M be
M1 kM2, and let � be an execution fragment of M . The projection of � onto Mi, denoted by
�dMi, is the sequence obtained from � by replacing each state with its ith component and by
removing all actions that are not actions of Mi together with their following state. It is the
case that �dMi is an execution fragment of Mi.

The notion of projection can be extended to probabilistic executions (cf. Section 4.3 of
[20]). Here we do not present the formal de�nition of projection; rather, we present some
properties of a projection that are needed for our analysis, and we refer the reader to [20] for
a more detailed description. Given a probabilistic execution fragment H of M , it is possible
to de�ne an object HdMi, which is a probabilistic execution fragment of Mi that informally
represents the contribution of Mi to H . The states of HdMi are the projections onto Mi of
the states of H . The most important fact is that the probability space associated with HdMi

is the image space under projection of the probability space associated with H . This property
allows us to prove probabilistic properties of H based on probabilistic properties of HdMi.

Proposition 2.3 Let M be M1 kM2, and let H be a probabilistic execution fragment of M .
Let i 2 f1; 2g. Then
HdMi

= f�dMi j � 2
Hg, and for each � 2 FHdMi
, PHdMi

[�] =
PH [f� 2
H j �dMi 2 �g].

9

2.4 Complexity Measures

A complexity function is a function from execution fragments of M to <�0. A complexity
measure is a complexity function � such that, for each pair �1 and �2 of execution fragments
that can be concatenated, max (�(�1); �(�2)) � �(�1

a �2) � �(�1) + �(�2).

Informally, a complexity measure is a function that determines the complexity of an ex-
ecution fragment. A complexity measure satis�es two natural requirements: the complexity
of two tasks performed sequentially should not exceed the complexity of performing the two
tasks separately and should be at least as large as the complexity of the more complex task; it
should not be possible to accomplish more by working less. In this section we present several
results that apply to complexity functions; later in the paper we present results that apply
only to complexity measures.

2.4.1 Expected Complexity

Consider a probabilistic execution fragment H of M and a �nitely satis�able event � of FH .
Informally, the elements of � represent the points where the property denoted by � is satis�ed.
Let � be a complexity function. Then, we can de�ne the expected complexity � to reach � in
H as follows:

E�[H;�]
4
=
nP

q2� �(q)PH [Cq] if PH [�] = 1
1 otherwise.

Complexity functions on full cuts enjoy several properties that are typical of random variables
[8]. That is, if � is a full cut, then H induces a probability distribution P� over the states
of �. In such case, � is a random variable and E�[H;�] is the expected value of the random
variable.

2.4.2 Linear Combination of Complexity Functions

If several complexity measures are related by a linear inequality, then their expected values over
a full cut are related by the same linear inequality (cf. Proposition 2.4). We use this property
for the time analysis of the protocol of Aspnes and Herlihy. That is, we express the time
complexity of the protocol in terms of two other complexity measures (rounds and elementary
coin
ips), and then we use Proposition 2.4 to derive an upper bound on the expected time
for termination based on upper bounds on the expected values of the other two complexity
measures. The analysis of the other two complexity measures is simpler, and the relationship
between time and the other two complexity measures can be studied using known methods for
ordinary nondeterministic systems, with no probability involved.

Proposition 2.4 Let H be a probabilistic execution fragment of some probabilistic automaton
M , and let � be a full cut of H. Let �; �1; �2 be complexity functions, and c1; c2 be two

10

constants such that, for each � 2 �, �(�) � c1�1(�)+c2�2(�). Then E�[H;�] � c1E�1[H;�]+
c2E�2 [H;�].

Proof. From the de�nition of E�[H;�] and the relationship between �; �1, and �2,

E�[H;�] �
X
q2�

(c1�1(q) + c2�2(q))PH [Cq]:

By a simple algebraic manipulation,

E�[H;�] � c1
X
q2�

�1(q)PH [Cq] + c2
X
q2�

�2(q)PH [Cq]:

The two sums above coincide with the de�nitions of E�1 [H;�] and E�2 [H;�], respectively.
Thus, E�[H;�] � c1E�1 [H;�] + c2E�2 [H;�].

2.4.3 Computation Subdivided into Phases

In this section we study a property of complexity functions that becomes useful whenever
a computation can be divided into phases. Speci�cally, suppose that in a system there are
several phases, each one with its own complexity, and suppose that the complexity associated
with each phase remains 0 until the phase starts. Suppose that the expected complexity of
each phase is bounded by some constant c. If we know that the expected number of phases
that start is bounded by k, then the expected complexity of the system is bounded by ck. The
di�cult part of this result is that several phases may run concurrently.

The protocol of Aspnes and Herlihy works in rounds . At each round a special coin
ipping
protocol is run, and the coin
ipper
ips a number of elementary coins (elementary coin
ips).
The expected number of elementary coin
ips is bounded by some known value c independent
of the round number. We also know an upper bound k on the expected number of rounds
that are started. If we view each round as a phase, then Proposition 2.5 below says that the
expected number of elementary coin
ips is upper bounded by ck.

Proposition 2.5 Let M be a probabilistic automaton. Let �1; �2; �3; : : : be a countable col-
lection of complexity measures for M , and let �0 be a complexity function de�ned as �0(�) =P

i�0 �i(�). Let c be a constant, and suppose that for each fair probabilistic execution fragment
H of M , each full cut � of H, and each i > 0, E�i [H;�] � c.

Let H be a probabilistic fair execution fragment of M , and let � be a complexity measure
for M . For each i > 0, let �i be the set of minimal states q of H such that �(q) � i. Suppose
that for each q 2 �i, �i(q) = 0, and that for each state q of H and each i > �(q), �i(q) = 0.

Then, for each full cut � of H, E�0 [H;�] � cE�[H;�].

11

Proof. From the de�nition of �0,

E�0[H;�] =
X
q2�

X
i>0

�i(q)PH [Cq]: (1)

Since for each q 2 � and each i > �(q), �i(q) = 0, Equation (1) can be rewritten as

E�0[H;�] =
X
q2�

�
�1(q) + � � �+ �b�(q)c(q)

�
PH [Cq]; (2)

which can be rearranged into

E�0[H;�] =
X
i>0

0
@ X

q2�j�(q)�i

�i(q)PH [Cq]

1
A : (3)

For each i > 0, let �i denote the set of minimal states q of H that are pre�xes of some element
of � and such that �(q) � i. Then, by breaking the inner summation of Equation (3),

E�0[H;�] =
X
i>0

0
@X

q2�i

PH [Cq]

0
@ X
q02�jq�q0

�i(q
0)PH [Cq0]=PH [Cq]

1
A
1
A : (4)

Since for each q 2 �i, �i(q) = 0 (�i � �i) the innermost expression of the right hand side of
Equation (4) is E�i [H.q; (� \ Cq).q]. Since H.q is a fair probabilistic execution fragment of
M as well, E�i [H.q; (� \ Cq).q] � c. Thus,

E�0[H;�] �
X
i>0

 X
q2�i

cPH [Cq]

!
; (5)

and since
P

q2�i
PH [Cq] = PH [�i],

E�0[H;�] �
X
i>0

PH [�i]c: (6)

Observe that PH [�i] is the probability that � is at least i in �. Recall also that � is a
random variable for the probability space identi�ed by �. Thus, by Proposition 2.1, part 2,P

i>0 PH [�i] � E�[H;�], and by substituting in (5), E�0[H;�] � cE�[H;�].

12

2.4.4 Complexity Functions and Parallel Composition

To verify properties in a modular way it is useful to derive complexity properties of complex
systems based on complexity properties of the single components. Proposition 2.6 helps in
doing this.

Proposition 2.6 Let M be M1 kM2, and let i 2 f1; 2g. Let � be a complexity function for
M , and let �i be a complexity function for Mi. Suppose that for each �nite execution fragment
� of M , �(�) = �i(�dMi). Let c be a constant. Suppose that for each probabilistic execution
fragment H of Mi and each full cut � of H, E�i[H;�] � c. Then, for each probabilistic
execution fragment H of M and each full cut � of H, E�[H;�] � c.

Proof. Let H be a probabilistic execution fragment of M , and let Hi denote HdMi. Let � be
a full cut of H . Build a discrete probability space Pi as follows:
i = fqdMi j q 2 �g, and for
each q0 2
i, Pi[q0] = PH [fq 2 � j qdMi = q0g]. We prove �rst that the probability space Pi is
a fringe of Hi as de�ned in [20], where a fringe of Hi is a probability distribution P over the
states of Hi such that, for each state q of Hi,

P
q0�q P [q] � PHi

[Cq].

Consider a state q ofHi. Then, from the de�nition of Pi,
P

q0�q Pi[q
0] =

P
q02�jq0dMi�q

PH [Cq0].
Since � is a cut of H , the right expression above is PH [[q02�jq0dMi�qCq0]. Furthermore, the
event [q02�jq0dMi�qCq0 is a subset of the inverse image under projection of Cq. Thus, by
Proposition 2.3,

P
q0�q Pi[q

0] � PHi
[Cq]. This completes the proof that Pi is a fringe.

Let E�i [Hi;Pi] denote
P

q2
i
�i(q)Pi[q]. Then, since for each �nite execution fragment � of

M , �(�) = �i(�dMi), we derive E�[H;�] = E�i [Hi;Pi]. We need to show that E�i [Hi;Pi] � c.

Suppose for the sake of contradiction that E�i [Hi;Pi] > c. Then there is a constant k > 0
such that

P
q2
ijlength(q)�k

�i(q)Pi[q] > c. Consider the full cut �k of Hi containing all the
states q of Hi with length k and all the elements of
Hi

with length less than k. Then, by
de�nition of �k ,

P
q2
ijlength(q)�k

�i(q)Pi[q] � E�i[Hi;�k]. This means that E�i [Hi;�k] > c,
contradicting the hypothesis that E�i [Hi;�k] � c.

The converse of Proposition 2.6 does not hold in general. In fact, even though for each
probabilistic execution fragmentH ofM and each full cut � ofH , E�[H;�] � c, there could be
a probabilistic execution fragment H 0 of Mi and a full cut �0 of H 0 such that E�i [H

0;�0] > c.
As an example, H 0 could be the projection of no probabilistic execution fragment of M . If
i = 1, then H 0 could be a probabilistic execution fragment resulting from the interaction with
an environment that M2 does not provide.

2.5 Probabilistic Complexity Statements

A probabilistic complexity statement is a predicate that can be used to state whether all the
fair probabilistic executions of a probabilistic automaton guarantee some reachability property
within some time t with some minimum probability p. Probabilistic complexity statements

13

essentially express partial progress properties of a probabilistic system. Such partial progress
properties can then be used to derive upper bounds on the expected complexity for progress.

Probabilistic complexity statements can also be decomposed into simpler statements, thus
splitting the progress properties of a randomized system into progress properties that either
are simpler to analyze or can be derived by analyzing a smaller subcomponent of the system.

Progress statements are introduced in [15, 19, 20]. In this section we specialize the theory
of [20] to fair schedulers.

2.5.1 Probabilistic Complexity Statements

A probabilistic complexity statement is a predicate of the form U
��c
�!
p

U 0, where U and U 0

are sets of states, � is a complexity measure, and c is a nonnegative real number. Informally,

the meaning of U
��c
�!
p

U 0 is that starting from any state of U , under any fair scheduler, the

probability of reaching a state from U 0 within complexity c is at least p. The complexity of an
execution fragment is measured according to �.

De�nition 2.7 Let M be a probabilistic I/O automaton, U; U 0 � States(M), c 2 <, and �

be a complexity measure. Then U
��c
�!
p

U 0 is a predicate that is true for M i� for each fair

probabilistic execution fragment H of M that starts from a state of U , PH [eU 0;�(c)(H)] � p,
where eU 0;�(c)(H) denotes the set of executions � of
H with a pre�x �0 such that �(�0) � c
and lstate(�0) 2 U 0.

The fair probabilistic execution fragments of a probabilistic automaton enjoy a property that
in [20] is called �nite history insensitivity . Thus, using a result of [20], the following holds,
which permits us to decompose a progress property into simpler progress properties.

Proposition 2.8 Let M be a probabilistic automaton, and let U; U 0; U 00 � States(M). Let �
be a complexity measure. Then,

1. if U
��c
�!
p
U 0 and U 0 ��c

0

�!
p0

U 00, then U
��c+c0
�!
pp0

U 00;

2. if U
��c
�!
p
U 0, then U [U 00 ��c�!

p
U 0 [U 00.

2.5.2 From Probabilistic Complexity Statements to Expected Complexity

In this section we show how to use probabilistic complexity statements to derive properties
about expected complexities. In the analysis of the protocol of Aspnes and Herlihy we use

14

the result of this section to study the expected number of rounds that the protocol needs to
terminate.

Let M be a probabilistic automaton, and let U ;U 0 � States(M). We denote by U)
UunlessU 0 the predicate that is true for M i� for every execution fragment sas0 of M , s 2
U � U 0) s0 2 U [U 0. Informally, U) UunlessU 0 means that, once a state from U is
reached, M remains in U unless U 0 is reached.

For each probabilistic execution fragment H of M , let �U 0(H) denote the set of minimal
states of H where a state from U 0 is reached. That is, �U 0(H) represents the event that
contains all those executions of
H where a state from U 0 is reached. The following theorem,
which is an instantiation of a more general result of [20], provides a way of computing the
expected complexity for satisfying �U 0(H).

Theorem 2.9 ([20]) Let M be a probabilistic automaton and � be a complexity measure for
M . Let r be a real number such that for each execution fragment of M of the form sas0,
�(sas0) � r, that is, each transition of M can increase the complexity � by at most r. Let U
and U 0 be sets of states of M . Let H be a probabilistic execution fragment of M that starts from
a state of U , and suppose that for each state q of H such that lstate(q) 2 U some transition
is scheduled with probability 1 (i.e., the probability of � in the transition enabled from q in H

is 0). Furthermore, suppose that

1. U
��c
�!
p

U 0 and

2. U) UunlessU 0.

Then, E�[H;�U 0(H)] � (c+ r)=p.

Proof outline.

We omit the proof that PH [�U 0(H)] = 1. Consider the cut � = �U 0 [�c+r , where �U 0 is
the subset of �U 0(H) of states q with �(q) � c, and �c+r is the set of minimal states q of H
such that �(q) � c+ r and such that no proper pre�x of q is in �U 0 (H) (cf. Figure 1). Since
PH [�U 0(H)] = 1, � is a full cut. Then, from Item 1, PH [�U 0] � p. From Item 2, all the states
of �c+r are still elements of U , and thus the experiment above can be repeated from those
points. Each experiment takes c + r complexity units. Since we repeat a binary experiment
until it succeeds, and since each time the probability of success is at least p, we expect to
repeat the experiment 1=p times before being successful. Thus, the expected complexity for
reaching U 0 is at most (c+ r)=p.

It may be surprising to see that we start new experiments every c + r complexity units
rather than every c units. This is because �U 0 [�c would not be a cut if H contains a
transition that leaves from a c-complexity state and reaches a state from U 0 with probability
p0 and a c+ r-complexity state with probability 1� p0. For the fully detailed proof and for a
more general result the reader is referred to [20].

15

ΘU’

ΘU’Θc+r

p

p

Θ

c+r

c+r

c+r

Figure 1: Computation of the expected time from U to U 0.

2.5.3 How to Verify Probabilistic Complexity Statements

A useful technique to prove the validity of a probabilistic complexity statement U
��c
�!
p

U 0 for

a probabilistic automaton M is the following.

1. Choose a set of random draws that may occur within a probabilistic execution of M , and
choose some of the possible outcomes;

2. Show that, no matter how the nondeterminism is resolved, the chosen random draws give
the chosen outcomes with some minimum probability p;

3. Show that whenever the chosen random draws give the chosen outcome, a state from U 0

is reached within c units of complexity �.

This technique corresponds to the informal arguments of correctness that appear in the litera-
ture. Usually the intuition behind an algorithm is exactly that success is guaranteed whenever
some speci�c random draws give some speci�c results.

The �rst two steps can be carried out using the so-called coin lemmas [20], which provide
rules to map a stochastic process onto a probabilistic execution and lower bounds on the
probability of the mapped events based on the properties of the given stochastic process; the
third step concerns non-probabilistic properties and can be carried out by means of any known
technique for non-probabilistic systems. Coin lemmas are essentially a way of reducing the
analysis of a probabilistic property to the analysis of an ordinary nondeterministic property.
The importance of coin lemmas is also in the fact that a common source of errors in the analysis
of a randomized algorithm is to map a probabilistic process onto a probabilistic execution in
the wrong way, or, in other words, to believe that a probabilistic automaton always behaves
like some de�ned probabilistic process while the claim is not true. In Section 3 we present a
coin lemma that deals with random walks.

16

2.6 Re�nement Mappings and Traces

A common veri�cation technique consists of specifying a system as an I/O automaton or a
probabilistic I/O automaton and then building an implementation of the speci�cation. Typ-
ically the notion of implementation is identi�ed by some form of language inclusion. The
important fact is that the interesting properties of a speci�cation are preserved by the notion
of implementation, that is, whenever a property is true for the speci�cation, such property is
true for the implementation as well. In this section we provide the pieces of the technique that
we use for the analysis of the algorithm of Aspnes and Herlihy. More details can be found in
[16, 17, 20].

2.6.1 Traces and Trace Distributions

Trace and trace distributions are abstractions of the behavior of automata and probabilistic
automata, respectively, that are based only on the sequences of external actions that the
automata can provide. Several times, as is the case for the algorithm of Aspnes and Herlihy,
the interesting properties of a system can be expressed in terms of trace and trace distributions.
In such cases it is possible to use traces and trace distributions for the analysis and in particular
to use the related proof techniques.

Let � be an execution of an automaton A. The trace of �, denoted by trace(�), is the
ordered sequence of the external actions that appear in �. Denote a generic trace by �. A
trace is fair if it is the trace of a fair execution. Denote by traces(A) the set of traces of A
and by ftraces(A) the set of fair traces of A.

Let H be a probabilistic execution fragment of a probabilistic automaton M . Let
 =
ext(M)� [ext(M)! be the set of �nite and in�nite sequences of external actions of M . The
trace distribution of H , denoted by tdistr(H), is the probability space (
;F ; P) where F is
the minimum �-�eld that contains the set of cones C�, where � is an element of ext(M)�, and
P = trace(PH), that is, for each E 2 F , P [E] = PH [f� 2
H j trace(�) 2 Eg]. The fact that
tdistr(H) is well de�ned follows from standard measure theory arguments. In simple words,
a trace distribution is just a probability distribution over traces induced by a probabilistic
execution. Denote a generic trace distribution by D. A trace distribution of a probabilistic
automaton M is the trace distribution of one of the probabilistic executions of M . A trace
distribution is fair if it is the trace distribution of a fair probabilistic execution. Denote
by tdistrs(M) the set of trace distributions of M and by ftdistrs(M) the set of fair trace
distributions of M .

2.6.2 Re�nements

Denote a transition (s; a; s0) by s
a
�! s0. For a �nite sequence a1 � � �an let s

a1���an�! s0 if there is

a collection of states s1; : : : ; sn�1 such that s
a1�! s1

a2�! � � �
an�1
�! sn�1

an�! s0. For any external
action a, let s

a
=) s0 if there are two �nite sequences x; y of internal actions and two states

17

s1; s2 such that s
x
�! s1

a
�! s2

y
�! s0. Let s

�
=) s0 if there is a �nite sequence x of internal

actions such that s
x
�! s0.

Let A1; A2 be two automata with the same external actions. A re�nement from A1 to A2

is a function h : States(A1)! States(A2) such that the following conditions hold.

1. For each s 2 Start(A1), h(s) 2 Start(A2).

2. For each transition s
a
�! s0 of A1, h(s)

adext(A2)
=) h(s0).

That is, A2 can simulate all the transitions of A1 via the re�nement function h. An important
property of a re�nement is the following.

Proposition 2.10 ([17]) Suppose that there exists a re�nement from A1 to A2.
Then traces(A1) � traces(A2).

A re�nement can be de�ned also for probabilistic automata as follows. Let M1;M2 be two
probabilistic automata with the same external actions. A probabilistic re�nement from M1 to
M2 is a function h : States(M1)! States(M2) such that the following conditions hold.

1. For each s 2 Start(M1), h(s) 2 Start(M2).

2. For each s
a
�! P , h(s)

adext(M2)
=) h(P).

In particular, a re�nement is a special case of a probabilistic re�nement. The following property
is valid as well.

Proposition 2.11 ([20]) Suppose that there exists a probabilistic re�nement from M1 to M2.
Then tdistrs(M1) � tdistrs(M2).

Finally, the existence of re�nements is preserved by parallel composition, thus enabling modular
veri�cation.

Proposition 2.12 ([20]) Suppose that there exists a probabilistic re�nement between two
probabilistic automata M1 and M2. Then, for each probabilistic automaton M compatible
with M1 and M2, there exists a probabilistic re�nement from M1 kM to M2 kM .

2.6.3 The Execution Correspondence Theorem

Re�nements can be used also to show some liveness properties. Speci�cally, it is possible to
use re�nements to derive fair trace inclusion and fair trace distribution inclusion. Our main

18

technique is based on the execution correspondence theorem [10], which allows us to establish
close relationships between the executions of two automata.

We use re�nements in the analysis of the shared counter in the algorithm of Aspnes and
Herlihy. Our analysis is carried out mainly on an abstract speci�cation of the counters. This
allows us to avoid dealing with unimportant details.

Let A1 and A2 be I/O automata with the same external actions and let h be a re�nement
from A1 to A2. For an execution fragment �, let j�j denote the number of actions that occur
in �. If � is an in�nite execution fragment, then j�j is 1. Let � = s0a1s1a2s2 � � � and
�0 = u0b1u1b2u2 � � � be executions of A1 and A2, respectively. We say that � and �0 are h-
related , written (�; �0) 2 h, if there exists a total, nondecreasing mapping m : f0; 1; : : : ; j�jg !
f0; 1; : : : ; j�0jg such that

1. m(0) = 0,

2. h(si) = um(i) for all 0 � i � j�j,

3. trace(bm(i�1)+1 � � � bm(i)) = trace(ai) for all 0 < i � j�j, and

4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.

Theorem 2.13 ([10]) Let A1 and A2 be automata with the same external actions, and let h
be a re�nement from A1 to A2. Then, for each execution �1 of A1 there is an execution �2 of
A2 such that (�1; �2) 2 h.

The execution correspondence theorem can be used to show fair trace inclusion as follows:
given (�1; �2) 2 h, show that �2 is fair whenever �1 is fair. In this case we also say that h
preserves the fair executions of A1.

The execution correspondence theorem can be extended to the probabilistic case as well
[20]. We do not write the formal de�nitions in this paper; however, the following proposition
can be proved easily from the results about execution correspondence of [20].

Proposition 2.14 Let A1; A2 be two I/O automata, and let M be a probabilistic I/O automa-
ton compatible with A1 and A2. Let h be a re�nement from A1 to A2 that preserves the fair
executions of A1. Then ftdistrs(A1 kM) � ftdistrs(A2 kM).

Proof outline. Since h is a re�nement from A1 to A2, we can conclude from [20] that
the following function is a probabilistic re�nement from A1 kM to A2 kM : h0(sA1 ; sM) =
(h(sA1); sM). That is, h0 coincides with h on the states of A1 and A2 and is the identity function
on the states of M . Let H1 be a fair probabilistic execution of A1 kM . From the de�nition
of h0-relation of [20], and from the de�nition of h0, it is possible to build a fair probabilistic
execution H2 of A2 kM such that (H1; H2) 2 h0. Then, from [20], tdistr(H1) = tdistr(H2).

19

3 Symmetric Random Walks for Probabilistic Automata

The correctness of the protocol of Aspnes and Herlihy is based on the theory of random walks
[8]. That is, some parts of the protocol behave like a probabilistic process known in the
literature as a random walk. The main problem is to make sure that the protocol indeed
behaves as a random walk, or better, to make sure that the protocol has the same probabilistic
properties as a random walk. This is a point where intuition often fails, and therefore we need
a proof technique that is su�ciently rigorous and simple to avoid mistakes.

In this section we present a coin lemma for random walks. That is, we show that if we
choose events within a probabilistic execution fragment according to some speci�c rules, then
the chosen events are guaranteed to have properties similar to the properties of random walks.
Then, by verifying that each one of the chosen events guarantees progress, a non-probabilistic
property, we can derive probabilistic progress properties of the protocol.

We start by presenting the theory of random walks followed by a coin lemma for random
walks. Then we present a result that relates expectations within a random walk to expectations
within a probabilistic execution. This result is used in the analysis of the protocol of Aspnes and
Herlihy to study the expected complexity of the coin
ipping protocols. Finally, we instantiate
our new coin lemma to the speci�c case that we need in the paper.

3.1 Random Walks

Let X be a probability space with sample set f�1; 1g that assigns probability p to 1 and
probability q = (1� p) to �1. Let RW = (
RW ;FRW ; PRW) be the probability space built as
follows. The sample set
RW is the set f�1; 1g! of in�nite sequences of numbers from f�1; 1g.
For each �nite sequence x 2 f�1; 1gn, let Cx, the cylinder with base x, be the set of elements
from
RW with common pre�x x, and let PRW [Cx] = pkqn�k , where k is the number of 1's
in x. Then FRW is the minimum �-�eld that contains the set of cylinders, and PRW is the
unique extension to FRW of the measure de�ned on the cylinders. The construction is justi�ed
by standard measure theory arguments. In other words, RW is a probability space on in�nite
sequences of independent experiments performed according to X .

Similarly to our probabilistic executions, de�ne an event of FRW to be �nitely satis�able
if it is a union of cylinders. Furthermore, denote a �nitely satis�able event by a set � of
incomparable �nite sequences over f�1; 1g.

Consider a particle in the real line, initially at position z, and let X describe a move of the
particle: �1 corresponds to decreasing by 1 the position of the particle, and 1 corresponds to
increasing by 1 the position of the particle. An element of
RW describes an in�nite sequence
of moves of the particle. The probability space RW describes a random walk of the particle.

An important random walk is a random walk with absorbing barriers , that is, a random
walk that is considered to be successful or failed whenever the particle reaches some speci�ed

20

positions (absorbing barriers) of the real line. Consider two barriers B; T such that B � z � T .
Then the following events are studied:

1. the particle reaches T before reaching B;

2. the particle reaches B before reaching T ;

3. the particle reaches either absorbing barrier.

Formally, given a starting point z and a �nite sequence x = x1x2 � � �xn 2 f�1; 1gn let zx =
z +

P
i�n xi be the position of the particle after x. Then, the events 1, 2, and 3 above are

�nitely satis�able and can be denoted by the following sets of �nite sequences, respectively:

1. the set TopRW [B; T; z] of minimal sequences x 2 f�1; 1g� such that zx = T and for no
pre�x x0 of x, zx0 = B;

2. the set BotRW [B; T; z] of minimal sequences x 2 f�1; 1g� such that zx = B and for no
pre�x x0 of x, zx0 = T ;

3. the set EitherRW [B; T; z] = TopRW [B; T; z][BotRW [B; T; z].

The following results are known from random walk theory [8].

Theorem 3.1 Let p = q = 1=2. Then

1. P [TopRW [B; T; z]] = (T � z)=(T � B);

2. P [BotRW [B; T; z]] = (z �B)=(T �B);

3. P [EitherRW [B; T; z]] = 1.

For a �nitely satis�able event � that has probability 1 it is possible to study the average
number of moves that are needed to satisfy � as follows:

ERW [�] =
X
x2�

length(x)PRW [Cx]:

From random walk theory [8] we know the following result.

Theorem 3.2 Let p = q = 1=2. Then ERW [EitherRW [B; T; z]] = �z2 + (B + T)z � BT .

21

3.2 A Coin Lemma for Random Walks

We use a terminology that resembles coin
ipping; thus, the number �1 is replaced by t (tail),
the number 1 is replaced by h (head), p is replaced by ph, and q is replaced by pt. Let M
be a probabilistic automaton and let Acts = f
ip1; : : : ;
ipng be a subset of Actions(M). Let
S = f(U h

1 ;U
t
1); (U

h
2 ;U

t
2); : : : ; (U

h
n ;U

t
n)g be a set of pairs where for each i; 1 � i � n, U h

i ;U
t
i

are disjoint subsets of States(M). Suppose that for every transition (s;
ipi;P) with an action

ipi the following hold:

 � U h
i [U t

i ; (7)

P [U h
i] = ph and P [U t

i] = pt: (8)

The actions from Acts represent coin
ips, and the sets of states U h
i and U t

i represent the two
possible outcomes of a coin
ip labeled with
ipi. Since the sets Acts and S are usually clear
from the context, we omit them from our notation. We write Acts and S explicitly only the
�rst time each new notation is introduced.

3.2.1 The Coin Lemma

Let � be a �nitely satis�able event of RW , and let H be a probabilistic execution fragment
of M . Given an execution � of H , let xActs ;S(�) be the ordered sequence of results of the coin

ips that occur in �, e.g., if the ith occurrence of an action from Acts in � is an occurrence of

ipj that leads to a state from U h

j , then the ith element of x(�) is h, and if the ith occurrence
of an action from Acts in � is an occurrence of
ipj that leads to a state from U t

j , then the

ith element of x(�) is t. Observe that x(�) is �nite if in � there are �nitely many occurrences
of actions from Acts.

LetWActs;S(H;�) be the set of executions � of
H such that either x(�) has a pre�x in �,
or x(�) is a pre�x of some element of �. Informally, W(H;�) contains all those executions of

H where either the coin
ips describe a random walk contained in the event denoted by �,
or there is a way to �x the values of the un
ipped coins so that a random walk of the event
denoted by � is obtained. In other words, if we view the scheduler as a malicious adversary
that tries to resolve the nondeterminism so that the probability of W(H;�) is minimized, the
scheduler does not gain anything by not scheduling coin
ipping operations.

Lemma 3.3 W(H;�) is measurable in PH.

Proof. The set W(H;�) is the union of two sets: the set of executions � of
H such that
x(�) has a pre�x in �, and the set of executions � of
H such that x(�) is a pre�x of some
element of �. The �rst set is a union of cones of the form C� such that x(�) 2 �; the second

22

set is the complement of a union of cones, that is, C� such that x(�) is not a pre�x of any
element of �.

We now prove that, no matter how the nondeterminism is resolved, the probability PH
of the event W(H;�) is lower-bounded by the probability PRW of the event �. That is, the
probability of the mapping of the event � onto H is at least as large as the probability of �.
We �rst prove our result for a special class of events � in Lemma 3.4. Then, we prove the full
result in Theorem 3.5.

Lemma 3.4 Suppose that for each transition (s;
ipi;P) of M , P [U h
i] = ph and P [U t

i] = pt.
If there is a �nite upper bound k on the length of the elements of �, then PH [W(H;�)] �
PRW [�].

Proof. For notational convenience, for each state q of H let PH
q denote the probability space

associated with the unique transition that leaves from q in H .

We prove that PH [W(H;�)] � 1� PRW [�].

For each state q of H , each i 2 f1; : : : ; ng, and each j 2 fh; tg, denote by
(q;U j
i) the set

f(
ipi; q
0) 2
H

q j lstate(q0) 2 U j
i g of pairs where
ipi occurs and leads to a state of U j

i , and
for each action a let a denote also the set of pairs whose �rst element is a, that is, the event
that action a occurs. For each i 2 f1; : : : ; ng, let �i be the set of states q of H such that no
action
ipj , 1 � j � n, occurs in q, and such that PH

q [
ipi] > 0.

The proof is by induction on length(�), the maximum length of the elements of �. If
length(�) = 0, then either � = ; or � = f�g, where � denotes the empty sequence. In
the �rst case W(H;�) = ;, and thus PH [W(H;�)] = 1 � PRW [�] = 1; in the second case
W(H;�) =
H , and thus PH [W(H;�)] = 1 � PRW [�] = 0. For the inductive step, suppose
that length(�) = k + 1. Then,

PH [W(H;�)] =
X

i2f1;:::;ng

X
q2�i

PH [Cq]

0
B@ X
j2fh;tg

X
(
ipi;q

0)2
(q;U j
i)

PH
q [(
ipi; q

0)]PH.q0 [W(H.q0;�.j)]

1
CA : (9)

where �.j is the event � after performing j, that is, the set of the tails of the sequences of
� whose head is j. Informally, to violate W(�.j;H.q0) with a non-empty �, it is necessary
to
ip at least once and then violate the rest of �. Observe that length(�.j) � k. Thus, by
induction, for each j 2 fh; tg and each state q0 of H ,

PH.q0 [W(H.q0;�.j)] � 1� PRW [�.j]: (10)

23

Using (10) in (9), and factoring 1� PRW [�.j] out of the innermost summation, we obtain

PH [W(H;�)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]

0
@ X
j2fh;tg

PH
q [
(q;U j

i)](1� PRW [�.j])

1
A : (11)

Let i 2 f1; : : : ; ng, and j 2 fh; tg, and consider a state q of H . From the de�nition of
the transition relation of a probabilistic execution fragment, there is a collection of transi-
tions (lstate(q);
ipi;Pk) and a collection of probabilities ptk such that

P
k ptk = PH

q [
ipi]

and PH
q [
(q;U j

i)] =
P

k ptkPk[U
j
i]. From hypothesis, for each k, Pk [U

j
i] = pj . Thus,

PH
q [
(q;U j

i)] = PH
q [
ipi]pj . By substituting in (11),

PH [W(H;�)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [
ipi]

0
@ X
j2fh;tg

(1� PRW [�.j])pj

1
A : (12)

Observe that
P

i2f1;:::;ng

P
q2�i

PH [Cq]P
H
q [
ipi] is the probability that some action
ipi occurs

from in H , and hence its value is at most 1. Furthermore, observe that
P

j2fh;tg pjPRW [�.j] =
PRW [�], that is, since ph+ pt = 1,

P
j2fh;tg pj(1�PRW [�.j]) = 1�PRW [�]. Thus, from (12),

PH [W(H;�)] � 1� PRW [�]: (13)

This completes the proof.

Theorem 3.5 Suppose that for each transition (s;
ipi;P) of M , P [U h
i] = ph and P [U

t
i] = pt.

Then, PH [W(H;�)] � PRW [�].

Proof. For each k > 0, let �k be the set of elements of � whose length is at most k. Then,
� = [k>0�k , and from the de�nition of W , W(H;�) = [k>0W(H;�k). Furthermore, for
each k > 0, �k � �k+1, and W(H;�k) � W(H;�k+1). From simple arguments of measure
theory, PRW [�] = limk!+1 PRW [�k], and PH [W(H;�)] = limk!+1 PH [W(H;�k)]. From
Lemma 3.4, for each k > 0, PH [W(H;�k)] � PRW [�k]. Thus, limk!+1 PH [W(H;�k)] �
limk!+1 PRW [�k], that is, PH [W(H;�)]� P [�].

3.2.2 Expected Complexity of the Random Walk

The next theorem shows that the average length of a random walk is preserved by the mapping
W , that is, for �xed H and �, the expected number of coin
ips that may occur in H without
reaching � is bounded above by the expected number of coin
ips necessary to reach � in
RW . First we need a de�nition.

24

De�nition 3.6 Let � be an event in RW , and let M be a probabilistic automaton. For each
�nite execution fragment � of M , de�ne �(�) to be the number of actions from Acts that occur
in � if x(�) does not have any pre�x in �, and to be the number of actions from Acts that
occur in the minimum pre�x �0 of � such that x(�0) 2 �, otherwise.

Informally, �(�) is the number of moves of the random walk that occur in � before satisfying
the event denoted by �. In particular, if � is not satis�ed yet within �, �(�) is the total
number of moves of the random walk that occur in �. Observe that � is a complexity function
but not a complexity measure.

Theorem 3.7 Suppose that for each transition (s;
ipi;P) of H, P [U h
i] = p and P [U t

i] = q.
Also, suppose that PRW [�] = 1. Let �0 be a full cut of H. Then E�[H;�0] � ERW [�].

Proof. By de�nition, E�[H;�0] =
P

q2�0 �(q)PH [Cq].

From the de�nition of �, if q0 � q and x(q0) 2 �, then �(q0) = �(q). Thus, we can build a
new full cut �00 obtained from �0 by replacing each q 2 �0 such that x(q) has a pre�x in � with
the minimum pre�x q0 of q such that x(q0) 2 � and obtain E�[H;�0] =

P
q2�00 �(q)PH [Cq]. In

particular, for no element q of �00 does the sequence x(q) have a proper pre�x in �.

Partition �00 into the set �00
p of states q such that x(q) is a pre�x of some element of �, and

the set �00
n of states q such that x(q) is not a pre�x of any element of �. From the de�nition

of �00, for no element q of �00
n x(q) has a pre�x in �. Thus, W(H;�) \ ([q2�00

n
Cq) = ;.

Since from Theorem 3.1 PH [W(H;�)] = 1, we derive that PH [�
00
n] = 0, which means that

�00
p is a full cut of H . Furthermore, since �00

p � �00, E�[H;�0] �
P

q2�00
p
�(q)PH [Cq], that is,

E�[H;�0] � E�[H;�00
p].

For each k > 0, let �<k be the set of elements of � whose length is less than k, and let
��k be the set of elements of � whose length is at least k. Similarly, let �00

<k be the set of
elements q of �00

p such that length(x(q)) < k, and let �00
�k be the set of elements q of �00

p such
that length(x(q)) � k.

Fix k > 0, and let � 2 W(H;�<k) \ ([q2�00
p
Cq). Since � 2 W(H;�<k), from the de�-

nition of � for each �nite pre�x �0 of �, �(�0) < k. From the de�nition of �00
p , � 2 Cq for

some q 2 �00
p with length(x(q)) < k. Thus, W(H;�<k) \ ([q2�00

p
Cq) � [q2�00

<k
Cq, which

implies PH [W(H;�<k) \ ([q2�00
p
Cq)] � PH [�

00
<k]. Since PH [�

00
p] = 1, PH [W(H;�<k)] =

PH [W(H;�<k) \ ([q2�00
p
Cq)]. This implies that PH [W(H;�<k)] � PH [�00

<k].

From Theorem 3.5, PH [W(H;�<k)] � PRW [�<k], which, combined with the previous
result, gives PH [�00

<k] � PRW [�<k]. From this we derive that E�[H;�00
p] =

P
i>0 PH [�

00
�k] �P

i>0 PRW [��k] = ERW [�], where the �rst and third steps follow from Proposition 2.1. Since,
we have shown already that E�[H;�0] � E�[H;�00

p], we conclude that E�[H;�0] � ERW [�].

25

3.3 Instantiation of the Coin Lemma

In this section we instantiate the results of Section 3.2 with the events presented in Section 3.1.
We also introduce a notation that is more suitable for the speci�c concepts that are described.

Given a �nite execution fragment � of M , let HeadsActs;S(�) denote the number of actions
of the form
ipi in � whose post state is in the corresponding set U h

i , and let TailsActs;S(�)
denote the number of actions of the form
ipi in � whose post state is in the corresponding
set U t

i . Let Di� Acts;S(�) denote HeadsActs ;S(�)� TailsActs;S(�).

De�nition 3.8 For each probabilistic execution fragment H of M , let Top[Acts;S; B; T; z](H)
be the set of executions � of
H such that either

� 9�0��((z +Di� (�0) = T)^ 8�00��0(B < z + Di� (�00))), or

� 8�0��(B < z + Di� (�0) < T) and actions from Acts occur �nitely many times in �.

The event Top[Acts;S; B; T; z](H) captures the situations where either z + Di� (�0) reaches
the top barrier T before the bottom barrier B, or the total number of \
ips" is �nite and
z + Di� (�0) reaches neither barrier.

De�nition 3.9 For each probabilistic execution fragment H of M , let Bot[Acts;S; B; T; z](H)
be the set of executions � of
H such that either

� 9�0��((z +Di� (�0) = B) ^ 8�00��0(z +Di� (�00) < T)), or

� 8�0��(B < z + Di� (�0) < T) and actions from Acts occur �nitely many times in �.

The event Bot[Acts;S; B; T; z](H) captures the situations where either z + Di� (�0) reaches
the bottom barrier B before the top barrier T , or the total number of \
ips" is �nite and
z + Di� (�0) reaches neither barrier.

De�nition 3.10 For each probabilistic execution fragment H of M , let

Either[Acts;S; B; T; z](H)
4
= Top[Acts;S; B; T; z](H)[Bot[Acts;S; B; T; z](H).

The event Either[Acts;S; B; T; z](H) excludes those executions of M where in�nitely many
\
ips" occur and z +Di� (�0) reaches neither barrier.

Proposition 3.11 Let H be a probabilistic execution fragment of M . Then

1. PH [Top[B; T; z](H)]� (z � B)=(T � B).

26

2. PH [Bot[B; T; z](H)]� (T � z)=(T �B).

3. PH [Either[B; T; z](H)] = 1.

Proof.

1. From the de�nitions, the events Top[B; T; z](H) and W(H;TopRW [B; T; z]) are the
same. From Theorems 3.1 and 3.5, PH [Top[B; T; z](H)]� (z �B)=(T �B).

2. From the de�nitions, the events Bot[B; T; z](H) and W(H;BotRW [B; T; z]) are the
same. From Theorems 3.1 and 3.5, PH [Bot[B; T; z](H)]� (T � z)=(T � B).

3. From the de�nitions, the events Either[B; T; z](H) and W(H;EitherRW [B; T; z]) are
the same. From Theorems 3.1 and 3.5, PH [Either[B; T; z](H)] = 1.

We conclude with an instantiation of the result about expected complexities. Let �Acts be
the complexity measure such that �Acts (�) is the number of actions from Acts that occur in
�. De�ne �Acts;B;T;z(�) to be the truncation of �Acts at the point where one of the absorbing
barriers is reached. That is, if there is no pre�x �0 of � such that z +Di� (�0) 2 fB; Tg, then
�Acts ;B;T;z(�) = �Acts (�); otherwise, �Acts;B;T;z(�) = �Acts(�

0), where �0 is the minimum pre�x
of � such that z + Di� (�0) 2 fB; Tg. Observe that �Acts ;B;T;z is not a complexity measure,
but rather a complexity function:

Example 3.1 If T = �B = 10, z = 0, �1 contains 5
ip actions, all giving tail, and �2
contains 15
ip actions, all giving head, then �Acts;B;T;z(�1) = 5, �Acts;B;T;z(�2) = 10, while
�Acts ;B;T;z(�1 a �2) = 20, which is greater than 10 + 5.

Proposition 3.12 Let H be a probabilistic execution fragment of M , and let �0 be a full cut
of H. Let z be chosen so that B � z � T . Then, E�Acts;B;T;z [H;�0] � �z2 + (B + T)z � BT .

Proof. For each state q of H observe that �Acts;B;T;z(�) = �(x(�)), where � is the function
de�ned in De�nition 3.6 using the set � of minimal sequences of f�1; 1g� such that either
B or T is reached starting from z. From Theorem 3.7, E�Acts;B;T;z [H;�0] � ERW [�]. From
Theorem 3.2, ERW [�] � �z2 + (B+ T)z�BT , and therefore E�Acts;B;T;z [H;�0] � �z2+ (B +
T)z �BT .

27

Part II: The Case Study

4 The Algorithm of Aspnes and Herlihy

4.1 The Consensus Problem

The consensus problem consists of making n asynchronous processes decide on the same value
(either 0 or 1) in the presence of stopping faults, given that each process starts with its own
initial value. The initial value is provided by the environment during initialization. We say
that an algorithm solves the consensus problem if it satis�es the following properties.

Validity: If a process decides on a value within an execution of the algorithm, then this
value is the initial value of some process.

Agreement: Any two processes that decide within an execution of the algorithm decide
on the same value.

Wait-free termination: All initialized and non-failed processes eventually decide.

It is known from [9] that there is no deterministic algorithm for asynchronous processes that
solves consensus and guarantees termination even in the presence of at most one single faulty
process. However, the problem becomes solvable using randomization if we relax the termina-
tion condition and we replace it with the following condition.

Probabilistic wait-free termination: With probability 1, all initialized and non-failed
processes eventually decide.

The algorithm that we analyze in this paper is due to Aspnes and Herlihy [5] and relies on
the theory of random walks. It terminates within expected polynomial time. We have chosen
this algorithm because it is frequently cited in the literature and because it is among the most
complicated randomized algorithms so far proposed. The complex structure of the algorithm
allows us to show how modular veri�cation techniques can be applied within a randomized
framework.

4.2 Description of the Algorithm

The algorithm of Aspnes and Herlihy proceeds in rounds. Every process maintains a variable
with two �elds, value and round , that contain the process' current preferred value (0; 1 or ?)
and current round (a non-negative integer), respectively. We say that a process is at round
r if its round �eld is equal to r. Note that, due to asynchrony, di�erent processes could be

28

1init(v)

return-flip(r)1

decide

n

decide

1

n
n

1
1

n n

init(v)

1CF

CF

start-flip(r)

start-flip(r)

return-flip(r)

r

AP

Figure 2: The interaction diagram of the algorithm of Aspnes and Herlihy.

at di�erent rounds at some point of an execution. The variables (value; round) are multiple-
reader single-writer. Each process starts with its round �eld initialized to 0 and its value �eld
initialized to ?.

After receiving the initial value to agree on, each process i executes the following loop. It
�rst reads the (value; round) variables of all other processes in its local memory. We say that
process i is a leader if according to its readings its own round is greater than or equal to the
rounds of all other processes. We also say that a process i observed that another process j is
a leader if according to i's readings the round of j is greater than or equal to the rounds of all
other processes. If process i at round r discovers that it is a leader, and that according to its
readings all processes that are at rounds r and r�1 have the same value as i, then i breaks out
of the loop and decides on its value. Otherwise, if all processes that i observed to be leaders
have the same value v , then i sets its value to v, increments its round and proceeds to the next
iteration of the loop. In the remaining case (leaders that i observed do not agree), i sets its
value to ? and scans the other processes again. If once again the leaders observed by i do not
agree, then i determines its new preferred value for the next round by invoking a coin
ipping
protocol. There is a separate coin
ipping protocol for each round. Figure 2 gives a high level
view of the algorithm. The left box is the main algorithm which is subdivided into processes;
the right boxes are the coin
ipping protocols which interact with the main algorithm through
some invocation and response messages.

We represent the main part of the algorithm as an automaton AP (Agreement Protocol),
and the coin
ipping protocols as probabilistic automata CF r (Coin Flipper), one for each
round r. With this decomposition we can prove several important properties of the algorithm
as properties of AP using ordinary techniques for non-probabilistic systems. Indeed, in this
section we deal with AP only, and we leave the coin
ippers unspeci�ed. Table 1 describes the
state variables of AP . The shared state of process i consists of a single-writer multiple-reader
shared variable with two �elds, value(i) and round(i), that contain process i's current preferred
value and round. The local state of a process i consists of a program counter pc, two arrays,
values and rounds that store the (value; round) variables of other processes after i reads them,
a variable obs that records the processes already observed by i, a variable start that records
the initial preferred value of i, and two boolean
ags, decided and stopped , that re
ect whether

29

Name Values Initially

Local state

pc fnil ; init; read1; read2; check1; check2;
ip;wait ; decideg init
values array [1 : : :n] of f0; 1;?g array of ?
rounds array [1 : : :n] of int array of 0
obs set of f1; : : : ; ng ;
start f0; 1;?g ?
decided Bool false
stopped Bool false

Single-writer multiple-reader shared variables

(value(i); round(i)) f0; 1;?g� int (?; 0)

Table 1: The state variables of a process i in AP .

i has decided or failed. The variable stopped is not relevant for the actual code for process i; it
is used only in the analysis of the algorithm to identify those points where process i has failed.

Table 2 describes the actions and the transition relation of AP . The transitions associated
with each action a are described by giving the conditions that a state s should satisfy to
enable a (Pre:), and the transformations that are performed on s to obtain the post-state of
the transition (E�:). If the precondition is omitted, then it is taken to be true. Table 2 is based
on the following predicates and functions: obs-max-round is the maximum round observed by
process i; obs-leader(j) is true if i observes that j is a leader; obs-agree(r; v) is true if the
observations of all the processes whose round is at least r agree on v; obs-leader-agree(v) is
true if, according to the observations of i, the leaders agree on v; obs-leader-value is the value
of one of the leaders observed by i. Formally,

obs-max-round
4
= maxj2obs(rounds[j])

obs-leader(j)
4
= j 2 obs ^ rounds [j] = obs-max-round

obs-agree(r; v)
4
= 8j2obs rounds [j] � r) values[j] = v

obs-leader-agree(v)
4
= obs-agree(obs-max-round ; v)

obs-leader-value
4
=

�
v if obs-leader-agree(v)
unde�ned if 6 9vobs-leader-agree(v)

It is simple to check that obs-leader-value is a well de�ned function since it is never the case

30

Actions and transitions of process i.

input init(v)i
E�: start v

output start(v)i
Pre: pc = init ^ start = v 6= ?
E�: value(i) v

round(i) 1
obs ;
pc read1

output read1(k)i
Pre: pc = read1

k =2 obs
E�: values[k] value(k)

rounds[k] round(k)
obs obs [fkg
if obs = f1; : : : ; ng then pc check1

output check1i
Pre: pc = check1
E�: if obs-leader(i)^

9v2f0;1gobs-agree(rounds[i]� 1; v) then
pc decide

elseif 9v2f0;1gobs-leader-agree(v) then
value(i) obs-leader-value

round(i) rounds[i] + 1
obs ;
pc read1

else
value(i) ?
obs ;
pc read2

output decide(v)i
Pre: pc = decide ^ values[i] = v
E�: decided true

pc nil

output read2(k)i
Pre: pc = read2

k =2 obs
E�: values[k] value(k)

rounds[k] round(k)
obs obs [fkg
if obs = f1; : : : ; ng then pc check2

output check2i
Pre: pc = check2
E�: if 9v2f0;1gobs-leader-agree(v) then

value(i) obs-leader-value

round(i) rounds[i] + 1
obs ;
pc read1

else
pc
ip

output start-
ip(r)i
Pre: pc =
ip

round(i) = r
E�: pc wait

input return-
ip(v; r)i
E�: if pc = wait and round(i) = r then

value(i) v
round(i) rounds[i] + 1
obs ;
pc read1

input stopi
E�: stopped true

pc nil

Tasks: The locally controlled actions of process i form a single task.

Table 2: The actions and transition relation of AP .

31

that obs-leader-agree(0) and obs-leader-agree(1) are satis�ed simultaneously.

We associate all the locally controlled actions of a process i with a single task. Thus, an
execution fragment � of AP is fair if all processes that are continuously enabled are scheduled
eventually in �.

5 Proving Validity

The proof of validity is very simple and is based on an invariant property (cf. Invariant 5.2).
In this section and in the rest of this paper we use the word \invariant" both for automata and
for execution fragments. An invariant of an automaton is a property that is valid in all the
reachable states of the automaton; an invariant of an execution fragment is a property that is
valid in all the states of the execution fragment. For notational convenience, given v 2 f0; 1g,
we denote by v the value (v + 1)mod 2. We also de�ne a new predicate:

agree(r; v)
4
= 8j(round(j) � r) value(j) = v):

That is, predicate agree(r; v) is true if all the processes at round at least r agree on value v.

Invariant 5.1 Let � be an execution of AP where no action of the form init(�v)i occurs. Then
each state of � satis�es agree(1; v) and obs-agree(1; v).

Proof. Straightforward inductive argument. Informally, each process observes that the leaders
agree on v, and thus no process ever
ips a coin or chooses �v as its preferred value for the next
round.

Invariant 5.2 For each reachable state of AP, and each pair of processes i; j,

1. s:round(i) = 0) s:value(i) = ?, and

2. s:rounds[i]j = 0) s:values [i]j = ?.

Proof. Straightforward inductive argument.

Theorem 5.3 (Validity property) Let � be an execution of AP where no action of the form
init(�v)i occurs. Then in � no action of the form decide(�v)i occurs.

Proof. Suppose by contradiction that there is an occurrence of action decide(�v)i in �, and
let s be the state immediately before action decide(�v)i. From the transition relation of AP ,
s:values[i]i = �v, and by Invariant 5.2, s:rounds [i]i > 0. This contradicts Invariant 5.1.

32

6 Proving Agreement

In this section we prove the agreement property of AP , that is, that any two processes that
decide within an execution decide the same value (cf. Theorem 6.2). We give the high level
proof in Section 6.1 and we prove the main invariant in Section 6.2.

6.1 High Level Proof

The key idea of the agreement proof is that if a process i that is at round r is \about to decide"
on some value v, then every process that is at round r or higher has its value equal to v. We
formalize this statement in Invariant 6.1.

Invariant 6.1 Let i be a process. Given a reachable state of AP, let v = value(i) and r =
round(i). Then

(obs-agree(r � 1; v)i ^ obs-leader(i)i ^ obsi = f1; : : : ; ng)) agree(r; v):

Invariant 6.1 states that if process i has observed all the other processes and has determined
that it is a leader and that all the processes at round at least r� 1 agree on a value v, then all
the processes at round at least r agree on a value v. Before giving the proof of Invariant 6.1, we
use Invariant 6.1 to prove the agreement property. Essentially the idea is that the premise of
Invariant 6.1 is stable, that is, it is always satis�ed in the future once it is satis�ed: if process
i satis�es the premise of Invariant 6.1, then process i decides on value v, and thus the local
state of process i does not change any more.

Theorem 6.2 (Agreement property) For every trace
 of AP the following is true: if
decide(v)i and decide(v0)j both occur in
 then v = v0.

Proof. Let
 be a trace of AP such that decide(v)i and decide(v0)j both occur in
. Let �
be an execution of AP that has trace
. Assume without loss of generality that decide(v)i
occurs �rst in
. Let si and sj be the states before actions decide(v)i and decide(v0)j occur,
respectively. From the transition relation of AP , process i satis�es the premise of Invari-
ant 6.1 in state si, and process j satis�es the premise of Invariant 6.1 in state sj . Thus,
si:agree(round(i); v) and sj :agree(round(j); v

0). Furthermore, it is a simple inductive argu-
ment to show that the premise of Invariant 6.1 is stable, that is, once it is satis�ed it continues
to be satis�ed. Thus, sj :agree(round(i); v). Since in sj there is at least one process at round
max (sj :round(i); sj:round(j)), we derive that v = v0.

33

6.2 Proof of Invariant 6.1

The problem with Invariant 6.1 is that it is not strong enough to hold inductively. Therefore, we
provide a stronger invariant (cf. Invariant 6.3) that implies Invariant 6.1 and holds inductively.
Invariant 6.1 guarantees that some properties hold for those states where a process i has
observed all other processes; for the inductive argument we need to guarantee some properties
also for those states where process i has not observed all other processes yet. Furthermore, we
need to ensure more properties than just the fact that all processes at round at least r have
value v. In particular, we need to make sure that all processes at round r � 1 cannot reach
round r with a value di�erent from v.

Given v 2 f0; 1g, denote by v the value (v+1)mod 2. De�ne new predicates and functions
�ll-max-round i, �ll-leader(j)i, �ll-agree(r; v)i, and �ll-leader-agree(v)i to be the same as the
corresponding predicates and functions obs-max-round i, obs-leader(j)i, obs-agree(r; v)i, and
obs-leader-agree(v)i, with the following exception: the rounds and preferred values used in
the de�nitions are the values observed by i for the processes that i has already observed,
and the actual values of the shared variables for the processes that i has not yet observed.
In other words, an incomplete observation is \completed instantly" with the actual values of
the unobserved processes. Formally, for each process i, let �ll-roundsi and �ll-valuesi be two
vectors de�ned as follows:

�ll-rounds[j]i
4
=

�
rounds [j]i if j 2 obsi;
round(j) if j =2 obsi;

�ll-values[j]i
4
=

�
values [j]i if j 2 obsi;
value(j) if j =2 obsi:

The vectors �ll-rounds and �ll-values are called the �lled vectors of rounds and values. Then,

�ll-max-round i
4
= maxj(�ll-rounds[j]i);

�ll-leader(j)i
4
= �ll-rounds[j]i = �ll-max-round i;

�ll-agree(r; v)i
4
= �ll-roundsi[j] � r) �ll-values[j]i = v;

�ll-leader-agree(v)i
4
= �ll-agree(�ll-max-round i; v)i:

The actual invariant that we prove is the following.

Invariant 6.3 Let i be a process. Given a reachable state of AP, let v = value(i), r =
round(i). If the following holds

1. obs-agree(r� 1; v)i,

34

2. �ll-agree(r; v)i,

3. �ll-max-round i = r,

then

a. 8jobs-agree(r; v)j,

b. agree(r; v),

c. 8j2obsi((round(j) = r � 1 ^ value(j) 6= v)) �ll-max-round j � r).

Informally, Invariant 6.3 states that if nothing is preventing some process i from deciding
on a value v at round r, then none of the processes observed by i is in a position to cause
other processes not to agree on v at round r. Thus, the premises state that according to the
observations of process i, process i is a leader at round r and observes that the other processes
that are at round at least r � 1 agree on v; furthermore all the non-observed processes do
not compromise the leadership of process i and agree on v if they are at round at least r.
This means that it is possible for i to decide on v after completing its scan: the non-observed
processes that are at round r� 1 and do not agree on v may reach round r with value v before
being observed by i. Condition a states that all processes observe agreement on v from round
r, Condition b states that all processes at round at least r do agree on v, and Condition c
states that none of the processes that have been observed already by process i is in a condition
to reach round r with a value di�erent from v.

At this point we can understand better the use of ? in AP . When a process i is about to
decide on v at round r, it could be the case that another process j at round r � 1 is about to

ip a coin for the value to be used in round r. Process j could have observed some old values
of the other processes. However, in such a case the value of process j would be ?. Then,
Condition c ensure that process j observes some process at round at least r, and thus, from
Condition a, process j observes that the leaders agree on v. Hence, process j cannot
ip. In
other words, a process j might not discover that another process i is about to decide on v at
round r during its �rst scan; however, process j would certainly discover the intent of process
i during its second scan.

Observe that Invariant 6.3 implies Invariant 6.1 directly; thus, proving Invariant 6.3 is
su�cient to prove Invariant 6.1. To prove Invariant 6.3 we need several auxiliary invariants that
illustrate some of the key ideas behind the algorithm. Several invariants have straightforward
inductive proofs, which we omit. The �rst invariant, Invariant 6.4, states that a process that
has not started yet is at round 0.

Invariant 6.4 Let i be a process. Then, for each reachable state of AP,

(pci = init)) (round(i) = 0):

35

Invariant 6.5 states that a process has observed all other processes whenever either it has
decided, or it is checking the local variables, or it is interacting with the coin
ipping protocol.

Invariant 6.5 Let i be a process. Then, for each reachable state of AP,

pci 2 fcheck1; check2; decide;
ip;waitg) obsi = f1; : : : ; ng:

Invariant 6.6 states that the preferred value of a process is ? during the second scan of the
shared variables and during the interaction with the coin
ipping protocol.

Invariant 6.6 Let i be a process. Then, for each reachable state of AP,

pci 2 fread2; check2;
ip;waitg) value(i) = ?:

Invariant 6.7 states that if a process is interacting with a coin
ipping protocol, then that
process observes that the leaders do not agree.

Invariant 6.7 Let i be a process. Then, for each reachable state of AP,

pci 2 f
ip;waitg)6 9vobs-leader-agree(v)i:

Invariant 6.8 states that the round numbers observed by each process are never larger than
the actual round numbers of the processes.

Invariant 6.8 Let i; j be two processes. Then, for each reachable state of AP,

rounds[j]i � round(j):

Invariant 6.9 is a consequence of the fact that a process cannot prefer two di�erent values
during the same round. That is, if process j observes the current round of process i and
process i does not prefer ?, then then the value of process i observed by process j coincides
with the actual preferred value of process i. In other words, if process j observes that at some
point process i is at round r and prefers value v, then the actual preferred value of process i
while its round is r is either v or ?.

Invariant 6.9 Let i; j be two processes. Then, for each reachable state of AP,

(rounds[i]j = round(i)^ value(i) 2 f0; 1g)) (values[i]j = value(i)):

36

Proof. For notational convenience, let I(s) denote the invariant above. We prove I(s) by
induction on the length of an execution of AP leading to s. If s is a start state, then I(s) is
satis�ed trivially since s:value(i) = ? for all i. For the inductive step it is enough to show
that for every transition (s; a; s0) of AP , I(s) implies I(s0). We distinguish the following cases
based on a.

1. a = read1(i)j or a = read2(i)j.

The transition relation of AP ensures that s0:values[i]j = s0:value(i). Thus, I(s0) is true.

2. a = check1i or a = check2i or a = start(v)i, or a = return-
ip(v; r)i, v 2 f0; 1g, r > 0.

If s0:pci = decide , then none of the relevant variables for I(s0) has changed, and thus I(s0)
is true; if s0:pci 6= decide, then either s0:round(i) = s:round(i) + 1 or s0:value(i) = ? (cf.
Ivariants 6.4 and 6.6). In the �rst case, since process j does not change state, and since
by Invariant 6.8 s:round(i) � s:rounds [i]j, we derive that s0:round(i) > s0:rounds[i]j.
Thus, in both cases one of the premises of I(s0) is not satis�ed, which means that I(s0)
is true.

3. None of the previous cases hold.

I(s) implies I(s0) trivially, since all the relevant components stay unchanged.

Invariant 6.10 states that whenever a process has observed itself, the observed round and value
coincide with the actual round and value.

Invariant 6.10 Let i be a process. Then, for each reachable state of AP,

i 2 obsi) (rounds [i]i = round(i)^ values[i]i = value(i)):

Proof. Fix a process i. For notational convenience let I(s) denote the invariant above. We
prove I(s) by induction on the length of an execution of AP leading to s. If s is a start state,
then I(s) is satis�ed trivially since s:obsi = ;. For the inductive step it is enough to show
that for every transition (s; a; s0) of AP , I(s) implies I(s0). We distinguish the following cases
based on a.

1. a = read1(i)i or a = read2(i)i.

The transition for read(i)i ensures that s0:rounds[i]i = s:round(i) and that s0:values[i]i =
s:value(i). Since round(i) and value(i) do not change from s to s0, I(s0) is true.

2. a = check1i or a = check2i or a = init(v)i, or a = return-
ip(v; r)i, v 2 f0; 1g, r > 0.

If s0:pci 2 fdecide;
ipg, then none of the relevant variables for I(s0) has changed from
s to s0, and I(s0) is true. If s0:pci =2 fdecide;
ipg, then s0:obs = ;, falsifying i 2 s:obsi.
Therefore, I(s0) is satis�ed trivially.

37

3. None of the cases above hold.

I(s) implies I(s0) trivially, since all the relevant conditions stay unchanged.

Invariant 6.11 states that whenever the maximum round is at most r and all processes agree
on a value v from round r, then all processes observe that there is agreement on v from round
r.

Invariant 6.11 Let r be a non-negative integer and v 2 f0; 1g. Then, for each reachable state
of AP,

(max-round � r ^ agree(r; v))) 8jobs-agree(r; v)j:

Proof. Suppose that the premises of the invariant above are satis�ed, and let i; j be two
processes such that rounds [i]j = r. By Invariant 6.8 and from max-round � r, round(i) = r.
Thus, from agree(r; v), value(i) = v. By Invariant 6.9, values[i]j = v.

The following lemma is more technical and is used to shorten the inductive argument in the
proof of Invariant 6.3. It states that, under certain conditions, if the premises of Invariant 6.3
are satis�ed in the post-state of a transition, then the premises of Invariant 6.3 are satis�ed in
the pre-state of the transition as well.

Lemma 6.12 Let (s; a; s0) be a transition of AP, where a is either read1(k)j or read2(k)j or
check1j or check2j or return-
ip(v0; r0)i, v0 2 f0; 1g, r0 > 0. Let i be a process such that i 6= j

if a = check1j or a = check2j or a = return-
ip(v0; r0)j. If, for v 2 f0; 1g and r > 0, the
following conditions hold in s0:

1. obs-agree(r� 1; v)i,

2. �ll-agree(r; v)i,

3. �ll-max-round i = r,

4. value(i) = v and round(i) = r,

then the same conditions hold in s as well.

Proof. We distinguish two cases based on a.

1. a = read1(k)j or a = read2(k)j .

Observe that for each process l, s:value(l) = s0:value(l) and s:round(l) = s0:round(l).
This implies Condition 4 in s. It is left to show Conditions 1; 2; and 3 for s. If
i 6= j then s:values i = s0:valuesi and s:roundsi = s0:roundsi. Thus, Conditions 1; 2;

38

and 3 are satis�ed trivially in s. If i = j, then for every process l such that l 6= k,
s:values[l]i = s0:values[l]i and s:rounds [l]i = s0:rounds [l]i. Since k 62 s:obsi (i is reading
from k), and since Condition 1 holds in s0, Condition 1 also holds in s. Condition 2
follows directly from Condition 2 for s0 and the fact that s0:values[k]i = s:value(k)
and s0:rounds[k]i = s:round(k); Condition 3 follows from Condition 3 in s0 and from
s0:rounds[k]i = s:round(k).

2. a = check1j or a = check2j or a = return-
ip(v0; r0)j .

Observe that, by Invariants 6.5 and 6.10, s:round(j) = s:rounds[j]j. Conditions 3 and
4 are trivial, since the state of process i is the same in s and s0 (i 6= j), s:round(j) �
s0:round(j), and s:round(i) = r. Similarly, Condition 1 holds in s. It is left to show
that Condition 2 holds in s. Since j is the only process that changes state, and since
Condition 2 is a�ected only if j 62 s0:obsi, which is equivalent to j 62 s:obsi, it is su�cient
to verify s:round(j) = r) s:value(j) = v under the assumption that j 62 s:obsi. We
distinguish two cases.

(a) s0:pcj 2 fdecide;
ipg.

No other state variable has changed in the transition. Thus, Condition 2 holds in s.

(b) s0:pcj = read .

From Condition 3 in s0 we have s0:round(j) � r. If s0:value(j) = ?, then Condition 2
for s0 implies s0:round(j) < r, and therefore s:round(j) < r, which implies Condition
2 for s. If s0:value(j) 6= ?, then the transition relation of AP implies s:round(j) <
s0:round(j), and therefore, since from Condition 3 s0:round(j) � r, s:round(j) < r.
This implies Condition 2 for s.

Proof of Invariant 6.3

For notational convenience, for each state s and process i let I(s) denote the whole invari-
ant, C1 (s; i);C2(s; i); and C3 (s; i) denote Conditions 1, 2, and 3, respectively, and Ca(s; i),
Cb(s; i), and Cc(s; i) denote Conditions a, b, and c, respectively.

We prove I(s) by induction on the length of an execution of AP leading to s. If s is a start
state, then I(s) is satis�ed trivially since s:value(j) = ? for all j and s:obsi = ;, and thus
C2 (s; i) is not satis�ed. For the inductive step it is enough to show that for every transition
(s; a; s0) of AP , I(s) implies I(s0). We distinguish the following cases based on a.

1. a = start(v0)j for some v0 and j.

Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),
v = s0:round(i). We distinguish the following cases.

(a) i = j.

In this case r = 1 and v0 = v. Since s0:obsi = ;, Cc(s0; i) is trivially true, and
Cb(s0; i) follows from C2 (s0; i). Furthermore, from C3 (s0; i), s0:max-round = 1, and
thus the premises of Invariant 6.11 are satis�ed, giving Ca(s0; i).

39

(b) i 6= j and r = 1.

From C1 (s0; i), j =2 s0:obsi, otherwise process i would have observed ? at round r�1.
Thus, from C2 (s0; i), v0 = v. Since, except for process j, all the relevant components
for C1 (s; i) and C2 (s; i) do not change, we derive C1 (s; i)^ C2 (s; i). If C3 (s; i) is
true as well, then Ca(s; i)^Cb(s; i)^Cc(s; i) is true, and Ca(s0; i)^Cb(s0; i)^Cc(s0; i)
follow directly. If C3 (s; i) is false, then s:obsi = ;, otherwise C1 (s; i) would be false,
and thus j is the only process in s0 that is at round r. This implies Cb(s0; i)^Cc(s0; i)
directly. By Invariant 6.8, Ca(s; i) is true, and thus, since none of the relevant state
components change, Ca(s0; i) is true as well.

(c) i 6= j and r = 2.

Observe that C1 (s; i) ^ C2 (s; i) ^ C3 (s; i) is true, since process j does not a�ect
their validity. Thus, Ca(s; i)^ Cb(s; i)^ Cc(s; i) is true. Then, Ca(s0; i)^ Cb(s0; i)
since process j does not a�ect their validity. Since s0:obsj = ;, from C3 (s0; i) and
by Invariant 6.8 we derive that process j satis�es the condition for Cc(s0; i). Thus,
Cc(s0; i) follows from Cc(s; i).

(d) i 6= j and r > 2.

I(s0) follows trivially from I(s) since process j does not a�ect any of the relevant
conditions.

2. a = read1(k)j or a = read2(k)j for some j and k.

Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),
v = s0:round(i). By Lemma 6.12, s:value(i) = v, s:round(i) = r, and C1 (s; i)^C2(s; i)^
C3 (s; i). Since I(s) is true, we also have Ca(s; i)^ Cb(s; i)^ Cc(s; i). We need to show
Ca(s0; i)^ Cb(s0; i)^ Cc(s0; i).

To show Ca(s0; i) it is enough to show that s0:rounds[k]j � r) s0:values[k]j = v. From
the transition relation of AP , s0:rounds [k]j = s:round(k) and s0:values[k]j = s:value(k).
Thus, Cb(s; i) su�ces.

Cb(s0; i) follows trivially from Cb(s; i) since none of the relevant state components change.

For Cc(s0; i), suppose that j 2 s0:obsi, s0:round(j) = r� 1, s0:value(j) 6= v. Observe that
i 6= j since s:round(i) = r and thus s0:round(i) 6= r � 1. The terms s:�ll-max-round j
and s0:�ll-max-round j di�er only in the use of round(k) and rounds[k]j . The transition
relation of AP ensures the equality of the two terms above. Thus, Cc(s0; i) follows from
Cc(s; i).

3. For some j, a = check1j or a = check2j or a = return-
ip(v0; r0)i, v
0 2 f0; 1g, r0 > 0.

Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),
v = s0:round(i). Observe that, by Invariants 6.5 and 6.10, s:round(j) = s:rounds [j]j.
Furthermore, observe that for all processes l,

s0:roundsl = s:rounds l ^ s0:valuesl = s:valuesl ^ s0:obsl � s:obsl: (14)

40

If s0:pcj 2 fdecide;
ipg, then I(s0) follows trivially from I(s) since none of the relevant
state components change. Thus, we consider only the case where s0:pcj 6= decide. In
particular, s0:obsj = ;.

If i = j (and s0:pci =2 fdecide;
ipg), then from s0:obsi = ; we get Cc(s0; i). Further-
more, s0:obsi = ; and C2 (s0; i) imply s0:agree(r; v), and thus Cb(s0; i) is true. From
s0:obsi = ; and C3 (s0; i), we derive s0:max-round � r. This means that the conditions of
Invariant 6.11 are satis�ed, and thus Ca(s0; i) is true.

If i 6= j (and s0:pci =2 fdecide;
ipg), then Lemma 6.12 implies that s:value(i) = v and
s:round(i) = r and C1 (s; i)^ C2 (s; i)^ C3 (s; i). Since I(s) is true, we have Ca(s; i) ^
Cb(s; i)^Cc(s; i). Equation (14) and Ca(s; i) imply Ca(s0; i). Since s0:round(i) = r, from
s0:obsj = ; we derive s0:�ll-max-round j � r, and thus Cc(s0; i) follows from Cc(s; i). To
show Cb(s0; i) we distinguish the following cases.

(a) s:round(j) � r.

By Invariant 6.5, s:obsj = f1; : : : ; ng, and thus, by Invariant 6.10, s:rounds[j]j =
s:round(j). From Ca(s; i), since s:obsj = f1; : : : ; ng, and since s:round(j) � r, we
derive s:obs-leader-agree(v)j . By Invariant 6.7, s:pcj 6= wait , and thus, from the
transition relation of AP , s0:value(j) = v and s0:round(j) > r. Therefore, Cb(s0; i)
follows from Cb(s; i).

(b) s:round(j) = r � 1 and s:value(j) = ?.

By Invariant 6.5, s:obsj = f1; : : : ; ng. If j 2 s0:obsi, then Ca(s; i)^ Cc(s; i) implies
s:obs-leader-agree(v)j . By Invariant 6.7 and from the transition relation of AP ,
s0:value(j) = v and s0:round(j) = r. Therefore Cb(s0; i) follows from Cb(s; i). If
j =2 s0:obsi, then from C2(s0; i), s0:value(j) = v. Thus, Cb(s0; i) follows from Cb(s; i).

(c) s:round(j) = r � 1 and s:value(j) 6= ?.

By Invariant 6.5, s:obsj = f1; : : : ; ng, and by Invariant 6.6, a = check1. If j =2
s0:obsi, then C2 (s0; i) implies :s:obs-leader-agree(�v)j, since otherwise s0:value(j)
would be �v; if j 2 s0:obsi and s:value(j) = v, then Ca(s; i) and Invariant 6.10 imply
:s:obs-leader-agree(�v)j ; if j 2 s0:obsi and s:value(j) = �v, then from Cc(s; i) we
derive s:�ll-max-round j � r, and thus, from Ca(s; i), s:obs-leader-agree(v)j.

Thus, in every case we have :s:obs-leader-agree(�v)j . If s:obs-leader-agree(v)j, then
from the transition relation of AP we have s0:value(j) = v and s0:round(j) = r.
Therefore, Cb(s0; i) follows from Cb(s; i). If :s:obs-leader-agree(v)j , then from the
transition relation of AP we have s0:value(j) = ? and s0:round(j) = r � 1. Again,
Cb(s0; i) follows from Cb(s; i).

(d) s:round(j) < r � 1.

Since s0:round(j) � r � 1, Cb(s0; i) follows trivially from Cb(s; i).

4. None of the previous cases hold.

I(s) implies I(s0) since all the relevant components of s and s0 stay unchanged.

41

Proof of Invariant 6.1
Follows directly from Invariant 6.3.

7 Non-Probabilistic Progress Properties

Our next objective is to show that in the algorithm of Aspnes and Herlihy some decision is
reached within some expected number of rounds. This property depends on the probabilistic
properties of the coin
ipping protocols. However, there are several progress properties of the
algorithm that do not depend on any probabilistic assumption. In this section we study such
properties. The advantage of this approach is that we can use existing techniques for ordinary
nondeterministic systems and con�ne the probabilistic arguments to a very limited section of
the analysis. In this way we can also point out very precisely what is the essential role of
probability within the protocol we analyze. The results of this section are integrated with
probabilistic arguments in Section 8.

For each round r, let CF r be a coin
ipping protocol, that is, a probabilistic automaton with
the interface of a coin
ipper of Figure 2. De�ne AH (Aspnes-Herlihy) to be AP k (kr�1CF r).

For each �nite execution fragment � of AH , de�ne

�MaxRound (�)
4
= lstate(�):max-round � fstate(�):max-round ;

where max-round is a function that gives the maximum round number among all the processes.
Since the round number of each process is monotonically nondecreasing, it is immediate to
verify that �MaxRound is a complexity measure. De�ne the following sets of states.

R the set of reachable states of AH such that 9ipci =2 finit ; nilg;

D the set of reachable states of AH such that 8i(pci 2 finit; nilg).

We call the states of R active, since they represent situations where some process is participat-
ing actively in the consensus protocol. We want to show that, under some special conditions on
the coin
ipping protocols, starting from any state of R, a state from D is reached within some
bounded number of rounds. It turns out that it is easier to split the problem in two parts: �rst
we show a simple property that, unless the algorithm terminates, the system reaches a point
where one process has just moved to a new maximum round (F0 and F1 below, where the
subscript corresponds to the value preferred by the process at the maximum round); then, we
show that from such an intermediate point, under some special conditions on the coin
ipping
protocols, the algorithm terminates. Formally, de�ne the following sets of states.

F0 the set of states of R where there exists a round r and a process l such that round(l) = r,
value(l) = 0, obsl = ;, and for all processes j 6= l, round(j) < r;

42

F1 the set of states of R where there exists a round r and a process l such that round(l) = r,
value(l) = 1, obsl = ;, and for all processes j 6= l, round(j) < r.

We show two properties, the �rst of which is almost trivial:

1. (Proposition 7.3) If AH is in a state s of R and all invocations to the coin
ippers on
non-failing ports get a response, then a state from F0 [F1 [D is reached within one
round.

2. (Proposition 7.8) If AH is in a state s of Fv, all invocations to the coin
ippers on
non-failing ports get a response, and all invocations to CF s:max-round get only response
v, then a state from D is reached within two rounds.

To state formally the two properties above we need to de�ne the meaning of the sentences \all
invocations to the coin
ippers on non-failing ports get responses", and \all invocations to CF r

get only response v", which we identify with the concepts of responsiveness and (v; r)-globality ,
respectively.

De�nition 7.1 A port i is non-failing in an execution fragment � of AH or of CF r if action
stopi does not occur in �.

An invocation to CF r from process i is pending in a reachable state s of CF r if there is
an execution � of CF r, ending in state s, such that in � port i is non-failing, there is at least
one occurrence of action start-
ip(r)i, and the last occurrence of start-
ip(r)i is not followed
by any action of the form return-
ip(v; r)i.

An execution fragment � of CF r is responsive if, for each decomposition �1
a �2 of � the

following holds: if in fstate(�2) there is a pending request of process i to CF r, then in �2
either action stopi occurs, or action return-
ip(v; r)i occurs for some v 2 f0; 1g. An execution
fragment � of AH is responsive if, for each r > 0, �dCF r is responsive.

An execution fragment � of CF r is v-global i� for each action of the form return-
ip(v0; r)i
that occurs in �, v0 = v. An execution fragment � of AH is (v; r)-global i� �dCF r is v-global.

Remark 7.1 The de�nition of pending request may appear rather cumbersome, since we
could state it just in terms of the components of a state of CF r. The problem is that CF r is
not speci�ed yet, and thus we cannot refer to its state components: we can refer only to the
interactions that CF r has with its external environment.

Statement 1 is almost trivial and states that within one round some process moves �rst
to a new round or all processes terminate. Statement 2 is the key result of this section. It
states that if the maximum round is r and the process at round r has value v, then the system
quiesces within two rounds if CF r behaves like a global coin
ipper. We start with Statement 1,
which requires a trivial preliminary lemma.

43

Lemma 7.2 Let � be a fair execution fragment of AH that starts from a state of R, and
assume that � is responsive. Then in � either a state from D is reached, or max-round grows
unboundedly.

Proof. Follows directly from the fact that all processes perform �nitely many operations in
every round.

Proposition 7.3 Let s0 be a state of R, and let � be a fair execution fragment of AH that
starts from state s0. Suppose that � is responsive. Then in � a state of F0 [F1 [D is
reached within one round. That is, � = �1

a �2 such that lstate(�1) 2 F0 [F1 [D and
�MaxRound (�1) � 1.

Proof. If D is not reached, then, by Lemma 7.2, max-round grows unboundedly. Thus, some
process will be the �rst process to reach round s0:max-round + 1. At that point a state from
F0 [F1 is reached.

This proves Statement 1. For Statement 2 we need to prove some preliminary invariants. The
�rst invariant is an immediate consequence of the fact that a process has a correct view of
itself whenever it has observed itself.

Invariant 7.4 Let i be a process. Then, for each reachable state of AH ,

�ll-max-round i � round(i):

Proof. Straightforward inductive argument.

The second invariant states that the round of each process is monotonically increasing and
that a process cannot prefer both values 0 and 1 in the same round.

Invariant 7.5 Let � be an execution fragment of AH , and let s0 = fstate(�) be reachable in
AH . Let l be a process, r = s0:round(l), and v = s0:value(l). If v 6= ?, then for each state of
�,

round(l) � r ^ (round(l) = r) value(l) 6= �v):

Proof. Straightforward inductive argument.

The third invariant is more technical. The important part is the second condition, which states
that all processes observe agreement on value v from round r+1 provided that the coin
ipper
for round r always returns v, that at the beginning there is exactly one process at round r,
and that the process at round r prefers value v. The other two conditions are necessary to
carry out the inductive proof.

44

Invariant 7.6 Let � be an execution fragment of AH whose �rst state s0 is a state of Fv.
Let r = s0:max-round, and let l be the (unique) process that satis�es s0:round(l) = r. Suppose
that � is (v; r)-global. Then, for each state of �,

1. 8j(round(j) = r) :�ll-leader-agree(�v)j)

2. 8j�ll-agree(r + 1; v)j.

3. agree(r+ 1; v).

Proof. For notational convenience let I(s) denote the whole invariant. State s0 satis�es
Conditions 2 and 3 trivially since s0:max-round < r + 1. For Condition 1, since process l is
the only process at round r, and since s0:value(l) = v and s0:obsl = ;, it cannot be the case
that s0:�ll-leader-agree(�v)l. For the inductive step we consider a subsequence sas0 of � and we
distinguish cases based on a.

1. a = init(v0)i for some i.

If r > 1, then none of the conditions of I(s) are a�ected. If r = 1, then Conditions 2
and 3 are not a�ected as well. Consider a generic process j such that s0:round(j) =
r. If j = i, then since s0:obsj = ;, Invariant 7.5 and Condition 3 for s0 ensure that
:�ll-leader-agree(�v)j. If j 6= i, then, since Condition 1 holds in s, there is some process
k 6= i that is a leader with value di�erent from �v in the �lled vector of process j. We
know that k 6= i because, by Invariant 7.4, s:�ll-max-round j � r, and thus process i

could not a�ect Condition 1 in s. The kth entry of the �lled vector of j is not a�ected
during the transition from s to s0, and thus Condition 1 is preserved.

2. a = read1(k)i or a = read2(k)i for some i and k.

In this case Condition 3 is not a�ected. Thus, we need to deal only with Conditions 1
and 2, which are a�ected only for process i. In particular, Conditions 1 and 2 di�er
in s and s0 for the use of (round(k); value(k)) and (rounds [k]i; values[k]i), respectively.
The transition relation of AP ensures the equality of the terms above, and thus the
preservation of Conditions 1 and 2.

3. a = check1i or a = check2i or a = return-
ip(v0; r0)i for some i.

We consider only the case where r0 = round(i), since otherwise nothing changes during
the transition from s to s0. We distinguish the following cases.

(a) s:round(i) < r � 1.

In this case I(s0) follows trivially from I(s) since none of the conditions are a�ected.

(b) s:round(i) = r � 1.

Conditions 2 and 3 are not a�ected. If s0:round(i) = r � 1, then Condition 1 is not
a�ected as well. Otherwise, s0:obsi = ;. Observe also that i 6= l. Thus, Condition 1
follows from Condition 1 for s and by Invariant 7.5.

45

(c) s:round(i) = r.

If s0:round(i) = r, then Conditions 2 and 3 are not a�ected. For Condition 1, if
s0:pci = decide, then Condition 1 is not a�ected; otherwise, s0:value(i) = ? and
s0:obsi = ;. Thus, Condition 1 follows from Condition 1 for s and from Condition 3.

If s0:round(i) = r + 1, then Condition 1 and the transition relation of AP(v; r)
ensure that s0:value(i) = v. Thus, Conditions 1, 2 and 3 are all preserved.

(d) s:round(i) > r.

From Condition 2 on s, either process i decides on v, or a new round is reached
with preference v. In both cases Conditions 1, 2 and 3 are preserved.

4. None of the previous cases hold.

I(s0) follows trivially from I(s) since none of the relevant state components change.

Finally, we can show that from Fv the maximum round of the processes does not grow by more
than 2 provided that the coin
ipper at the maximum round always returns v.

Invariant 7.7 Let � be an execution fragment of AH whose �rst state s0 is a state of Fv.
Let r = s0:max-round. Suppose that � is (v; r)-global. Then, for each state of �, and for each
process j,

round(j) � r + 2:

Proof. First observe that � satis�es the conditions of Invariant 7.6, which means that Invari-
ant 7.6 is satis�ed by all the states of �.

All the cases for the proof are straightforward except for the case where a transition
(s; check1j ; s

0) occurs and s:round(j) = r+ 2. In such case, from Condition 2 of Invariant 7.6,
s:�ll-agree(r + 1; v)j. Since s:obsj = f1; : : : ; ng, we derive that s:obs-agree(r + 1; v), and thus
process j sets pcj to decide without reaching round r+ 3. Observe that check2j cannot occur
when round(j) = r+ 2 since in such case value(j) = ? and Invariant 7.6 would be violated.

Proposition 7.8 Let � be a fair execution fragment of AH whose �rst state s0 is a state
of Fv. Let r = s0:max-round. Suppose that � is responsive and (v; r)-global. Then in � a
state from D is reached within two rounds. That is, � = �1

a �2 where lstate(�1) 2 D and
�MaxRound (�1) � 2.

Proof. Suppose that D is not reached in �. Then, by Lemma 7.2, some process eventually
reaches round r + 3, contradicting Invariant 7.7. Therefore, in � a state from D is reached.
Furthermore, by Invariant 7.7, a state from D is reached within two rounds.

46

8 Probabilistic Progress Properties

Suppose that each coin
ipping protocol CF r satis�es the following properties.

C1 For each fair probabilistic execution fragment of CF r that starts with a reachable state
of CF r, the probability of the execution fragments that are responsive is 1.

C2 For each fair probabilistic execution of CF r, and each value v 2 f0; 1g, the probability
of the executions that are responsive and v-global is at least p, where p is a real number
such that 0 < p � 1.

In this section we show that under Conditions C1 and C2 for every CF r, AH guarantees
progress within expected O(1=p) rounds. That is, we prove the following proposition.

Proposition 8.1 If each coin
ipping protocol CF r satis�es properties C1 and C2, then in
AH , starting from any state of R and under any fair scheduler, a state from D is reached
within at most O(1=p) expected rounds.

Thus, we need to show only that it is possible to build distributed implementations of the coin

ippers that satisfy C1 and C2 with a suitable value for p. We build the implementations in
Sections 9 and 10.

Remark 8.1 Observe that property C1 refers to probabilistic execution fragments, while
Property C2 refers to probabilistic executions. This distinction is important. Property C1
states that a coin
ipper gives responses with probability 1 from any arbitrary point in its com-
putation; Property C2 guarantees that with probability p a speci�c value is always returned,
but only if we observe the coin
ipper from the beginning. C2 is not true for an arbitrary
probabilistic execution fragment: if we consider a fragment that begins in a state where two
processes are about to return two di�erent values, then all processes return the same value
with probability 0.

We now turn to the proof of Proposition 8.1. The main statement that we use is

R
�MaxRound�3�!

p
D: (15)

To prove Statement (15) we prove two intermediate statements:

R
�MaxRound�1�!

1
F0 [F1 [D; (16)

and for each v 2 f0; 1g,

Fv
�MaxRound�2�!

p
D: (17)

47

The proofs of Statements (16) and (17) rely on Propositions 7.3 and 7.8 and on the probabilistic
properties of the coin
ipping protocols. In particular, the �rst statement relies on the fact
that the coin
ippers respond, which occurs with probability 1 (C1), and the second statement
relies on the fact that some speci�c coin
ipper always returns a speci�c value v, which is the
case with probability at least p (C2).

Proposition 8.2 Assuming that the coin
ippers in AH satisfy C1,

R
�MaxRound�1�!

1
F1 [F0 [D: (18)

Proof. Let H be a probabilistic execution fragment of AH that starts from a state of R. Let
� be the set of executions of
H where each invocation to any coin
ipper on a non-failing port
gets a response. By Proposition 7.3, in each execution of � a state from F1[F0[D is reached
within one round. Thus, it is su�cient to show that PH [�] = 1. Let, for each i � 1, �i be the
set of executions of
H where each invocation to CF i on a non-failing port gets a response.
Then � = \i�1�i. Observe that, by de�nition, �i is the inverse image under projection of the
set of executions of
HdCFi

where each invocation on a non-failing port gets a response. From
C1, for each i, PHdCFi

[�idCF i] = 1, and thus, by Proposition 2.3, PH [�i] = 1. Therefore,
PH [�] = 1 since any countable intersection of probability 1 events has probability 1.

Proposition 8.3 Assuming that the coin
ippers in AH satisfy C1 and C2,

Fv
�MaxRound�2�!

p
D: (19)

Proof. Let H be a probabilistic execution fragment of AH that starts from a state s0 of
Fv, and let r = s0:max-round . Let � be the set of executions of
H where each invocation
to any coin
ipper on a non-failing port gets a response and where each response of CF r

has value v. By Proposition 7.8, in each execution of � a state from D is reached within
two rounds. Thus, it is su�cient to show that PH [�] � p. Let, for each i � 1, �i be the
set of executions of
H where each invocation to CF i on a non-failing port gets a response.
Furthermore, let �0

r be the set of executions of
H where no response of CF r has value �v. Then,
� = (\i�1�i) \ �0

r. From C1, for each i, PHdCF i
[�idCF i] = 1, and thus, by Proposition 2.3,

PH [�i] = 1. Since s0 2 Fv and r = s0:max-round , HdCF r is a probabilistic execution of CF r

(the start state of HdCF r is a start state of CF r), and thus property C2 can be applied. From
C2, PHdCFr

[�0
rdCF r] � p, and thus, by Proposition 2.3, PH [�

0
r] � p. Therefore, PH [�] � p

since any countable intersection of probability 1 events has probability 1 and the intersection
of a probability 1 event with an event with probability p has probability at least p.

Proof of Proposition 8.1. By Proposition 2.8, Statements (16) and (17) can be combined
to lead to Statement (15).

48

Since in AH R is not left unless a state from D is reached, since each transition of AH
increases �MaxRound by at most 1, and since from fairness and C1 some transition is scheduled
with probability 1 from each state ofR, by Theorem 2.9 we derive that within at most expected
4=p rounds a state from D is reached under any fair scheduler.

9 The Coin Flipping Protocol

We are left to show that it is possible to build a distributed coin
ipping protocol with the
properties C1 and C2 stated in Section 8, where by a distributed protocol we mean a protocol
where processes interact through single-writer multiple-reader shared variables only.

In this section we build an almost distributed version of the coin
ipping protocol where
processes interact through a multiple-writer multiple-reader shared register; in Section 10 we
re�ne the protocol of this section to yield a distributed protocol. The protocol is based on
random walks and satis�es properties C1 and C2 with a su�ciently high probability p that is
independent of n.

9.1 The Code for the Protocol

We represent the coin
ipping protocol by letting an automaton DCN r (Distributed CoiN)
interact with a centralized counter CT r (CounTer), that is, CF r = HideI(DCN r k CT r),
where I is the set of actions used for the interaction between DCN r and CT r, and HideI is
an operator that transforms the actions of I from external to internal. Figure 3 shows the
structure of the coin
ipping protocol. In this Section, DCN r is distributed while CT r is
composed of n processes that receive requests from DCN r and read/update a single shared
variable: the details of the distributed implementation of a shared counter are not necessary
for any properties of the coin
ipping protocol. The distributed version of the shared counter
is presented in Section 10.

Since the protocols for DCN r and CT r are the same for any round r, we drop the subscript
r from our notation. Table 3 gives the state variables of DCN ; Table 4 gives the transition
relation of DCN . Each process
ips a fair coin to decide whether to increment or decrement
the shared counter. Then the process reads the current value of the shared counter, and if the
value read is beyond the barriers �Kn, where K is a �xed constant, then the process returns.
The protocol described in Table 4 is slightly di�erent from the protocol described in [5]: once
a coin
ip is requested, our protocol checks counter before
ipping a coin, while the protocol
of [5] starts immediately by
ipping a coin. Our protocol improves the protocol of [5] in that
properties C1 and C2 are satis�ed even in the presence of multiple requests on the same port.
This improvement is not essential for the correctness of the protocol of [5], since the protocol
guarantees that there is at most one request at each port; however, our improvement simpli�es
the proof slightly in that we do not have to prove explicitly that there is at most one request
at each port.

49

CTr

n

1

i

i

i

i

i

i

start-read

start-inc

start-dec

end-dec

end-inc

end-read
r

rCF

i counter

DCN

AP

Figure 3: The structure of the coin
ipping protocol.

Table 5 gives the state variables of the shared counter CT ; Table 6 gives the actions and
transition relation of CT . Informally, each process of CT receives requests that are han-
dled by referring to a multiple-writer multiple-reader shared variable counter . Increment and
decrement operations are performed by updating counter directly; read operations are imple-
mented by �rst copying the value of counter to a multiple-writer single-reader variable preread
and then, in a separate step, returning the value of preread to the environment. However, an
update to counter may invalidate the value that a read operation is ready to return. This fact
is expressed by the nondeterministic choice to reset any set of preread variables to ? whenever
a process updates counter . Due to the way the preread variables are handled, the speci�cation
of CT states that an increment or decrement operation always completes unless the corre-
sponding process fails, while a read operation is guaranteed to complete only if increments and
decrements eventually cease. Essentially, our use of the preread variables is an abstraction of
what the implementation of Section 10 actually does.

We now proceed with the analysis of CF . In particular, we show that with probability
1, all the invocations to CF on a non-failing port get an answer, and, for v 2 f0; 1g, with
probability at least (K� 1)=2K all the answers are v. The analysis is split into two parts: the
�rst part deals with non-probabilistic properties, while the second part deals with probability.

9.2 Non-Probabilistic Analysis

Let Acts be f
ip1; : : : ;
ipng, and let S be f(U i
1;U

d
1); (U

i
2;U

d
2); : : : ; (U

i
n;U

d
n)g, where U

i
j is the

set of states of CF where process j has just
ipped inc (fpcj = inc), and U d
j is the set of states

50

Name Values Initially

Local state

fpc fnil;
ip; inc;wait-inc; dec;wait-dec; read-counter ;wait-counter ; nil
compare ; return-
ip0; return-
ip1g

stopped Bool false
local-counter int 0

Table 3: The state variables of a process i in DCN .

of CF where process j has just
ipped dec (fpcj = dec).

Given a �nite execution fragment � of CF , let �inc(�) be the number of coin
ips in �

that give inc, and let �dec(�) be the number of coin
ips in � that give dec. Function �inc
and �dec correspond to functions HeadsActs ;S and TailsActs;S in Section 3.3; the di�erence
�inc(�)��dec (�) corresponds to Di� Acts;S(�). Given a state s of CF , let jsjinc be the number
of processes in s whose program counter of either DCN or CT is inc, and let jsjdec be the
number of processes in s whose program counter of either DCN or CT is dec. Formally, let
Sinc = fj j s:fpcj = inc _ s:cpcj = incg, the processes that are about to increment, and let
Sdec = fj j s:fpcj = dec _ s:cpcj = decg, the processes that are about to decrement. Let
jsjinc = jSincj and jsjdec = jSdec j. The following lemma states how counter and the actual
number of coin
ips giving inc and dec are related.

Lemma 9.1 Let � be a �nite execution of CF, and let s = lstate(�). Then,

�inc(�)� �dec(�) = s:counter + jsjinc � jsjdec :

Proof. Straightforward induction on the length of �.

Given a state s, let Sbelow (Sabove) be the set of processes in s that have a pending request
and either are up to
ipping an elementary coin or are up to detecting that counter is below
(above) the barrier Kn (�Kn). Let jsjbelow and jsjabove denote the cardinality of Sbelow and
Sabove , respectively. Formally, Sbelow is the set of processes i such that either

1. s:fpci =
ip, or

2. s:fpci = read-counter and s:counter < Kn, or

3. s:fpci = compare and s:local-counter i < Kn, or

51

Actions and transitions of process i.

input start-
ip(r)i
E�: if fpc = nil ^ :stopped then

fpc read-counter

output start-readi
Pre: fpc = read-counter

E�: fpc wait-counter

input end-read(c)i
E�: if fpc = wait-counter then

local-counter c
fpc compare

internal comparei
Pre: fpc = compare

E�: if local-counter � Kn then
fpc return-
ip1

elseif local-counter � �Kn then
fpc return-
ip0

else
fpc
ip

output return-
ip(v; r)i
Pre: fpc = return-
ipv
E�: fpci nil

internal
ip(r)i
Pre: fpc =
ip

E�: Pr[fpc inc] = 1=2^
Pr[fpc dec] = 1=2

output start-inci

Pre: fpc = inc

E�: fpc wait-inc

input end-inci
E�: if fpc = wait-inc then

fpc read-counter

output start-deci
Pre: fpc = dec

E�: fpc wait-dec

input end-deci
E�: if fpc = wait-dec then

fpc read-counter

input stopi
E�: stopped true

fpc nil

Tasks: The locally controlled actions of process i form a single task.

Table 4: The actions and transition relation of DCN .

4. s:cpci = read-counter and either s:preread i < Kn or s:counter < Kn.

Similarly, Sabove can be de�ned by replacing < Kn with > �Kn. The following two lemmas
state a key property for the analysis of the coin
ipping protocol. We describe only Lemma 9.2
since Lemma 9.3 is symmetric. Suppose that a state is reached where the value of counter
minus the number of processes that either are up to decrementing counter or are up to detecting
that counter is below Kn is at least Kn. Then Lemma 9.2 states that this property continues
to remain valid in the future. Roughly speaking, each process that reads counter terminates
(does not
ip nor update counter any more) because it observes a value that is at least Kn.

Lemma 9.2 The following property is stable for CF, that is, it continues to be satis�ed once
it is satis�ed.

s:counter � jsjdec � jsjbelow � Kn: (20)

52

Name Values Initially

Local state

cpc fnil;wait ; inc; end-inc; dec; end-dec; read-counterg wait
stopped Bool false

Multiple-writer multiple-reader shared variables

counter int 0

Multiple-writer single-reader shared variables (process i reads)
preread(i) int [f?g ?

Table 5: The state variables of a process i in CT .

Proof. Straightforward inductive argument.

Lemma 9.3 The following property is stable for CF.

s:counter + jsjinc + jsjabove � �Kn: (21)

Proof. Straightforward inductive argument.

A simple consequence of Lemmas 9.2 and 9.3 is that whenever the di�erence between the
coin
ips that give inc and the coin
ips that give dec is beyond the barriers �(K + 1)n, the
value of counter is always beyond �Kn.

Lemma 9.4 Let � = �1
a �2 be an execution of CF such that �inc(�1)��dec(�1) = (K+1)n.

Then each state of �2 satis�es counter � Kn.

Proof. By Lemma 9.1, �inc(�1)��dec(�1) = s:counter + jsjinc �jsjdec where s = lstate(�1) =
fstate(�2), and thus s:counter + jsjinc�jsjdec = (K+1)n. By a simple algebraic manipulation,
s:counter � jsjdec � jsjbelow = s:counter + jsjinc � jsjdec � (jsjinc + jsjbelow). Observe that, by
de�nition, Sinc \ Sbelow = ;, and therefore jsjinc + jsjbelow � n. This means that s:counter �
jsjdec�jsjbelow � Kn. By Lemma 9.2, each state s0 of �2 satis�es s0:counter�js0jdec�js0jbelow �
Kn. Thus, each state of �2 satis�es counter � Kn.

53

Actions and transitions of process i.

input start-inci
E�: if cpc = wait then

cpc inc

internal inci
Pre: cpc = inc

E�: counter counter + 1
8jpreread(j) choose(preread(j);?)
cpc end-inc

output end-inci
Pre: cpc = end-inc

E�: cpc wait

input start-deci
E�: if cpc = wait then

cpc dec

internal deci
Pre: cpc = dec

E�: counter counter � 1
8jpreread(j) choose(preread(j);?)
cpc end-dec

output end-deci
Pre: cpc = end-dec

E�: cpc wait

input start-readi
E�: if cpc = wait then

cpc read-counter

internal readi
Pre: cpc = read-counter

preread(i) = ?
E�: preread(i) counter

output end-read(c)i
Pre: cpc = read-counter

preread(i) = c 6= ?
E�: cpc wait

preread(i) ?

input stopi
E�: stopped true

cpc nil

Tasks: The locally controlled actions of process i form a single task.

Table 6: The actions and transition relation of CT .

Lemma 9.5 Let � = �1
a�2 be an execution of CF such that �inc(�1)��dec(�1) = �(K+1)n.

Then each state of �2 satis�es counter � �Kn.

Proof. Symmetric to the proof of Lemma 9.4.

Lemma 9.6 Let � be an execution of CF, such that � 2 Top[�(K� 1)n; (K+1)n; 0](H) for
some probabilistic execution H of CF. Then � is 1-global.

Proof. Since � 2 Top[�(K � 1)n; (K + 1)n; 0](H), either each pre�x �0 of � satis�es �(K �
1)n < �inc(�0) � �dec(�0) < (K + 1)n, or � = �1

a �2 where �inc(�1) � �dec(�1) = (K + 1)n
and no pre�x �01 of �1 satis�es �inc(�

0
1)� �dec(�

0
1) � �(K � 1)n.

In the �rst case, by Lemma 9.1, no state of � satis�es counter � �Kn. In the second case,
by Lemma 9.1, no state of �1 satis�es counter � �Kn. Furthermore, by Lemma 9.4, each
state of �2 satis�es counter � Kn. Therefore, no state of � satis�es counter � �Kn. This
means that in both cases no process returns value 0 in �.

54

Lemma 9.7 Let � be an execution of CF, such that � 2 Bottom[�(K�1)n; (K+1)n; 0](H)
for some probabilistic execution H of CF. Then � is 0-global.

Proof. Symmetric to the proof of Lemma 9.6.

Lemma 9.8 Let � be a fair execution of CF, such that � 2 Either[�(K+1)n; (K+1)n; 0](H)
for some probabilistic execution H of CF. Then � is responsive.

Proof. If � contains �nitely many
ip actions, then eventually all the increment and decrement
operations deriving from the
ipping operations are completed or interrupted (the correspond-
ing end-inc or end-dec actions occur or the corresponding processes fail). Thus, there is a
point after which no more inc and dec operations are performed. Let �0 be a su�x of �
where no more
ip, increment or decrement operations are performed. Then in �0 none of the
preread i variables is set to ? while action end-read(c)i is enabled, and thus all read operations
on non-failing ports terminate eventually. At that point, since no more
ips are performed in
�0, each process that completes a read operation returns a value.

If � contains in�nitely many
ip actions, then, since � 2 Either[�(K+1)n; (K+1)n; 0](H),
� = �1

a �2 such that �inc(�1) � �dec(�1) = �(K + 1)n. Here we consider the case where
�inc(�1)� �dec(�1) = (K + 1)n; the other case is symmetric. By Lemma 9.4, each state of �2
satis�es counter � Kn. Thus, each non-failing process returns a value once it reads counter
(performing the read operation in �2) since the value read is at least Kn.

Lemma 9.9 Let � be a fair execution of CF, such that � 2 Top[�(K � 1)n; (K+ 1)n; 0](H)
for some probabilistic execution H of CF. Then � is responsive and 1-global.

Proof. By Lemma 9.8, each invocation on a non-failing port gets a response. By Lemma 9.6
no invocation gets response 0. Hence, each invocation on a non-failing port gets response 1.

Lemma 9.10 Let � be a fair execution of CF, such that � 2 Bottom[�(K � 1)n; (K +
1)n; 0](H) for some probabilistic execution H of CF. Then � is responsive and 0-global.

Proof. Symmetric to the proof of Lemma 9.9.

9.3 Probabilistic Analysis

In this short subsection we prove the probabilistic properties of the coin
ipping protocol, that
is, it guarantees properties C1 (Proposition 9.11) and C2 (Proposition 9.12). The proofs rely
on the non-probabilistic properties proved in Section 9.2 and on the coin lemmas for symmetric
random walks of Section 3.3.

55

Proposition 9.11 The coin
ipper CF satis�es C1. That is, for each fair probabilistic execu-
tion fragment of CF that starts with a reachable state of CF, the probability of the executions
that are responsive is 1.

Proof. LetH be a fair probabilistic execution fragment of CF that starts with a reachable state
s of CF , and let � be a �nite execution of CF such that lstate(�) = s. Let z = �inc(�)��dec(�).
If �0 is an execution of the event Either[�(K+1)n; (K+1)n; z](H), then �a�0 is an execution
of Either[�(K � 1)n; (K+ 1)n; 0](H 0) for some fair probabilistic execution H 0 of CF , and by
Lemma 9.8, every invocation to CF in � a �0 gets a response. From De�nition 7.1, every
invocation to CF in �0 gets a response. By Theorem 3.11, PH [Either[�(K + 1)n; (K +
1)n; z](H)] = 1. This completes the proof.

Proposition 9.12 The coin
ipper CF satis�es C2 with p = (K + 1)=2K. That is, �xed
v 2 f0; 1g, for each fair probabilistic execution of CF, the probability of the executions that are
responsive and v-global is at least (K � 1)=2K.

Proof. Assume that v = 1; the case for v = 0 is symmetric. Let H be a fair probabilistic
execution of CF . If � is an execution of Top[�(K�1)n; (K+1)n; 0](H), then, by Lemma 9.9,
every invocation to CF in � gets response 1. Furthermore, by Theorem 3.11, PH [Top[�(K �
1)n; (K + 1)n; 0](H)]� (K � 1)=2K. This completes the proof.

10 Implementation of the Shared Counter

In this section we build an implementation of CT and we show that it can replace the abstract
automaton CT in CF without compromising Propositions 9.11 and 9.12, that is, properties
C1 and C2 with p = (K � 1)=2K. In this way, using the coin
ipping protocol with the new
counter, we obtain a protocol for consensus that uses only single-writer multiple-reader shared
variables.

The implementation of CT , which we denote by DCT (Distributed CounTer), is an adap-
tation of an algorithm proposed by Lamport [12] for read/write registers. The state variable
counter of CT is represented by n single-writer multiple-reader registers, one for each pro-
cess, with two �elds: a num �eld, which is incremented whenever the value of the register is
changed, and a val �eld representing the contribution of the corresponding process to the value
of counter . The operations inc and dec on a process i are implemented by incrementing or
decrementing the val register and incrementing the num register of process i. The operation
read-counter is implemented by scanning the shared registers until two consecutive scans give
the same value. Table 7 gives the state variables of DCT ; Table 8 gives the transition relation
of DCT .

We now verify that it is possible to replace DCT for CT in CF without compromising
properties C1 and C2. Let DCF (Distributed Coin Flipper) be de�ned as HideI(DCN kDCT),
where I is the set of actions used for the interaction between DCN and DCT .

56

Name Values Initially

Local state

cpc fnil ;wait ; inc; end-inc; dec; end-dec; scan; read-counterg wait
prescan array [1 : : :n] of int � int array of (0; 0)
�rst array [1 : : :n] of int � int array of (0; 0)
obs set of f1; : : : ; ng ;
stopped Bool false

Single-writer multiple-reader shared variables
(num(i); val(i)) int � int (0; 0)

Table 7: The state variables of a process i in DCT .

Observe that properties C1 and C2 are properties of the fair trace distributions of CF
and DCF . Speci�cally, observe that responsiveness and v-globality can be stated in terms of
traces. Then, property C1 can be stated as \in each fair trace distribution, the probability
of the set of traces that are responsive is 1", and property C2 can be stated as: \in each
fair trace distribution, the probability of the set of traces that are responsive and v-global is
at least p". Thus, to show that DCF satis�es properties C1 and C2 it is su�cient to show
that ftdistrs(DCF) � ftdistrs(CF). For this purpose, by using Proposition 2.14, it is su�cient
to build a re�nement h from DCT to CT and show that h preserves the fair executions of
DCT . Note that h is not probabilistic since DCT and CT are not probabilistic. That is, the
properties that we need to show do not involve probability.

Proposition 10.1 There is a re�nement from DCT to CT that preserves the fair executions
of DCT.

Proof. The re�nement keeps the preread variables di�erent from ? whenever the �rst scan
has occurred and no increment or decrement operations have done anything that would make
the �rst and second scans di�er. Formally, h(s) = s0 where, for each process i,

s0:cpci =

�
read-counter if s:cpci = scan
s:cpci otherwise,

s0:counter =
X
j

val(j)

57

Actions and transitions of process i.

input start-inci
E�: if cpc = wait then

cpc inc

internal inci
Pre: cpc = inc

E�: val(i) val(i) + 1
num(i) num(i) + 1
cpc end-inc

output end-inci
Pre: cpc = end-inc

E�: cpc wait

input start-deci
E�: if cpc = wait then

cpc dec

internal deci
Pre: cpc = dec

E�: val(i) val(i)� 1
num(i) num(i) + 1
cpc end-dec

output end-deci

Pre: cpc = end-dec

E�: cpc wait

input start-readi
E�: if cpc = wait then

cpc scan

obs ;

internal scan(k)i
Pre: cpc = scan

k =2 obs
E�: scan[k] (counter(k);num(k))

obs obs [fkg
if obs = f1; : : : ; ng then
if :�rst ^ (prescan = scan) then

�rst true

counter
Pn

j=1 scani[j]:val

cpc read-counter

else
prescan scan

�rst false

output end-read(c)i
Pre: cpc = read-counter

c =
Pn

j=1 scan[j]:val

E�: cpc wait

input stopi
E�: stopped true

cpc nil

Tasks: The locally controlled actions of process i form a single task.

Table 8: The actions and transition relation of DCT .

s0:preread i =

8>>>><
>>>>:

c if :s:�rst i and c =
P

j s:prescan[j]i
and s:cpci 2 fscan; read-counterg
and 8j(j 2 obsi) prescan[j]i = scan[j]i)
and 8j(j =2 obsi) prescan[j]i = (val(j); num(j)))

? otherwise.

It is straightforward to check that h is a re�nement mapping.

Consider now a fair execution �1 of DCT . From the execution correspondence theorem
there is an execution �2 of CT such that (�1; �2) 2 h. Suppose by contradiction that �2 is not
fair. Then in �2 there is a process i whose corresponding task is eventually continuously enabled
but never performed. Observe that h�1 preserves the enabledness of each task of CT , and that
in DCT it is not possible that for some task T there is an execution fragment with in�nitely

58

many internal actions from T and no external action from T . Thus, since (�1; �2) 2 h,
eventually in �1 the task of process i is continuously enabled but never performed. This means
that �1 is not fair, a contradiction.

Theorem 10.2 The coin
ipper DCF satis�es properties C1 and C2 with p = (K � 1)=2K.

Proof. By Proposition 10.1, there is a re�nement from DCT to CT that preserves the fair
executions of DCT . By Proposition 2.14, ftdistrs(DCF) � ftdistrs(CF). This completes the
proof.

11 Summing Up

In this section we paste together the results of the previous sections to derive an upper bound
on the expected number of rounds for termination.

Theorem 11.1 Using the coin
ippers of Sections 9 and 10, AH guarantees wait-free termi-
nation within a constant expected number of rounds, that is, from each reachable state of AH ,
under any fair scheduler, a state of D is reached within a constant expected number of rounds.

Proof. The coin
ippers DCF of Sections 9 and 10 satisfy properties C1 and C2 with
p = (K�1)=2K, where K is a constant (cf. Theorem 10.2 and Propositions 9.11 and 9.12). By
Proposition 8.1, AH guarantees wait-free termination within at most O(2K=(K�1)) expected
rounds, that is, within a constant expected number of rounds.

We analyze some implications of Theorem 11.1. In particular, the de�nition of D may
appear rather counterintuitive, since reaching D does not necessarily mean deciding: it is
possible to reach D by letting processes fail. However, Theorem 11.1 gives enough information
to derive several di�erent termination properties as the following corollary shows.

Corollary 11.2 Let H be a fair probabilistic execution fragment of AH , and suppose that H
starts from a reachable state s of AH . Then the following properties are satis�ed by H.

1. If in s all processes are initialized already, then within a constant expected number of
rounds all non-failing processes decide.

2. If in s there is at least one initialized and non-failed process, and if no new processes fail
in H, then a decision is reached within a constant expected number of rounds.

Proof. To reach D all initialized processes must either fail or decide. In the �rst case, since
D is reached, all non-failed processes have decided. In the second case, since there is at least
a non-failed initialized process, and since such process does not fail, such process decides.

59

12 Timing Analysis of the Algorithm

In this section we prove an upper bound on the expected time it takes for all processes to
terminate, starting from an arbitrary reachable state, once all processes have some minimum
speed. For this purpose we augment the I/O automata of the previous sections paper so that
time can be observed. Our augmentation resembles the patient construction of [10] and pro-
duces another probabilistic I/O automaton. Note that we cannot regard the augmentation we
present in this paper as the de�nition of a general timed probabilistic model. Our augmen-
tation is the minimum machinery that is necessary for the time analysis of an asynchronous
algorithm.

12.1 Modeling Time

In order to model time we add a special component :now to the states of all our probabilistic
I/O automata, and we add the set of positive real numbers to the input actions of all our prob-
abilistic I/O automata. We call the new actions time-passage actions. The :now component
is a nonnegative real number and describes the current time of an automaton. At the begin-
ning (i.e., in the start states) the current time is 0, and thus the :now component is 0. The
occurrence of an action d, where d is a positive real number, increments the :now component
by d and leaves the rest of the state unchanged. Thus, the occurrence of an action d models
the fact that d time units are elapsing. The amount of time elapsed since the beginning of an
execution is recorded in the :now component. Since time-passage actions must synchronize in
a parallel composition context, parallel composition ensures that the :now components of the
components are always equal. Thus, we can abuse notation and talk about the :now compo-
nent of the composition of two automata while we refer to the :now component of one of the
components. Observe that our augmented probabilistic I/O automata are still probabilistic
I/O automata.

For any probabilistic I/O automaton augmented with time we de�ne a new complexity
measure �t as follows:

�t(�) = lstate(�):now � fstate(�):now :

It is straightforward to check that �t is a complexity measure. Informally, �t measures the
time that elapses during an execution. We say that an execution fragment � of a probabilistic
automaton M is well-timed if there is no task T of M and no decomposition �1

a �2
a �3 of �

such that �t(�2) > 1, all the states of �2 enable T , and no action from T occurs in �2. That
is, � is well-timed if each task does not remain enabled for more than one time unit without
being performed.

All the properties that we have studied in the previous sections are still valid for our
augmented automata, since they are not a�ected by the presence of the :now component
and of the new input actions. It is simple to observe that if we remove the time-passage

60

transitions from a fair execution of an augmented automaton we obtain a fair execution of the
non-augmented automaton.

In the rest of this section we strengthen the properties of the previous sections by showing
that, under the assumption of well-timedness, the algorithm of Aspnes and Herlihy terminates
within an expected polynomial time. That is, if from a certain point each processor has some
minimum speed, then the algorithm of Aspnes and Herlihy guarantees termination within an
expected polynomial time.

12.2 Preliminary De�nitions

Before presenting the timing analysis we give some preliminary de�nitions. Recall that, for
each r > 0, DCF r denotes HideI(DCN r k DCT r), where I is the set of actions used for the
interaction between DCN r and DCT r. That is, DCF r is the result of substituting DCT r

for CT r in CF r. Let DAH (Distributed Aspnes-Herlihy) denote AP k (kr�1DCF r). For an
execution fragment � of DCF r or of DAH , let �
ip;r(�) be the number of
ip events of DCF r

that occur in �, and let �id ;r(�) be the number of inc and dec events of DCF r that occur
in �. For each execution fragment � of DAH let �id(�) denote the number of inc and dec
events that occur in �. It is straightforward to check that �
ip;r, �id ;r and �id are complexity
measures. Observe that the following trivial result holds.

Lemma 12.1 For each execution fragment � of DAH ,

1. �id(�) =
P

r>0 �id ;r(�), and

2. for each r > 0, �id ;r(�) = �id ;r(�dDCF r).

12.3 Non-Probabilistic Properties of the Complexity Measures

In this section we study the relationship between the complexity measures �t; �id ; �
ip ; �id;r,
and �
ip;r de�ned above. The �rst signi�cant result of this section, Lemma 12.4, provides
a linear upper bound on the time it takes for DAH to span a given number of rounds and
to
ip a given number of coins under the assumption of well-timedness. We �rst prove a
preliminary lemma, which provides a linear upper bound on the time a coin
ipping protocol
is active without any inc, dec, return-
ip or stop action occurring. The preliminary lemma is
�rst proved for a coin
ipping protocol (cf. Lemma 12.2), and then proved for a coin
ipping
protocol within DAH .

Lemma 12.2 Let � be a fair, well-timed execution fragment of DCF r, r > 0. Suppose that
in fstate(�) there is at least one non-failed process with a pending start-
ip(r) request. Then
in � there is an occurrence of an action from finc; dec; return-
ip; stopg within time O(n).

61

Proof. Let X be finc; dec; return-
ip; stopg. Let i be a non-failed process with a pending
start-
ip(r) request in fstate(�), and suppose for the sake of contradiction that in � there is no
occurrence of actions from X within time 3n+d, where d is a su�ciently large constant. From
the code of DCF r, process i runs through a cycle where a read request is performed and an
action from finc; dec; return-
ipg occurs unless process i fails (action stop) occurs. Thus, one
action from X occurs before completing a cycle. The maximum time necessary to complete
a cycle is given by the time to complete a read request plus the time to check the result and
perform the corresponding operations. The constant d accounts for the time necessary to
complete all the operations except for the read request. Since no action from X occurs within
time 3n+d, a read request completes within time at most 3n: in fact, within 3 scans of process
i there are two consecutive scans that give the same result. Thus, within time 3n+ d process
i completes a cycle, which means that an action from X occurs, a contradiction.

Lemma 12.3 Let � be a fair, well-timed execution fragment of DAH , and let r > 0. Suppose
that in fstate(�)dDCF r there is at least one non-failed process with a pending start-
ip(r)
request. Then in � there is an occurrence of an action from finc; dec; return-
ip; stopg within
time O(n).

Proof. Let X be finc; dec; return-
ip; stopg. By Lemma 12.2 in �dDCF r there is an occur-
rence of an action from X within time c1n + c2 for appropriate constants c1 and c2. That
is, �dDCF r = �1

a �2 such that �t(�1) � c1n + c2 and an action from X occurs in �1.
Let �01 be a pre�x of � such that �1 = �01dDCF r. Then, from the de�nition of projection,
an action from X occurs in �01, and from the de�nition of :now within parallel composition,
�t(�

0
1) = �t(�1) � c1n+c2. This means that in � an action fromX occurs within time c1n+c2.

Lemma 12.4 Let � be a well-timed execution fragment of DAH , and let R = fstate(�):max-round.
Suppose that all the states of �, with the possible exception of lstate(�) are active, that is, are
states of R. Then, �t(�) � d1n

2(�MaxRound (�) + R) + d2n�id (�) + d3n
2 for some constants

d1; d2, and d3.

Proof. At each round each process performs a linear number of transitions outside the coin

ipping protocol using time at most c1n for some constant c1. Divide � into two kinds of execu-
tion fragments: those where some active process is outside the coin
ipping protocols, and those
where no active process is outside the coin
ipping protocols. The total time complexity of the
�rst kind of execution fragments is upper bounded by c1n

2(�MaxRound (�) +R), corresponding
to the case where at each time there is exactly one process outside the coin
ipping protocols.
Consider now the second kind of execution fragments. Since each process returns at most once
in each round and fails at most once overall, there are at most �id (�)+n(�MaxRound (�)+R)+n
events inc, dec, return-
ip and stop in �. By Lemma 12.3, whenever some process is
ipping,
the maximum distance between two events of the kind inc; dec; return-
ip, and stop is linear.

62

Thus, the maximum time where some process is
ipping in � (the time complexity of the
second kind of execution fragments) is at most c01n

2(�MaxRound (�)+R) + c2n�id (�)+ c3n
2 for

some constants c01; c2, and c3. Combining the two results, the time that elapses in � is at most
d1n

2(�MaxRound (�) +R) + d2n�id (�) + d3n
2, where d1 = c1 + c01, d2 = c2, and d3 = c3.

The next two lemmas state basic properties of the coin
ipping protocols. Lemma 12.5
derives from the fact that all the processes within a coin
ipping protocol terminate once
the shared counter reaches an absorbing barrier (K + 1)n or �(K + 1)n. Essentially, once
an absorbing barrier is reached, there are at most other n
ip events, one for each process.
Lemma 12.6 derives from the fact that each inc or dec event must be preceded by a
ip event.
If we start from an arbitrary reachable state, there could be some inc and dec events that
occur without any preceding
ip event. However, the number of anomalous inc and dec events
is at most n, that is, one for each process.

Lemma 12.5 Let � = �1
a �2 be a �nite execution of DCF r, and suppose that j�inc(�1) �

�dec(�1)j � (K + 1)n. Then �
ip;r(�2) � n.

Proof. We consider the case where �inc(�1) � �dec(�1) � (K + 1)n. The other case is
symmetric. By Lemma 9.4, each state of �2 satis�es counter � Kn, and thus each non-failing
process returns 1 once it reads counter (performing the read operation in �2) and checks its
value. Each process can
ip at most once in �2 before starting a new read operation. Thus,
the number of
ip events that occur in �2 is bound by n.

Lemma 12.6 Let � be a �nite execution fragment of DCF r that starts from a reachable state.
Then, �id ;r(�) � �
ip;r(�) + n.

Proof. In fstate(�) there are at most n increment or decrement events that can be performed
without �rst
ipping a coin.

12.4 Expected Bound on Increment and Decrement Events

In this section we show an upper bound on the expected number of increment and decrement
events that occur within a probabilistic execution of DAH . First, based on our results on
random walks (cf. Proposition 3.12), we show in Lemma 12.7 an upper bound on the expected
number of coin
ips performed by a coin
ipper. Then, in Lemma 12.8 we use this result to-
gether with our results about linear combinations of complexity measures (cf. Proposition 2.4)
to derive an upper bound on the expected number of increment and decrement events per-
formed by a coin
ipper. Then, in Lemma 12.9 we use our compositionality results about
complexity measures (cf. Proposition 2.6) to show that the bound of Lemma 12.8 is preserved
by parallel composition. Finally, in Lemma 12.10 we use our result about phases of computa-
tions (cf. Proposition 2.5) to combine the result about the expected number of increment and

63

decrement events of a coin
ipper with our knowledge of the maximum expected number of
coin
ippers that may be invoked. This allows us to derive an upper bound on the expected
total number of increment and decrement events during the consensus protocol.

Lemma 12.7 Let H be a probabilistic execution fragment of DCF r that starts from a reachable
state of DCF r, and let � be a full cut of H. Then E�
ip;r [H;�] � (K + 1)2n2 + n.

Proof. Let s be the start state of H , and let � be a �nite execution of DCF r with s =
lstate(�). Let z = �inc(�) � �dec(�). If jzj � (K + 1)n, then, by Lemma 12.5, for each
q 2 �, �
ip;r(q) � n, and thus E�
ip;r [H;�] � n. If jzj < (K + 1)n, then, by Proposition 3.12,
E�Acts;�(K+1)n;(K+1)n;z

[H;�] � �z2+ (K + 1)2n2 � (K + 1)2n2, that is, the event denoted by �

is satis�ed within expected (K+1)2n2
ip events, truncating the count whenever an absorbing
barrier �(K+1)n is reached. Once an absorbing barrier is reached, by Lemma 12.5 there are at
most n other
ip events. Thus, for each state q of H , �
ip;r(q) � �Acts;�(K+1)n;(K+1)n;z(q)+n.
By Proposition 2.4, E�
ip;r [H;�] � (K + 1)2n2 + n.

Lemma 12.8 Let H be a probabilistic execution fragment of DCF r that starts from a reachable
state of DCF r, and let � be a full cut of H. Then E�id ;r [H;�] � (K + 1)2n2 + 2n.

Proof. By Lemma 12.6, for each execution fragment of � of CF r, �id;r(�) � �
ip;r(�) + n.
Then, by Proposition 2.4, E�id;r [H;�] � E�
ip;r [H;�] + n. By Lemma 12.7, E�
ip;r [H;�] �
(K + 1)2n2 + n. Thus, E�id;r [H;�] � (K + 1)2n2 + 2n.

Lemma 12.9 Let H be a probabilistic execution fragment of DAH that starts from a reachable
state of DAH , and let � be a full cut of H. Then E�id;r [H;�] � (K + 1)2n2 + 2n.

Proof. Since HdDCF r is a probabilistic execution fragment of DCF r that starts from a
reachable state of DCF r, by Lemma 12.8, E�id;r [HdDCF r;�0] � (K + 1)2n2 + 2n for each full
cut �0 of HdDCF r. By Proposition 2.6, since by Lemma 12.1 for each execution fragment �
of AH , �id;r(�) = �id ;r(�dDCF r), E�id ;r [H;�] � (K + 1)2n2 + 2n.

Lemma 12.10 Let H be a probabilistic fair execution fragment of DAH with start state s,
and let R = s:max-round . Suppose that s is reachable. Let � denote the set of minimal states
of H where a state from D is reached. Then E�id [H;�] = O(Rn2).

Proof. If R = 0, then � = fsg, and thus E�id [H;�] = 0 = O(Rn2). For the rest of the
proof assume that R > 0. Given a state q of H , we know that �id(q) = �id;1(q) + � � � +
�id ;R(q) + �0(q), where �0(q) =

P
r>0 �id ;r+R(q). For each r > 0, let �r be the set of minimal

states q of H such that �MaxRound (q) � r. Then, for each q 2 �r, �id ;r+R(q) = 0, and
for each state q of H and each r > �MaxRound (q), �id ;r+R(q) = 0 (CF r+R does not start

64

until some process reaches round r + R). Furthermore, by Lemma 12.9, there is a constant
c = (K + 1)2n2 + 2n such that for each probabilistic execution fragment H 0 of M , each full
cut �0 of H 0, and each i > 0, E�id;i [H

0;�0] � c. Therefore, we are in the conditions to apply
our result about phases of computation (cf. Proposition 2.5): each round is a phase, and the
numbers of inc and dec events that occur within each round are the complexity measures for
their corresponding round. Function �MaxRound is the measure of how many phases are started.
By Proposition 2.5, E�0[H;�] � cE�MaxRound

[H;�]. By Theorem 11.1,E�MaxRound
[H;�] is bound

by a constant (independent of n). Therefore, E�0 [H;�] = O(n2). Finally, since for each i; H ,
and �, E�id;i [H;�] = O(n2), by Proposition 2.4, E�id [H;�] = O(Rn2) + O(n2) = O(Rn2).

12.5 Expected Bound on Time

We are now ready to prove our main result, which is just a pasting together of the results
obtained so far. Speci�cally, we show that starting from any reachable state of DAH , assum-
ing well-timedness, a state from D is reached within expected time O(Rn3), where R is the
maximum round of the processes at the starting state. Our result about reaching D implies
directly several results about the termination properties of the consensus protocol of Aspnes
and Herlihy (cf. Corollary 12.12).

Theorem 12.11 Let H be a probabilistic fair, well-timed execution fragment of DAH with
start state s, and let R = s:max-round. Suppose that s is reachable. Let � denote the set of
minimal states of H where a state from D is reached. Then E�t[H;�] = O(Rn3).

Proof. If R = 0, then � = fsg, and thus E�t [H;�] = 0 = O(Rn3). If R > 0, then, by
Lemma 12.4, for each well-timed execution fragment � of DAH ,

�t(�) � d1n
2(�MaxRound (�) + R) + d2n�id (�) + d3n

2:

By Proposition 2.4,

E�t[H;�] � d1n
2E�MaxRound

[H;�]+ d1n
2R+ d2nE�id [H;�] + d3n

2:

Thus, by Theorem 11.1 and Lemma 12.10, E�t[H;�] = O(Rn3).

Theorem 12.11 gives enough information to derive some time bounds for DAH . Here we
give some examples. The �rst item says that whenever all processes are initialized already all
non-failing processes decide within expected time O(Rn3), where R is the number of rounds
that are started already. That is, the algorithm has to work for an expected cubic time for
each one of the rounds that are started already. The second item says that if we know that at
least one of the initialized processes will not fail, then some process decides within expected
time O(Rn3). The third item is an instantiation of the �rst item saying that all non-failing
processes decide within cubic time if at the beginning all processes are initialized and the
maximum round number is 1.

65

Corollary 12.12 Let H be a fair, well-timed probabilistic execution fragment of DAH that
starts from a reachable state s of DAH . The following properties are satis�ed by H.

1. If in s all processes are initialized already and R is the maximum round of the processes,
then within expected time O(Rn3) all non-failing processes decide.

2. If in s there is at least one initialized and non-failed process, the maximum round number
is R, and no new process fails, then within expected time O(Rn3) some process decides.

3. If in s all processes are initialized and the maximum round is 1, then within expected
time O(n3) all non-failing processes decide.

Proof. Item 1 follows from Theorem 12.11 and from the fact that at to reach D each process
must either fail or decide; Item 2 follows from the fact that to reach D all active processes
must decide; Item 3 is an instantiation of Item 1.

13 Concluding Remarks

We have studied the expected complexity of the randomized consensus algorithm of Aspnes
and Herlihy, a highly nontrivial randomized distributed algorithm, and we have developed a
collection of mathematical tools that can be used for the analysis of other algorithms as well.
Our analysis of the algorithm was driven by two main ideas: decompose the algorithm into
simpler parts and separate probability from nondeterminism. The collection of modularization
tools that we have developed and their successful application show that the analysis of ran-
domized distributed algorithms is indeed feasible and not too di�cult. Most of our analysis is
essentially the same as the analysis of an ordinary distributed, non-randomized, algorithm.

It is useful to observe the kinds of modularization that we have used and where we have
used them. For each kind of modularization we provide a breif description and references to
the places in the paper where the modularization results are stated and used, respectively.

� Decomposition of a partial progress statement into more statements: progress is achieved
through several small easy steps (Proposition 2.8 used in Proposition 8.1).

� Derivation of expected complexity bounds from partial progress statements: an in�nitary
property is analyzed by means of some �nite form of progress (Theorem 2.9 used in
Proposition 8.1).

� Modularity of probability spaces with respect to parallel composition (Proposition 2.3
used in Propositions 8.2 and 8.3).

� Coin lemmas and related results to reduce probability to nondeterminism (Theorems 3.5
and 3.7 used in Propositions 9.11 and 9.12 and in Lemma 12.7).

66

� Transformation of relations between complexity measures into relations between expected
complexities. We analyze the complexity of an ordinary execution and we study the
relationship between di�erent complexity measures at the level of executions. Then, we
transfer the results to probabilistic executions and expected values. (Proposition 2.4 used
in Lemmas 12.8 and 12.10 and in Theorem 12.11).

� Analysis of computations divided into phases (Proposition 2.5 used in Lemma 12.10).

� Preservation of expected complexity bounds under parallel composition (Proposition 2.6
used in Lemma 12.9).

� Re�nement mappings and related compositionality results (Propositions 2.10, 2.11, and 2.14
used in Theorem 10.2).

If we compare the length of our analysis with the length of the original paper of Aspnes and
Herlihy, we observe that the two lengths are similar. The length of our analysis is double the
length of the analysis in [5]; however, our analysis includes a timing analysis of the protocol,
which was not present in [5], and it includes all the details, many of which were not considered
in the analysis of [5]. Also, our proof would be considerably shorter if we had not included
the detailed invariants and their proofs. These details are usually not included in algorithm
papers.

Although we think it is acceptable that low-level details of a proof be omitted in an algo-
rithm paper, we believe that a high level proof should be rigorous enough to avoid the subtleties
of randomization, which are due mainly to the interplay between probability and nondeter-
minism. Intuition often fails when dealing with randomization in a distributed setting. The
results that we have presented in this paper provide criteria that allow us to avoid becoming
confused by the subtleties of randomization. We have analyzed a complicated algorithm in
order to ensure that our results are applicable to realistic randomized distributed protocols
(not just toy examples), and in order to increase the chance that our results will apply to a
wide range of protocols.

References

[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the
7th Annual ACM Symposium on Principles of Distributed Computing, 1988.

[2] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Technical Report
MIT/LCS/TR-632, MIT Laboratory for Computer Science, 1994. Master's thesis.

[3] S. Aggarwal and S. Kutten. Time optimal self stabilizing spanning tree algorithms. In
R.K. Shyamasundar, editor, 13th International Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 761 of Lecture Notes in Computer
Science, pages 400{410, Bombay, India., December 1993. Springer-Verlag.

67

[4] J. Aspnes. Time- and space-e�cient randomized consensus. Journal of Algorithms,
14(3):414{431, May 1993.

[5] J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 15(1):441{460, September 1990.

[6] Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial randomised consensus.
In Piotr Rudnicki, editor, Proceedings of the 8th Annual Symposium on Principles of
Distributed Computing, pages 281{294, Edmonton, AB, Canada, August 1989. ACMPress.

[7] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts. Time-lapse snapshots. Unpublished
manuscript.

[8] W. Feller. An Introduction to Probability Theory and its Applications. Volume 1. Jokn
Wiley & Sons, Inc., 1950.

[9] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with a
family of faulty process. Journal of the ACM, 32(2):374{382, April 1985.

[10] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in timed and
untimed systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for Computer
Science, November 1993.

[11] H. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 of
Real-Time Safety Critical Systems. Elsevier, 1994.

[12] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806{
811, 1977.

[13] D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages, pages 133{138, January 1981.

[14] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[15] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed al-
gorithms. In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing, Los Angeles, CA, pages 314{323, 1994.

[16] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,
pages 137{151, Vancouver, Canada, August 1987. A full version is available as MIT
Technical Report MIT/LCS/TR-387.

[17] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimed
systems. Technical Report MIT/LCS/TM-486, MIT Laboratory for Computer Science,
May 1993. Also appears as CWI technical report CS-R9313.

68

[18] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. Distributed
Computing, 1(1):53{72, 1986.

[19] A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomized
distributed algorithms. In Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, Ottawa, Ontario, Canada, pages 174{183, August 1995.

[20] R. Segala. Modeling and Veri�cation of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, Dept. of Electrical Engineering and Computer Science, 1995. Also appears
as technical report MIT/LCS/TR-676.

[21] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs. In
Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pages 327{
338, Portland, OR, 1985.

69

