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Abstract

User Direct Messaging (UDM) allows user-level, processor-to-processor messaging to coexist
with general multiprogramming and virtual memory. Direct messaging, where processors launch
and receive messages in tens of cycles directly via network interface FIFOs as opposed to indirectly
via memory, offers high message bandwidth and low delivery latency by avoiding memory delay
and buffer management overhead. However, user-level direct messaging implementations to date
are limited in that they operate only in single-user machines or with strict gang scheduling. In this
paper, we develop a messaging approach for protected, direct delivery with a single, unified user
interface but with an underlying implementation that provides two delivery cases: a fast, common
case corresponding to direct user access to hardware queues and a second case using virtual buffering
that is invoked transparently when required by the demands of multiprogramming, virtual memory
or user intransigence.

The paper lays out a simple, efficient messaging model for user direct messaging that allows both
user interrupts and user polling by explicitly incorporating atomicity. The paper then identifies two
mechanisms that enable the model to map to a fast, hardware path: a revocable interrupt disable
mechanism in hardware permits the user to block the network in a limited way and an overflow
control scheme used in the virtual buffer case allows all buffer management overhead to be avoided
in the fast path. Experiments with real and synthetic applications on an existing, single-user machine,
Alewife, and a new, simulated, multi-user machine, FUGU, show that the cost of the fast case is within
a few cycles of the cost of unprotected, kernel messaging and indicate that the fast case can indeed
be expected to be the common case under ordinary conditions.
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1 Introduction

The maturation of complex software design has lead away from single-threaded applications running
on monolithic operating-systems toward multi-threaded applications interacting with micro-kernels. In
fact, the “client-server paradigm” has been elevated to the status of a major organizational principle. Two
salient components of this paradigm are protection domains and light-weight threads. The use of multiple
protection domains greatly enhances fault containment and debugability – even within an operating
system. Light-weight threads, on the other hand, greatly simplify the construction of applications which
deal with complex, interlocking events, such as modern windowing systems. Closely related to these
developments is the drive to reduce the cost of major operating systems services, from interprocessor
communication to address translation and file access. One of the most successful techniques for reducing
overhead is specialization: providing customized interfaces which support only those features which are
actually needed by a given application. This approach recognizes that compilers and application writers
are in the best position to evaluate the needs of individual applications; hence, the current trend toward
exporting hardware facilities directly to user level [2, 7].

While operating systems research has been addressing the construction of complex systems, multi-
processor research has focused on raw performance, primarily because the users of parallel computers
have been concerned more with performance than with usability. Multiprocessor research has lead to
low-overhead, fine-grain communication mechanisms, including efficient shared-memory and message-
passing interfaces, fast asynchronous interrupts, and rapid context-switching. However, combining
communication performance with protection and other usability features, such as virtual memory, taken
for granted in modern operating systems has not been straightforward. Memory-based communication
such as shared-memory or bulk, memory-to-memory message passing can use the same memory protec-
tion mechanisms as are used in uniprocessors [3, 22]. On the other hand, systems supporting fine-grain
message passing are currently either single-user machines, at best resorting to hard partitioning or strict
gang scheduling to permit multiprogramming [17, 6, 1, 11] or use alternate techniques that generally add
restrictions or overhead (see related work in Section 6).

This paper develops a model of messaging called User Direct Messaging (UDM), which allows
the application of the techniques of modern operating systems to multiprocessors without sacrificing
the efficiency of single-user multiprocessor communication mechanisms, i.e., it combines support for
the requirements of client-server decomposition and multiple protection domains with direct, user-level
access to hardware. Our goals in designing UDM are threefold. First, the programmer should be able to
maintain a natural view of the network as a single-user, dedicated resource. Second, an application must
operate correctly despite scheduling uncertainty introduced by multiprogramming and virtual memory.
Finally, the application should achieve essentially the same performance as on a single-user machine
provided the system scheduler succeeds at co-scheduling (gang scheduling, but only loosely and on
demand [14, 18]) the processes in the application.

UDM consists of a user-visible messaging model supported by a transparently two-level implemen-
tation with a fast case corresponding to direct access to hardware queues and a buffered case invoked
when required.1 UDM has at its root a simple, single-user model of messaging: the user appears to
have exclusive and direct access to the network hardware. The model is similar to Active Messages [21]
but explicitly defines and recognizes atomic sections in which the user is given (apparent) privilege
to disable message arrival interrupts for polling and interrupt handler management. The result is fast,

1We focus in this paper on the UDM communication mechanism; our system also supports complementary communication
mechanisms including DMA for bulk transfer and hardware-synthesized messages for accelerating shared memory.
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Figure 1: Direct message timing.

low-overhead, user-level messaging that smoothly integrates interrupts and polling.

The implementation utilizes a combination of hardware and software mechanisms. In the fast case,
the model is matched exactly by a network interface supporting direct messages and a hardware revocable
interrupt disable mechanism that gives the user-level code limited power to disable interrupts (blocking
the network) while user handlers run. Direct messaging is an established technique for particularly
low-overhead message passing in which the network interface is integrated closely with the processor
and messages are logically and physically passed from processor to processor with no traversal of the
memory system [17, 6, 11, 8, 1]. Low overhead and latency are achieved by avoiding the memory system,
so that message overheads scale with processor performance rather than with memory performance.
Figure 1 represents the one-way message latency and overheads predicted for our prototype system,
FUGU, operating at 20MHz. By avoiding memory, the overhead cycle counts can be expected to roughly
predict performance for modern and future systems as well: assuming the handler is active enough to
be found in the cache, the receive handler can complete in less time than a cache fill from DRAM on a
modern processor. The revocable interrupt disable mechanism allows the application to fully participate
in low level flow control and scheduling decisions, in the fast case.

The fast case is protected by hardware against exceptional conditions such as incoming messages
that arrive for an application that is not currently running. In response to these exceptions, the operating
system transparently switches message delivery to a virtual buffering system. The virtual buffering
system stores messages in application virtual memory and includes an overflow control mechanism that
allows message delivery to be guaranteed, subject only to the constraint of the size of virtual memory.
The operating system “handler” that buffers messages in memory is roughly as fast as a minimal user
handler, so the (short-term) bandwidth of messages into the node changes only slightly although the
effective latency of a message increases significantly. A co-scheduling system scheduler assures that the
fast case is in fact the common case so that buffering is invoked only in response to scheduling transients
or other uncommon events.

UDM represents a synthesis of techniques,many of which are not new. The unique aspect of the UDM
model and implementation is that it provides the user with direct user-level access to network hardware and
interrupts while remaining amenable to transparent multiplexing between different protection domains.
Specifically, we make three contributions: (1) The UDM model codifies atomicity semantics as part
of user messaging. (2) The revocable interrupt disable hardware mechanism permits user handlers to
interact with the network’s low-level flow control in a protected way and is key to fast message processing.
(3) The virtual buffering and overflow control strategy provides unlimited buffering without impacting
the performance of the common case path.

The remainder of the paper is organized as follows. Section 2 presents the programmer’s view
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of the UDM messaging model. Section 3 lays out the architecture for a protected implementation
of the model for a multiprogrammed multiprocessor. Section 4 describes the implementation of our
prototype. Section 5 describes the results of experiments to validate the design. Section 6 puts our work
in perspective by describing related work and, finally, Section 7 concludes.

2 UDM Model

This section describes the UDM programmer’s model in abstract terms. The interface may be used
directly in applications or indirectly via a library or compiler to provide higher level or specialized
communication primitives. UDM allows the programmer to view the network as a private resource.
Therefore, the UDM model may be discussed independently of its implementation, as if the network
were dedicated to a single application. Section 3 describes the hardware implementation and the
mechanisms devoted to maintaining the appearance of a dedicated network in a multiuser environment.

There are two points in this section. First, the UDM model has a notion of messages, which are
the unit of communication, along with operations to inject messages into the network at the source
and extract them from the network at the destination. Second, UDM provides for explicit control over
interrupts in user code allowing the integration of both polling and interrupts for notification of message
arrival.

Messaging Model. A message is a variable-length sequence of words. Two of these words are
specialized: the first is an implementation-dependent routing header which specifies the destination of
the message; the second is an optional handler address, as used in Active Messages [21]. Remaining
words represent the data payload and are unconstrained.

The semantics of messaging are asynchronous and unacknowledged. At the source, messages are
injected into the network at any rate up to and including the rate at which the network will accept them.
The injection operation is atomic in that messages are committed to the network in their entirety; no
“partial packets” are ever seen by the communication substrate [9]. Message injection can thus be viewed
in the following fashion:

send(header, handler, word0, word1, : : :)

If resource contention prevents the network from accepting a given message, the corresponding send
operation blocks until successful. Alternatively, blocking can be avoided by using a conditional, non-
blocking version of send, namely sendc:

sendc(header, handler, word0,word1,: : : ) ) true|false

Sendc returns a boolean condition which indicates whether or not the message has been successfully
injected into the network; it is up to the user to retry the send operation if it is not injected successfully.
Once a message has been injected into the network, the UDM model guarantees that it will be eventually
delivered to the destination specified in its routing header.

At a destination, messages are presented sequentially for extraction. A message is extracted from the
network with an atomic operation which reads the contents of the message and frees it from the network:

receive() ) (header, handler, word0, word1, : : :)
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Figure 2: Message time line for interrupt delivery on the fast path.

Implicit in this syntax is the fact that the message contents are placed directly in user variables without a
redundant copy operation. The network provides a message available flag which can be examined to see
if a receive operation will succeed. It is an error to attempt a receive operation when no message
is available.

In addition to the receive operation stated above, UDM provides a mechanism for quick exami-
nation of the next message without actually extracting it from the network:

peek() ) (header, handler, word0, word1, : : :)

As above, it is an error to attempt a peek operation when no message is available.

Execution Model. UDM assumes an execution model in which one or more threads run on each
processor. A single interrupt disable bit determines whether or not interrupts are used for notification
of message arrival. Periods of execution in which message interrupts are disabled are called atomic
sections. When interrupts are disabled, notification is entirely through the message available flag. In
this mode, the currently running thread must poll the message available flag and extract messages with
receive as they arrive.

In contrast, when interrupts are enabled, the existence of an input message causes the current thread
to be suspended and an independent handler to be initiated. The handler begins execution with message
interrupts disabled, at the handler address specified in the message. A handler is required to extract one
or more messages from the network before exiting or re-enabling interrupts. When a handler exits, some
runnable thread is resumed. This thread might be a thread awakened by the handler, a thread created
by the handler, or the interrupted thread; the exact scheduling policy is defined by a user-level thread
scheduler, not by the UDM model. In particular, UDM is compatible with extremely lightweight thread
systems in which message handlers are occasionally or routinely converted to threads after executing
only the minimal code required to communicate with the network interface. Figure 2 illustrates the
timing of a message.

User-level atomic sections permit user code to construct interrupt handlers, to poll and to construct
critical sections that are atomic with respect to interrupts. This level of control over interrupts is ordinary,
if ad hoc, in kernel-level device drivers. Providing this control at user level allows user code (in libraries
or specialized by the programmer or compiler) to interact with the network interface with the same
efficiency and flexibility as kernel code. The interaction of atomic sections and protection in a multi-user
environment will be discussed in detail in the next section.
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Figure 3: UDM network interface registers.

Operation Description
launch(N) If header == kernel message then cause a protection-violation trap.

elseif descriptor-length> 0 then
Commit an N-word message to the network and
descriptor-length := 0

dispose If message-available not set then cause a bad-dispose trap,
else delete current incoming message.

beginatom(MASK) UATOMC := (UATOMC _ MASK).
endatom(MASK) If dispose-pending is set then cause a dispose-failure trap.

elseif atomicity-extend is set then cause an atomicity-extend trap.
else UATOMC := (UATOMC ^ (�MASK))

Table 1: UDM operations

3 UDM System Design

This section details the design of the UDM system. We give an ISA-level description of the memory-
mapped network interface and then describe its use in the common, fast case. The fast case includes
hardware protection to support multiprogramming. The central feature of the fast path is the revocable
interrupt disable mechanism which permits user interrupts and direct polling. Finally, we describe the
alternate, buffered delivery path, how it provides semantics identical to the fast path mode and how the
overflow control mechanism is used to limit buffer usage.

3.1 Network Interface

The UDM network interface consists of a set of memory mapped registers shown in Figure 3, a
set of atomic operations listed in Table 1 and a set of interrupts and traps listed in Table 2. The
operations are implemented as instructions in our system but might be encoded as writes to additional
memory-mapped registers. The user-level registers, operations and the message-available interrupt are
manipulated directly by user code when the fast mode is enabled, i.e., under ordinary conditions. The
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Interrupt/Trap Event Signaled
message-available User interrupt: raised when a message is available for reading
mismatch-available Interrupt: message available with mismatched GID
atomicity-timeout Interrupt: atomic section timer expired
atomicity-extend Trap: optionally triggered by end of atomic section
dispose-extend Trap: optionally triggered by dispose
dispose-failure Trap: triggered when user fails to free message
bad-dispose Trap: attempt to execute dispose with no pending message.
protection-violation Trap: user mode access to kernel interface registers or

user mode attempt to send a kernel message

Table 2: Interrupts and traps

kernel registers and the rest of the interrupts and traps both control the transition from fast to buffered
mode in response to exceptional conditions and support operation in buffered mode. Further discussion
of buffering is deferred to Section 3.3.

Send and Receive. The send operation of the abstract model is decomposed into a two-phase process
of describe and launch, as used in [9]. To send a message, an application first writes all of the message
data into the output message buffer starting at zero offset from the beginning of this buffer. The send
buffer is special in that store operations at a given offset will block if the network is currently unable to
accept a message as large as one that is implied by the offset. Once the message has been completely
described, it is guaranteed that the network will accept it. At that point, the message is injected into
the network with an atomic launch instruction whose operand reflects the length of the message. The
send operation remains atomic because launch is atomic: at any point before launch, the contents of
the output buffer may be transparently unloaded and later reloaded if necessary for a context switch. The
descriptor-length register reflects the number of words in the buffer that would need to be swapped at
any given time. After a launch, data in the send buffer may be altered immediately without affecting
any previously injected messages.

The receive operation is decomposed in an analogous way. The contents of the next pending
message are made available beginning at offset zero from the input message buffer. Access to data within
the message is performed by reading data from the buffer, then executing a dispose instruction. The
dispose operation then exposes the next message, if available, for extraction. Atomicity of receive
is maintained because dispose is atomic.

The application is notified of the arrival of a new message either by a message-available interrupt
(converted to a user-level interrupt) or by explicitly polling the message-available flag in the network
interface. The selection between the two modes and the details of the interaction of user code with user
interrupts is the topic of Section 3.2 on the revocable interrupt disable mechanism.

Protection. The network interface hardware includes protection mechanisms sufficient to enable mul-
tiprogramming. The emphasis is on keeping the common case fast while reflecting all other cases to
software. There are three hardware facilities used:

1. Isolation between users is maintained by labeling all messages with a Group Identifier (GID)
stamped by hardware at the sender and checked by hardware at the receiver.

2. The duration of a user interrupt or upcall handler is bounded by a timeout timer (discussed fully
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in Section 3.2).

3. A reserved, second network exists for occasional use by the operating system in situations otherwise
subject to deadlock (see Section 3.3).

The GID labels a group of processes operating together, e.g., the processes corresponding to the
processors in a parallel application. UDM provides the simplest GID-based demultiplexing system
in hardware: at the receiver, if the GID in the header matches the GID of the current application,
the application is notified of message arrival via the message-available interrupt or via the message-
available bit for polling. Otherwise, a mismatch-available interrupt is generated, allowing operating
system software to perform the rest of the demultiplexing in this uncommon case.

UDM applies all protection at the receiver. The sender is controlled only indirectly by the global
scheduler. Messages directed to incorrect destinations are detected because they cause mismatch-
available interrupts. The operating system handler then uses the global scheduler to find and to perform
the appropriate action against the offending sending application.

3.2 Revocable Interrupt Disable

UDM’s revocable interrupt disable hardware gives applications the ability to lock out network interrupts
temporarily when receiving in the fast case. This fine control over the network and the processor enables
efficient message reception by allowing the user to receive messages directly from the network interface.
From the user’s perspective, the hardware provides the user three things:

1. Fast, user-level message-available interrupts.

2. Critical sections atomic with respect to message-available interrupts.

3. User-level polling directly from the network interface.

However, for protection, the kernel must retain the ability to recover control when required. Thus,
the hardware must also address the following issues:

� For the network to make forward progress, the time from the arrival of a message at a node to the
dispose operation (notify to dispose in Figure 2) must be bounded.

� If the message-available interrupt preempts high-priority code, the atomicity mechanism must
assure that the processor correctly reschedules the high-priority code at the end of the atomic
section and that the period of the atomic section (“receive occupancy” in Figure 2) is bounded.

� The atomicity mechanism must operate transparently whether messages are arriving via the fast
path or via the buffered path.

Note that the “atomicity” provided by the revocable interrupt disable mechanism in hardware is
identical to the atomicity in the user’s model (from Section 2) only when the fast path is in use. On the
buffered path, atomicity is provided to the user by software in the way the buffered queue and thread
scheduling are handled. The system may switch a message from the fast to buffered path transparently
at any time.
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User Controls Description
interrupt-disable When set, prevents message-available interrupts. In addition, if message

is pending, enables atomicity timer; dispose operation briefly disables
(presets) timer.

timer-force When set, enables atomicity timer unconditionally.

Kernel Controls Description
dispose-pending Set by OS, reset by dispose. See endatom in Table 1.
atomicity-extend Requests an atomicity-extend trap. See endatom in Table 1.

Table 3: Detail of atomicity control bits in the UATOMC register (Figure 2).
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Control over user-level interrupts is implemented by a dedicated atomicity timer, four atomicity
control bits in the UATOMC register, and the beginatom and endatom operations. Table 3 details
the control bits in the UATOMC register. Two of the bits are only modifiable in kernel mode and are
configured by the hardware or kernel code before giving control of the processor to the user. The other
two bits can be set and reset by the user via beginatom and endatom, respectively. Under certain
conditions, noted in Table 1 (but generally whenever either of the kernel bits is set), endatom executed
in user mode will trap to return control to the operating system.

The atomicity timer mechanism is comprised of a decrementing counter, atomicity-countdown, and
a preset value, atomicity-timeout. While the timer is disabled, atomicity-countdown is preset to the
atomicity-timeout value. When the timer is enabled, atomicity-countdown decrements for each user
cycle, flagging an atomicity-timeout interrupt if it reaches zero. The atomicity timer is enabled during
atomic sections by the user UATOMC bits, as described in Table 3. The use of the atomicity controls
is best described by example. Figure 4 illustrates the progression of states of the UATOMC register for
each of the following cases:

Critical Section. A critical section (Figure 4A) for a thread can be constructed by wrapping it with an
beginatom instruction that sets interrupt-disable and optionally timer-force bits in the UATOMC and
an endatom instruction that resets both bits. The overhead of the critical section is thus two instructions.
The use of timer-force is optional. If timer-force is set, then the timeout timer bounds the period of the
critical section exactly, which is useful for debugging. If timer-force is clear, the timeout timer bounds
only the time from the arrival of a message (if any) to subsequent message handling.

Polling. Polling is constructed as an “extended” critical section (Figure 4A) that periodically presets the
timer. Again, the use of timer-force is optional. If clear, the timer is preset automatically every time a
message is handled, and the overhead of polling is limited to a load and test of the message-available
flag per poll. The timeout timer bounds the time from the arrival of a message to subsequent message
handling. For debugging purposes, it is useful to bound the period of the polling loop, in which case
timer-force is set. A poll is then coded by briefly clearing timer-force while checking message-available.
If no message is at the input, clearing timer-force presets the timeout timer. Otherwise, the dispose
in the message handler presets the timeout timer. This more conservative polling loop requires two
instructions of extra overhead beyond the load and test of message-available.

User-Level Interrupt Handler. An application interrupt handler (Figure 4B) is implemented by setting
interrupt-disable and also dispose-pending in UATOMC before transferring control to the user handler.
Dispose-pending records that the application must process a message before exiting the handler’s atomic
section or returning to the kernel from the interrupt (RETI). Dispose-pending is implicitly cleared when
the application handler executes the dispose instruction after reading the message from the input
buffer. The timeout timer bounds the time from the arrival of the message to the dispose operation (if
timer-force is clear) or, optionally, to the end of the atomic section.

Our system supports user interrupts only by having a kernel handler quickly convert a kernel interrupt
into an upcall to user code and adding a system call to perform a return from interrupt. Thus, the
manipulations to UATOMC are added in software to the kernel handlers. However, a processor with
user interrupts supported in hardware could manipulate the UATOMC bits as part of the user interrupt
mechanism, leading to an implementation that could be considered the ultimate goal of UDM: providing
protected messaging while in the common case removing all software between the user and the network
at both the source and destination of messages.
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User Handler with Priority Inversion. The revocable interrupt disable mechanism allows the kernel to
synthesize a protected upcall to a user handler (Figure 4C). The kernel implements the upcall by setting
the atomicity-extend and timer-force bits in the UATOMC register before transferring control to user
code. Atomicity-extend causes any endatom operation in the handler to trap to the atomicity-extend
trap, unconditionally returning control to the kernel at the end of the handler’s atomic section. Timer-
force causes the atomic section to be timed regardless of the presence of a message, bounding the time
that the user code can lock out kernel code.

The timeout timer provides a bound on the user control over the processor and the network. Note that
the exact timeout value is a free parameter that may be changed without affecting correctness. Timeouts
cause the message, if any, to be copied to buffer storage and the handler to be rescheduled at a later
time. A timeout of zero corresponds to a system that always invokes buffering. An infinite timeout
corresponds to no protection. The timeout value may be varied by the operating system for tuning or to
gather statistics.

3.3 Virtual Buffering and Overflow Control

Virtual buffering allows messages to be buffered in order to preserve the semantics of the UDM model
in the face of uncommon but unpredictable cases. The objectives of the virtual buffering are to provide:

1. Identical semantics to the fast case and a transparent transition between cases.

2. Graceful degradation of performance as demand for buffering increases.

3. Guaranteed delivery, enabling the fast case to avoid all buffer management overhead.

We address the objectives as follows. First, hardware and software mechanisms and software
conventions provide transparency. Second, the software buffer itself is virtualized, allowing essentially
unlimited buffering while avoiding dedicating physical memory to what is presumed to be an infrequent
case. Finally, the overflow control mechanism makes guaranteed delivery and unlimited virtual buffering
practical by providing feedback from the buffering system to the system scheduler.

Virtual Buffering Mode. Buffered delivery is a mode entered when fast path delivery is not possible,e.g.,
because a mismatched message arrived or because of a timeout or page fault in an atomic section. Each
of these situations causes a kernel interrupt or trap that in turn switches to buffered mode. Buffered mode
is a per-processor, per-application state. In the buffered mode steady state, the operating system stores
messages in a software buffer in the virtual memory of the application performing the communication
and the application reads the messages from the software buffer as if from the network interface. An
application on a processor remains in buffered delivery mode until the last buffered message is processed
and the software can revert to allowing user messages to be received directly from the network interface.
Buffered mode is made transparent to the user by hardware features of the network interface enabled by
the divert-mode bit, by operating system software for buffer management and thread scheduling, and by
software convention in the use of the interface.

In the steady state, illustrated as a timeline in Figure 5, buffered mode is supported by the divert-mode
bit in the network interface (Figure 3). When divert-mode is set, all incoming messages cause kernel
mismatch-available interrupts. The mismatch-available interrupt handler in the operating system loads
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Figure 5: Message timeline for the buffered path.

new messages into the software buffer of the application indicated by the GID in the message header.2

In addition, divert-mode set causes the user-mode dispose instruction to take the dispose-extend trap.
The dispose-extend trap handler emulates the disposal of a message in the software buffer of the current
application. In our current implementation, queued messages are always processed in order.3

The buffered delivery mode presents the user with the same atomicity semantics as the fast path
hardware by a combination of buffer management and scheduling. First, if software buffering was
invoked because of a timeout or page fault in an atomic section, the thread scheduler defers handling
subsequently buffered messages until the suspended atomic section completes, preserving atomicity. If
the application was polling for messages at the time buffering was invoked, the polling thread continues
to operate but reads messages from the software buffer instead of from the network interface. If instead
message-available interrupts were enabled, a message cleanup loop is scheduled as the background user
thread on the processor and runs the atomic section of each handler (using atomicity-extend to limit
execution to the atomic section) until the software buffer is empty.

Given the above hardware and software features, the buffered receive interface can be made com-
pletely transparent to application code by employing a software convention of using a known base register
to point to the hardware’s input message buffer. When delivery must be shifted from fast to buffered
mode, the base register is altered to point to the buffered copy of the message (if any) in main memory.
Handler code is thus identical for both fast and buffered cases, an important feature from a software
engineering perspective. This convention allows an incoming message to be transparently moved from
the hardware to the software queue even if the message handler is in the middle of reading the message.

Virtual Buffering. The buffering system needs to be able to provide buffer space to absorb incoming
messages rapidly. However, it is inconvenient to pin down physical pages in order to serve what we
expect to be an infrequent case. The solution in UDM is to buffer messages in virtual memory, effectively
sharing the node’s pool of free page frames with other dynamic consumers such as demand paging and
file caching. The best policy for allocating page frames is an open question; we currently treat physical
memory as a unified cache.

2We don’t actually use the processor to copy the message into memory; there is a DMA mechanism that can be optionally
invoked as part of the dispose operation.

3There are other possible recovery policies. The strategy we describe preserves message ordering (because the network
used happens to preserve ordering). A variant we intend to pursue is the idea of recovering from buffering by interleaving the
handling of buffered messages with that of new, directly-handled, messages.
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Virtual buffering reduces the pages that must be pinned compared to physical buffering. Only the
head page, if any, of the software queue for each application that may receive messages at a node must be
resident. The interrupt/trap code that inserts a message into the software buffer either adds the message
to the existing, partly filled, head page or extends the software buffer by quickly allocating a fresh page.
The buffer insertion code only stalls when there are absolutely no page frames available on the node.
This unlikely but not impossible situation is addressed by a separate mechanism, described next.

Overflow Control. Overflow control deals with limited buffer resources. UDM guarantees message
delivery so all messages that cannot be delivered directly must be buffered in memory. Buffering is
expected to be rare given effective co-scheduling and, further, the buffering system has access to all free
page frames on the node, so the buffering system is unlikely to run out of physical memory. However, we
provide an escape mechanism from buffer overflow because running out of memory is fatal and because
the memory demands are unpredictable: (1) the coscheduler takes time to repond to changes in traffic
rates, (2) it is difficult to reason about (and undesirable to limit) exactly how many outstanding messages
an application may generate, and (3) even if applications obeyed a strict limit, virtual buffering implies
that the exact number of free page frames available is unpredictable.

UDM relies on a system scheduler that ordinarily co-schedules applications based on their commu-
nication needs with the goal of keeping the system in the fast delivery mode.4 The overflow control idea
is that when a software message buffer reaches a high-water mark (or, alternately, the memory system’s
free page frame list reaches a low-water mark), the buffering system invokes the system scheduler imme-
diately and globally to deschedule the offending job, effectively performing flow control on the source of
messages that are filling the buffer. After memory has been freed up (by paging), the job is then globally
restarted, presumably with more attention paid to coscheduling, and allowed to proceed. An ordinary
application will eventually empty the buffered messages and return to the fast case. An unbalanced or
faulty application may continue to consume buffer space, but the network-overuse problem has been
converted into a (virtual) memory consumption problem. Experiments in Section 5 explore what it means
for an application to be well-behaved.

If the memory system has completely run out of free pages, as opposed to merely reaching a low-water
mark, the main network is deadlocked until the memory can be freed. To avoid deadlock, we use the
second network, reserved to the system, for flow-control messages and possibly for paging in deadlock
situations. The performance demands of the overflow control mechanism on the second network are
slight, however. Our proposal includes only a rudimentary second network.

4 Implementation

The UDM model provides single-user messaging semantics that can be used in either single- or multiuser
systems. We have implemented UDM on two systems: a single-user, physically addressed machine,
Alewife, running on real hardware, and a multiprogrammed, virtually addressed machine, FUGU, currently
running on a simulator with hardware under construction. The hardware base of the two machines is
similar, allowing us to calibrate the FUGU simulator with the Alewife hardware. This section describes
the two platforms and their current limitations.

Alewife. The Alewife system is a single-user, physically addressed multiprocessor consisting of single-
processor nodes distributed on a mesh network. Each Alewife node consists of a Sparcle (SPARC V7

4Statistics from the buffering system may contribute information useful for coscheduling even under ordinary conditions.
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Figure 6: System block diagram for FUGU (with the UCU) or Alewife (without the UCU).

derived) processor, 64K bytes of direct-mapped cache, 8 Mbytes of DRAM main memory, a SPARC
floating-point coprocessor and an Elko-series mesh routing chip (EMRC) from Caltech that forms a
part of the direct, wormhole routed network. A single-chip Communications and Memory Management
Unit (CMMU), implements cache control, memory control and the processor’s interface to the network.
Alewife currently operates at 20MHz with an upgrade to 33MHz planned.

The Alewife hardware and software provides a single-user version of UDM where the high level
model is backed by a fast case implementation only. Multiprogramming and page faults do not occur
and message handler timeouts terminate the user program, although the timeout period is adjustable for
debugging. The Alewife hardware includes memory-mapped send and receive queues and single in-
structionlaunch and dispose operations. The Alewife CMMU also serves as the interrupt controller
and, in a forthcoming revision, will implement the revocable interrupt disable mechanism. The current
Alewife system emulates the atomicity system using the system timer and a reserved flags register in the
processor at a cost of approximately 30 extra cycles per interrupt handler [4].

The Alewife software system provides a particularly aggressive use of extremely lightweight threads:
interrupt handlers execute as general threads that can block and that possess their own stacks. To achieve
this speed, we take advantage of the existence of two or more independent register sets. Such support is
an integral part of the SPARC architecture and appears in other architectures as well.

FUGU. The FUGU system is an experimental multiuser multiprocessor under construction. FUGU extends
Alewife with the addition of a User Communication Unit (UCU) IC which implements the TLB, the GID
stamp/check and a rudimentary second network. This UCU IC has been designed and is currently in
layout. The initial implementation will be based on a Chip Express ASIC. Our experimental platform is a
fast but not timing-accurate simulator used in advance of the prototype. The current system differs from
the design presented in the paper in that the atomicity mechanisms are still implemented in software
(much like Alewife) instead of simulated hardware. The GID stamp and check are also currently
implemented in software. We account for these differences in the results by explicitly counting the costs
in cycles of the software emulation.

The FUGU operating system, Glaze, is a custom multiuser operating system based on the Aegis
Exokernel [7] and is under active development. The operating system supports multiprogramming,
virtual memory, messages and user-level threads. Glaze implements the UDM model including virtual
buffering used in response to GID mismatches and page faults,5 although message timeouts are currently
fatal. The system scheduler, implemented as a user-level server, is only rudimentary at this time
but supports both gang scheduling and a simple form of co-scheduling by synchronizing processes

5Glaze does not yet support paging to disk, but does support regions that are zero-filled on demand
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Alewife/FUGU Alewife, Rev1 FUGU

Item kernel mode user mode user mode
(cycles) (cycles) (cycles)

Message Send
Descriptor construction 6 6 6
launch 1 1 1

send total: 7 7 7

Message Receive (interrupt)
Interrupt overhead 6 6 6
Interrupt entry 16 16 10
Timer setup – 13 1
Dispatch 10 15 15

subtotal: 32 50 32
Null handler (w/dispose) 3 5 3
Timer cleanup – 19 1
Interrupt exit 17 21 17

interrupt total: 52 95 65

Message Receive (polling)
Poll 3 3
Dispatch 5 5
Null handler (w/dispose) 1 1

polling total: 9 9

Table 4: Cycle counts to send and receive a null message. Add 3 cycles per argument to the send cost and 2 cycles
per argument to the receive handler cost for non-null messages. The Alewife numbers include overhead to emulate
the atomicity mechanism on the first silicon CMMU.

periodically. Overflow control is not yet implemented. Glaze, the scheduler and the synthetic and Tpuz
applications described in the next section are all functional on the fast simulator.

5 Experiments and Results

This section details experiments that show the performance of UDM on the FUGU system and some
comparisons to performance on the Alewife system. The results are based on FUGU simulations as
well as runs on the existing Alewife hardware which uses largely the same set of hardware components
as FUGU. The experiments make three points. First, the protected, user-level “fast path” provides
communication between users at essentially the same speed as unprotected, kernel-level messages
running on raw hardware while the buffered path has an overhead of approximately 3.5 times the fast
path. Second, we show that it is reasonable to expect well-behaved programs to stay out of buffering
mode, but that it is important to keep the buffering overhead low. Finally, we exhibit some preliminary
results from multiprogramming that demonstrate the flexibility of the system: strict gang scheduling is
not required.

5.1 Basic Costs

Fast Path. Table 4 details the cost of sending and receiving messages in FUGU at user level, in Alewife at
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Item Cycles

Minimum buffer-insert handler 163
Maximum handler (w/vmalloc) 2068

Execute null handler from buffer 71

Table 5: Cycle counts for overhead to insert and extract messages from the software buffer. Add roughly 4.5
cycles per argument word to the extraction cost for non-null messages.

user level and at kernel level in either machine. The Alewife cycles breakdowns come from [4], verified
by microbenchmarks run on the Alewife hardware. The kernel and FUGU cycle counts are made from
simulator traces. The send cost is for a blocking send operation. The interrupt-based receive cost
represents the basic fast path cost. The polling cost represents a polling loop that receives exactly one
type of message. The loop checks the message type by testing the handler address. This sort of polling
loop is useful in applications that orchestrate communication closely.

The atomicity mechanism and GID manipulations are performed in software in the FUGU simulation,
but we predict the performance of the FUGU prototype by eliminating the appropriate categories. The
atomicity mechanism will be implemented in a second revision of the CMMU part and the the GID
stamp and check are implemented in the UCU. The result is that the overhead of the fast path for user-
to-user communication in FUGU is within a few cycles of the overhead for unprotected, kernel-to-kernel
communication.

Buffered Path. In the common case messages will be delivered via the fast path. If, however, a message
arrives for a process that is not immediately ready to receive it, Glaze will buffer the message in the
virtual buffer and then deliver the message to the process at the next opportunity. The buffered path
introduces two components of overhead. First, there is an extra copy operation: a Glaze handler must
copy the message from the network interface to memory. Second, the user handler must must now
retrieve the message from main memory DRAM rather than from the faster network interface SRAM.
For message handlers that run for a long time, the extra overhead of buffering will be insignificant. For
short handlers or for messages with large amounts of data, the extra overhead can dramatically increase
the total processor (or DMA) cycles consumed by the message. Any extra overhead is important, even
to applications where message latency is not a concern, because the cost of copying represents wasted
cycles, and total handler overhead strictly limits the maximum observable messaging rate, as observed
below in Section 5.2

We evaluate the Glaze implementation of the buffered path with a microbenchmark that causes
many messages to be buffered. The overheads, including allocation of virtual memory on demand, are
tabulated in Table 5, listing the minimum and maximum buffer insertion times and the buffer extraction
overhead. The minimum overhead per message is 234 (= 163 + 71) cycles, or about 3.5 times the fast
path overhead of 65 cycles, for null messages. For non-null messages, the difference increases due to
the extra cost of pulling the messages from DRAM of 2 cycles per word plus 10 cycles per 4 words for
cache misses.6 The null handler time already includes the cost of one expected cache miss for fetching
the message header. The virtual buffering scheme allocates page frames from the operating system on
demand. These allocations are expensive (2068 cycles), but occur so rarely as to be negligible in our

6The buffer insertion handler uses DMA to copy the message so there is no direct overhead to the processor for extra words
inserted into the buffer.
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simulations.

5.2 Buffering Behavior

We expect applications to observe buffering overhead only rarely because buffer mode is entered only
under unusual conditions and because ordinary applications will clear buffered messages quickly. The
second of these expectations is not immediately obvious, so we studied the incidence of buffering with
a synthetic application.

If a node must start buffering, several factors help guarantee that the buffer will clear relatively
quickly. The first is that any application that requires a reply after message send inherently limits its own
communication rate. Limiting the number of outstanding requests guarantees that, if buffering mode is
entered at all, the maximum number of messages buffered will be finite (and usually small). In addition,
the low-level network flow control mechanism guarantees that the maximum short-term injection rate
will be limited by the maximum rate at which messages can be diverted (one message per 163 cycles).
There remains a class of applications that pass messages and perform little or no synchronization. If
such an application launches messages at very high rates for long periods of time, a large percentage
of its messages may be diverted through the buffered path. At some point, an application written this
way must simply be considered poorly behaved because it will perform poorly on any machine. Such
applications will not interfere with other programs, because the divert mechanism clears messages out
of the network quickly, but they will tend to observe both higher average latencies and overheads for
message handlers.

Our synthetic application, synth-N , performs producer-consumer communication on two processors
with various amounts of synchronization. At the consumer node, each incoming message from the
producer invokes a handler that stalls for a short period, and then sends a reply message. The handler
time is fixed at Thandler cycles, not including messaging overhead. The producer iteratively generates
groups of N messages, and then waits for all the acknowledgements from that group of requests,
effectively creating a synchronization point and limiting the maximum number of outstanding requests
to N . The interval between individual message sends is a uniformly distributed random variable with an
average of Tinterhandler instructions.

We tested three cases of synth-N with Thandler fixed at 750 cycles and N set to 10, 100 and 1000
messages. We artificially induce the application to switch to buffering mode periodically by employing a
scheduling trick: we multiprogram synth-N with a “null” application (one that runs an infinite loop). The
scheduler gang-schedules the two applications, but artificially introduces a skew of 2000 cycles between
the context switch points on the two processors. Thus, at the beginning of each (.5Mcycle) timeslice,
there is a 2000 cycle window during which a synth-N producer message arriving at the consumer node
will generate a mismatch-available interrupt, forcing the consumer node of synth-N into buffering mode.

Figure 7 presents the results, giving the fraction of messages buffered on the consumer node versus
Tinterhandler. There are two features to observe in the results. First, all versions of synth-N show a
small percentage of messages buffered when Tinterhandler > (Thandler + Tbuffering reception overhead).
In this region, the application is well-behaved by virtue of having a low enough send rate so that the
consumer’s buffer is guaranteed to eventually drain. Second, buffering is reduced as the frequency of
synchronization increases (smaller N ). In this application, synchronizing has the effect of “manually”
clearing the software buffer, so the node is in buffering mode only from the time buffering mode is
triggered until the next synchronization. The synchronization in synth-100 and synth-10 occurs more
often than timeslices, so these versions are subject to buffering proportionately less often.
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Figure 7: Percentage of messages buffered at the consumer versus send interval for a fixed 750 instruction handler
and N messages (for synth-N ) sent per synchronization point

Batch Scheduled Gang Scheduled Co-Scheduled
Workload Total Normal Msgs. Normal Msgs.

Instrs. Messages Instrs. Buffered Instrs. Buffered

Tpuz 120.6M 513.5K
Tpuz vs. null 239.6M 513.5K / 0 1.009 2 / 0 1.008 12.1K / 0
Tpuz vs. Tpuz 237.4M 513.5K / 513.5K 1.019 172 / 191 1.059 147.9K / 144.3K
Tpuz vs. synth-100 235.6M 513.5K / 280.0K 1.010 63 / 17 1.189 202.3K / 62.6K
Tpuz vs. synth-10 236.6M 513.5K / 280.0K 1.010 61 / 20 1.377 167.4K / 6.5K

Table 6: Instructions executed and messages queued in FUGU for several workloads and three scheduling strategies
on four processors. The timeslice interval is 0.5M instructions.
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5.3 Multiprogramming

Finally, we illustrate the flexibility of the system by running an application multiprogrammed as part
of workloads under several scheduling strategies. The application, Tpuz, performs an exhaustive
search of board positions in the “triangle puzzle” [12] — a simple game. The application operates in
stages separated by barriers, where at each stage processors exchange many unacknowledged messages
with one another. The messaging in Tpuz can be characterized by Thandler ' 170 instructions and
Tinterhandler ' 950 instructions. We run Tpuz alone as a baseline and then in conjunction with null
(which in this case runs a loop for a fixed number of iterations), with itself and with 4-processor variants
of synth-N (Thandler = 500 and Tinterhandler = 1000). The scheduling strategies are batch scheduling,
gang scheduling and rudimentary co-scheduling. Table 6 summarizes the results for for each workload.
The columns for the batch run give the total run time (in simulated instructions) of the workload and
the total number of messages sent for each job in the workload. The other columns give the run times
normalized to the batch case and the numbers of messages buffered for each job.

The gang scheduler operates by giving the machine to an application job for fixed-size timeslices
and ignoring any yield calls made by the application. The scheduler does not use barriers but rather
relies on the ability of the hardware to make timeslice interrupts occur roughly simultaneously on all
nodes. Gang scheduling adds a small cost (1-2%) for the overhead of the scheduler. There are also a
small number of messages buffered as a result of imperfections in the schedule. It is a feature of UDM
that it can gracefully tolerate such imperfections.

The results for the rudimentary co-scheduler demonstrate the flexibility of the system to support
multiple scheduling policies. Our simple co-scheduler operates by synchronizing jobs periodically
(every 15th timeslice), but otherwise allows the processors to switch processes independently at the end
of each timeslice or in response to yield calls. Both Tpuz and the synthetic application occasionally
yield when waiting for synchronization and this use of yield at unexpected times allows the processes
to become unsynchronized. Tpuz vs. null works quite well and Tpuz vs. Tpuz reasonably well
with this scheduler. Even though a large number of messages are buffered, the overhead of buffering is
relatively small, Tpuz tolerates the extra latency of buffering and there are also some benefits gained
from multiprogramming during some small amounts of idle time that exist due to load imbalance in
Tpuz. The synth-N applications perform poorly, however, not because of buffering but because they
require frequent synchronization.

6 Related Work

Recent architectures demonstrate emerging agreement that it is important to support both shared memory
and messaging operations. Shared memory is desirable for applications with dynamic, unpredictable
communication. Messaging is useful for bulk transfer of data, for combining data transfer with syn-
chronization, and for supporting other communication models such as remote procedure call used in
client/server applications. To our knowledge UDM is the first general-purpose communication model
that provides efficient protected communication for fine-grained messages and directly supports a wide
range of communication styles.

The UDM interface is similar to Active Messages [21]. The chief focus of Active Messages is that,
since an active message is within one domain, it can carry a raw pointer to code to be executed on
the receive side, thus permitting many message types to be crafted for situations. Our focus is slightly
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different in that in addition to flexibility we emphasize the need for the receiving user process to have
full control over atomicity with respect to messages for efficiency, since both interrupts and polling
are important delivery modes. In addition, UDM provides support for running mutually-distrustful
applications concurrently, allowing efficient active-message style of communication for general-purpose
computing.

There are several other approaches to providing protected messaging for small messages or the
equivalent functionality. These approaches can be categorized as follows:

� The machine may be divided into partitions and each partition rigidly gang-scheduled so that the
network in a partition may be safely controlled by one application at a time.

� Outside of fine-grain computation, a major use for small messages is to construct synchronization
primitives. Small user messages may be avoided or made rare by providing a suite of synchro-
nization primitives in hardware, in a coprocessor, or synthesized by the kernel out of kernel
messages.

� User messages may be received and demultiplexed into pre-allocated, per-application regions of
physical memory. There is still the issue of how to deal with buffer overflow, but because the
buffers can be large, overflow can be made to occur rarely. Messaging through memory is popular
because it avoids processor modifications and decouples the delivery of the message data from the
delivery of the message event.

� In a system with kernel messages, flexibility may be recovered by contriving to safety-check and
then “download” user-provided message handlers into the kernel [2, 7].

Several previous multicomputers have provided direct messaging. The Mosaic [17] and J-machine [6]
multicomputers are single-user machines. The J-machine provides two levels of network priorities and
the ability to relaunch incoming messages from memory transparently. The CM-5 multicomputer [11]
provides direct, user-level messaging and allows multiprogramming via strict gang scheduling.

Typhoon [15], *T [13] and the Meiko CS-2[16] provide coprocessors with the ability to run user code.
Typhoon’s coprocessor is protected by hard gang scheduling in the manner of the CM-5. The coprocessor
includes features to accelerate message handling, but provides less computational performance and
a restricted set of computational features (e.g., no floating point support). *T proposed protection
mechanisms similar to FUGU’s for short messages and made the same assumptions about separating
performance from correctness in scheduling. Our focus is on developing a minimal set of mechanisms
that are sufficient for user-level message handling and protection, while *T proposes a richer set of
features. For instance, *T demultiplexes messages into several receive queues, and the receive queues
are implemented as a part of the processor register set. The CS-2 coprocessor primarily demultiplexes
messages into memory but allows some user-level processing of messages, albeit with limits in speed
and functionality [16].

FLASH [10] uses a kernel-level coprocessor for message handling including shared-memory protocol
messages. The coprocessor implements synchronization primitives and provides user messaging through
memory. Kernel messages serviced by the main processor are also implemented at greater cost [5]. Unlike
FUGU, Flash does not provide general-purpose, user-level messaging except through memory. FLASH

includes two networks but for a different reason than FUGU. FLASH uses its two networks for request
and reply packets to avoid deadlock. Packets can be sorted into request and reply networks because the
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message protocols are controlled by the kernel-level coprocessor. FUGU mostly uses one network with
mixed kernel and user traffic, but occasional resorts to use of the second network to avoid deadlock.

SHRIMP [3] and Hamlyn [22] implement protected user-level message passing through a remote-write
model. Communication is possible between pairs of virtual pages. Protection is provided by memory
mapping but pages must be pre-negotiated and pinned.

Work on parallel processing on networks of workstations seeks to identify mechanisms to accelerate
communication while retaining protection. Thekkath’s RMA model [19] separates data transfer from
notification in a network of workstations. The data transfer can be protected by memory mapping
mechanisms. The uNET system [20] provides support for short, user-level messages in a network of
workstations by demultiplexing messages into pre-negotiated, per-process receive buffers in memory.
The arrival of messages is detected by polling. uNet uses the ATM VCI field in a manner similar to
FUGU’s GID field. The network of workstations work, with round trip times on the order of 60+ �S, is
really operating in a completely different domain from Fugu’s. They are in a domain where adding 6�S
to the common case path to deal with unreliability in the network is comparatively small. In contrast,
Fugu is operating in the domain where fetches from main memory, such as are required in models that
deliver messages to memory, become significant.

7 Conclusion

The UDM system combines support for the requirements of client-server decomposition and multiple
protection domains with efficient, user-level access to hardware that permits specialization. The pro-
grammer’s model is that of user control of a dedicated network, while the implementation transparently
provides two cases, one with actual user control over the hardware for best case performance and a sec-
ond using software buffering that maintains guaranteed operation in the face of uncertainty introduced
by usability features (multiprogramming and virtual memory). The system achieves high performance
when co-scheduling is successful.

The novelties of the system are three: First, the programmer’s model recognizes atomicity explicitly,
giving user code the same level of control found in kernel device drivers. Second, the revocable
interrupt disable mechanism in the hardware allows user code to control the network in the fast case
but allows the operating system to manage the transition to software buffering when required. Finally,
the buffering strategy uses virtual buffering and overflow control to guarantee message delivery without
adding overhead to the fast path. We have presented a single, integrated design for clarity but, in fact,
the independent features of the design can be applied separately:

� The message receive model with explicit atomic sections is applicable to any fine-grain messaging
system. Although we have assumed an environment of a multiprocessor with a reliable internal
network, the receive model is also useful on a network of workstations with an unreliable network
because it allows the user to construct only as much of a software layer as is needed to provide
sufficient reliability.

� The revocable interrupt disable mechanism and hardware support is applicable to any system that
provides fast, protected upcalls from kernel to user code. This technique offers an alternative to
downloading user code into the kernel as is popular in recent user-extensible operating systems.

� Virtual buffering and overflow control are applicable to systems with hardware-provided receive-
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side buffering as well as software buffering systems as a means to provide graceful degradation as
buffers fill up.
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