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Abstract
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vector in a lattice within a factor ¢ is NP-hard for randomized reduc-
tions for any constant ¢ < V2.

*email: miccianc@theory.lcs.mit.edu.  Partially supported by DARPA contract
DABT63-96-C-0018.



1 Introduction

In this paper we show that approximating the shortest vector in a lattice
within any constant factor less than /2 is NP-hard for randomized reduc-
tions.

The first intractability results for lattice problems date back to [10] where
van Emde Boas proved that the closest vector problem (CVP) is NP-hard
and conjectured that the shortest vector problem was also NP-hard.

Altough much progress was done in proving the hardness of CVP [3],
where the problem is proved NP-hard to approximate within any constant
factor and quasi-NP-hard within quasi-polynomial factors, the hardness of
computing even the exact solution to the SVP remained an open question
until recently when Ajtai [2] proved that the SVP is NP-hard for randomized
reductions. In the same paper it is shown that approximating the length of
the shortest vector within a factor 1 + 2,115 is also NP-hard for some constant

¢ and in [5] is shown how to improve the inapproximability factor to 1 + #,

but still a factor that rapidly approachs 1 as the dimention of the lattice
grows.

In this paper we prove the first inapproximability result for the shortest
vector problem within some constant factor greater than 1. This result is
achieved by reducing the approximate SVP from a variant of the CVP which
can be proven NP-hard to approximate using essentially the same arguments
as in [3]. The techniques to reduce CVP to SVP are similar to those used
in [2] where the problem is reduced from a variant of subset sum. However
the similarities between the CVP and the SVP leads both to a much simpler
proof and a much stronger result.

The rest of the paper is organized as follows. In section 2 we formally
define the shortest vector and closest vector approximation problems. In
section 3 we prove the NP-hardness of a variant of the closest vector ap-
proximation problem. In section 4 we prove that the SVP is NP-hard to
approximate by reduction from the modified CVP using a technical lemma
which is proved in section 5.



2 Definitions

We formalize the approximation problems associated to the shortest vector
problem and the closest vector problem in terms of the following promise
problems, as done in [6].

Definition 1 (Approximate SVP) The promise problem GapSVPg, where
g (the gap function) is a function of the dimension, is defined by

e YES instances are pairs (V,d) where V is a basis for a lattice in R",

d € R and ||VZ||* < d for some Z € 7™\ {6}

e NO instances are pairs (V,d) where V is a basis for a lattice in R",

de R and |[VZ|? > g(n)d for all Z € Z"\ {0}.

Definition 2 (Approximate CVP) The promise problem GapCVP,, where
g (the gap function) is a function of the dimension, is defined by

e YES instances are triples (V,¥,d) where V. € 79", y € RF, d € R and
\VZ —§||* < d for some Z € Z".

e NO instances are triples (V,y,d) where V & 2k G e RE de R and
\VZ —§|* > g(n)d for all Z.

We also define a variant of CVP, which will be used as an intermediate
step in proving the hardness of approximating the shortest vector in a lat-
tice. The difference is that the YES instances are required to have a boolean
solution, and in the NO instances the target vector can be multiplied by any
non-zero integer.

Definition 3 (Modified CVP) The promise problem GapCVPy, where g (the
gap function) is a function of the dimension, is defined by

e YES instances are triples (V,y,d) where V € Z¥*" y € R* d € R and
IVZ—§|2 < d for some Z € {0,1}".

e NO instances are triples (V,¥,d) where V € Z¥*" § € RF, d € R and
\VZ — wy||* > g(n)d for all Z € Z" and all w € Z.



3 Hardness of approximating CVP

In this section we prove that the modified CVP is NP-hard to approximate
within any constant factor. The proof is by reduction from set cover and is
essentially the same as in [3].

Definition 4 (Set-Cover) An instance of set-cover consists of a ground set
U and a collection of subsets Si,...,5, of U. A cover is a subcollection of
the S;’s whose union is U. The cover is said to be exact if the sets in the
cover are pairwise disjoint.

In [4], Bellare, Goldwasser et al. show that for every constant ¢ > 1 there
is a polynomial time reduction that, on input an instance ¢ of SAT, produces
an instance of set-cover and an integer d with the following properties:

o If ¢ is satisfiable, there is an exact cover of size d,
o If ¢ is not satisfiable, then no set cover has size less than cd.

This result is used in [3] to show that the closest vector problem is hard
to approximate within any constant factor. In fact, the same reduction can

be used to prove that the modified CVP is NP-hard to approximate within
any constant factor.

Theorem 1 For every constant ¢ > 1 the promise problem GapCVP. is NP-
hard.

Proof: Let ¢ be a constant greater than one. We reduce SAT to GapCVPL.
Let ¢ be an instance of SAT. Apply the reduction from Bellare, Goldwasser
et al. [4] to the formula ¢, to obtained instance of set-cover U, S,...,S,,
and integer k. Let n be the size of U and let S € {0,1}"*™ be the matrix
defined by S;; =1 iff 2 € 5;.

Define N and y as follows:

aS
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[
=14

where « is an integer such that o? > ck.



e Assume ¢ is satisfiable. Then, U has an exact cover {S;};cs of size
|[I] = k. Let X € {0,1}™ be the indicator vector of set I. We have
SX =1 and ||2]|* = X 2; = k. Therefore

INR = 7|1 = a®||5% = 1||* + |[||* = &,
i.e., (N,¥) is a YES instance of the modified CVP.

e Assume ¢ is not satisfiable. Then every subset {5} of size |I| < ck
is not a cover. Let X € Z” and w € Z \ {0}. We want to prove that
INX — wy||* > ck. Notice that || NX — wy||* = o?[|SX — waz + |IX||*.
We show that either a?||SX —w1]||? or ||X]|? is greater than ck. Assume
||IX]|*> < ck. We will prove that ||SX — waz > 1, which by our choice of
o implies o?||SX —w1||? > ck. Let I be the set of all 7 such that ; # 0.
Notice that |I| < 3 |a;| < S a? = ||z||* < ck. Therefore {S;}ies is not
a cover. Let j € U be such that j & U;c; S;. We have [SX]; = 0 and
therefore ||SX — wi|?> > ([SX]; — w)? > w? > 1.

4 Hardness of approximating SVP

In this section we use the hardness of approximating the closest vector in a
lattice to show that the shortest vector problem is also hard to approximate
within some constant factor. The proof uses the following technical lemma.

Lemma 1 For any constant € > 0 there exists a PPT algorithm that on
input 1% computes a lattice [ € RU"TD*™ g vector § € R™! and a matriz

C € ZF*™ such that with probability arbitrarily close to one,
e For every non-zero Z € Z™, ||Lz||* > 2.

o For all X € {0,1}* there exists a Z € Z™ such that CZ = X and
|LZ —S||* <1 +e.

The proof of the above lemma will be given in the next section. We can
now prove the main theorem.



Theorem 2 The shortest vector in a lattice is NP-hard to approximate within
any constant factor less than /2.

Proof: We will show that for any € > 0 the squared norm of the shortest
vector is NP-hard to approximate within a factor 2/(1 4 2¢). The proof is
by reduction from the modified closest vector problem. Formally, we give a
reduction from GapCVP/, to GapSVP, with ¢ = 2/¢ and g = 2/(1 4 2¢).

Let (N,¥,d) be an instance of GapCVP.. We define an instance (V) of
GapSVP, such that if (NV,y,d) is a YES instance of GapCVP., then (V1) is a
YES instance of GapSVPg, and if (IV,y,d) is a NO instance of GapCVP, then
(V,1) is a NO instance of GapSVP,.

Let L,s and C be as defined in lemma 1. Let t = 1 +2¢ and let V' be the

matrix
L —8
V= [ ﬁ-NoC‘—ﬁ-fr]
where = /¢/d.

e Assume that (N,¥,d) is a YES instance, i.e., there exists a vector X €
{0,1}* such that ||[NX — y||* < d. From lemma 1 there exists a vector
Z € Z™ such that CZ = X and ||LZ — §||* < 1 4 e. Define the vector

Z

V_&:lll.Wehave

IVW]* = |[LZ = §|* + B[ NX = §||I* < 1 + 2c =1t

i.e., (V,t) is a YES instance of GapSVP,.

—

e Now assume that (N,¥,d) is a NO instance and let w = l Z} ] A

be a non-zero vector. We want to prove that ||Vw|[* > ¢g-t = 2. Notice
that ||VWw|* = ||[LZ — ws||* + B?||NX — wy||*>. We prove that either
|LZ — ws]|* or 5*||[NX — wy||* is greater than 2. If w = 0 then Z # 0
and | LZ—w¥||* = ||LZ||* > 2. If w # 0 then §%| NX—wy||* > 3%cd = 2.



5 Proof of the Technical Lemma
To prove lemma 1 we need a result from [2] and two other lemmas.

Lemma 2 For all € > 0, for all sufficiently large integers b, the following
holds. Let py,...,p, be m relatively prime positive integers. Let P € R™
be the vector P; = log, p; and let D € R™*™ be the diagonal matriz D;; =

\/1og, pi. Define the matrix
[ \/1og, p1 0 |

D 0 ., :
L: 0 1/@ = 10 0
\/ gbpm
BP 6/blnb 0 0 l/a
| Blogypr -+ Blog, p 5/511“5 J

where a = %65/2 and 3 > /2blnb. Then for all non-zero integer vectors
Gezm L = (2— o).

Proof: Let Z € Z™*! be a non-zero vector. Define the vector Z’ = [z, ..., z,]T.
Notice that

|LZ)|* = ||DZ'||* + (—Zm+1)2 + 3 (PZ’ + Zm“)2.
a blnb

We want to prove that ||LZ][? > 2 —e.
If 2 =0, then z,,41 # 0 and

ILZ)* > 3 (PZ’ + Zm+1)2 _ (i)zzﬂ > (i)z > 9.

- blnb blnb) "™t = \bIlnb) —

So, assume Z' # 0. Let Z'.Z~ € Z™ be the vectors defined by 2z =
max{z/,0} and z;7 = max{—z/0}. Define the integers gt = 077" = Hipf:r
and ¢- = b7 = Hipfi_. Notice that z' # 0 implies Z* # 7z~ and since
the p;’s are relatively prime, ¢* # ¢~. We observe that for any posi-
tive integers @ # vy, |log, x — log, y| > m (proof: |log, x — log,y| =

log(max{z,y}/ min{z,y}) = log,(1+|r—y[/ min{w,y}) > log,(1+1//7y)
log,2/\/zy = 1/(\/xylgd).) In particular, |PZ'| = |log, gt — log, ¢~ |

>
>
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(VgTg~1gb)™!, and since log, gt¢g~ = PZt + Pz~ < ||DZ||* + ||DZ™||? =
| DZ'||* we have

1
> T
||D Il gb
Now assume for contradiction that ||[LZ]|* < 2 —e. We have | DZ'||* < 2 — ¢
and |zpq1| < av/2. It follows

|PZ'| >

17| > g|p7 + 2t
iz = ‘ Y
= <| 2= e

e
b=/21gb  blnb

> (bﬁb) (62102 — av/2)

> V207 (In2 —v/2/3) > V2
O

Lemma 3 Let L be the matriz defined in lemma 2 and assume 3 < b*~°.
Define the vector § = [ ,0,8)F € R™+%. For every vector Z' € {0,1}™,
let ¢ = 112 p7" and Z = [(Z’)T,b — g|¥. For every positive § < 1/2, if
|Zma1| = |0 — g] < da, then |LZ —§||* <1+ 6.

Proof: Notice that

1DZ|? = P = log, g = logy(b— zms1) = | + log, (1 _ Zmb“) .

Therefore, using the inequality |In(1 + z) — z| < 2? valid for all |z| < 1/2,
we have

—»_ =12 _ =112 Zm-l—l 2 2 =/ Zm—l—l o 2
Lz —s||” = ||DZ|"+|—— ) +08°|PZ + 1
a blnb
2
— 1+4log, (1 _ Zm+1) n (Zm-l—l)
b a

e (i) (- 2mm) 4 20y




2
Zm—l—l Zm—l—l 2 6 (Zm—|—1)4
< _ N
= blnb+< a ) +(1nb) b

a a’p ?
< 148 L) 4yt )
= 0 (blnb)+ * (b?lnb) s

a

Lemma 4 For all0 <~y < 1, A > 0 and all large enough n, if b is chosen at
random from the set , of all products of n distinct primes less than n2t?™"
then with probability exponentially close to 1 there are at least n™ elements

g €, such that |b— g| < \b".

Proof: Let m be the number of primes less than n2***" . From the prime

number theorem we have m > n2t27=7/3 for all large enough n, and
n 2 —

l, | = (Tg) > (%) > n(1+3-3)" Notice that . C [0,n+27)7] Divide

[0, n2+27)7] into k = nG=3)" intervals each of size n(**¥)". Let I, the

interval containing b. We will prove that with probability exponentially close
to one ¢ — b] < A6 for all g € [, and |[[, N, | > n". Let ¢ € I,. We have
lg — b < |1,| and

Loy AT L)
Pr(|I;| > A\b") = Pr (b <Ay |]b|;) < %
_%‘ (%4—%)71 ) -
< AT
n(l""?_i)”

To bound the size of I, N, , observe that each interval [, is chosen with
probability |1, N, |/|, |. Therefore we have

Pr(|,n, | <n") = Pr (Pr(]b) < "—) =

(1+2—2l n
= ey < L ()
N n(l-l—?_%)n



Lemma 5 For all ay,az > 0, there exists 61,062,065 € (0,1) so that for all
sufficiently large n the following holds: Assume that (S, X) is an n-uniform
hypergraph, n? < |S] < no, | X| > 202nlen k= p% gnd Cy,...,Cy is a
random sequence of pairwise disjoint subsets each with exactly |S|n=0+%)
elements, with uniform distribution on the set of all sequences with these
properties. Then, with probability of at least 1 —n=% the following holds: for
each f € {0,1}* there is a T € X so that f(j) = |C; NT| for all 5.

Proof: See Theorem 2.2 in [2]. O

We can now prove lemma 1. Let ¢ be a positive constant less than 1/2 and
let k£ be a sufficiently large integer. Let 61, 65,05 be the constant defined in
lemma 5 with o = 2+ 4¢! and ay = 1. Let n = kY%, TLet L be the matrix
defined in lemma 2 with pi,. ... p, the set of all primes less than n2t4<
b chosen at random among the products of n distinct such primes.

From lemma 2 we know that ||LZ||? > 2 — € for all non-zero Z € Z™*.

Let C € {0,110+ he the matrix defined by C;; = 1iff j € O}, where
C1,...,C} are the sets defined in lemma 5 with S = {p1,...,pn}.

For every X € {0,1}%, let f(j) be the function f(j) = x;. Define X to
be the set of all T C S such that |T| = n and |b — Heqt| < 56;/2. From
lemma 4 (with v = ¢/2 and X\ = ¢/3) we have |X| > n" = 278" and from
lemma 5 there exists a T € X such that |C; NT| = f(j) for all j. Let
Z' € {0,1}™ be the indicator vector of the set T', ¢ = Il;ezt and define the
vector Z = [(Z')T|b — g]T. Notice that |z,,41| < 56;/2. We have CZ = X, and
from lemma 2, ||LZ]|*> <1+ e

and
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