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1 Introduction

In this paper we show that approximating the shortest vector in a lattice
within any constant factor less than

p
2 is NP-hard for randomized reduc-

tions.
The �rst intractability results for lattice problems date back to [10] where

van Emde Boas proved that the closest vector problem (CVP) is NP-hard
and conjectured that the shortest vector problem was also NP-hard.

Altough much progress was done in proving the hardness of CVP [3],
where the problem is proved NP-hard to approximate within any constant
factor and quasi-NP-hard within quasi-polynomial factors, the hardness of
computing even the exact solution to the SVP remained an open question
until recently when Ajtai [2] proved that the SVP is NP-hard for randomized
reductions. In the same paper it is shown that approximating the length of
the shortest vector within a factor 1 + 1

2nc
is also NP-hard for some constant

c and in [5] is shown how to improve the inapproximability factor to 1 + 1
n�
,

but still a factor that rapidly approachs 1 as the dimention of the lattice
grows.

In this paper we prove the �rst inapproximability result for the shortest
vector problem within some constant factor greater than 1. This result is
achieved by reducing the approximate SVP from a variant of the CVP which
can be proven NP-hard to approximate using essentially the same arguments
as in [3]. The techniques to reduce CVP to SVP are similar to those used
in [2] where the problem is reduced from a variant of subset sum. However
the similarities between the CVP and the SVP leads both to a much simpler
proof and a much stronger result.

The rest of the paper is organized as follows. In section 2 we formally
de�ne the shortest vector and closest vector approximation problems. In
section 3 we prove the NP-hardness of a variant of the closest vector ap-
proximation problem. In section 4 we prove that the SVP is NP-hard to
approximate by reduction from the modi�ed CVP using a technical lemma
which is proved in section 5.
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2 De�nitions

We formalize the approximation problems associated to the shortest vector
problem and the closest vector problem in terms of the following promise
problems, as done in [6].

De�nition 1 (Approximate SVP) The promise problem GapSVPg, where
g (the gap function) is a function of the dimension, is de�ned by

� yes instances are pairs (V; d) where V is a basis for a lattice in Rn,
d 2 R and kV~zk2 � d for some ~z 2 Zn n f~0g.

� no instances are pairs (V; d) where V is a basis for a lattice in Rn,
d 2 R and kV~zk2 > g(n)d for all ~z 2 Zn n f~0g.

De�nition 2 (Approximate CVP) The promise problem GapCVPg, where
g (the gap function) is a function of the dimension, is de�ned by

� yes instances are triples (V; ~y; d) where V 2 Zk�n, ~y 2 Rk, d 2 R and
kV~z� ~yk2 � d for some ~z 2 Zn.

� no instances are triples (V; ~y; d) where V 2 Zk�n, ~y 2 Rk, d 2 R and
kV~z� ~yk2 > g(n)d for all ~z.

We also de�ne a variant of CVP, which will be used as an intermediate
step in proving the hardness of approximating the shortest vector in a lat-
tice. The di�erence is that the yes instances are required to have a boolean
solution, and in the no instances the target vector can be multiplied by any
non-zero integer.

De�nition 3 (Modi�ed CVP) The promise problem GapCVP0
g
, where g (the

gap function) is a function of the dimension, is de�ned by

� yes instances are triples (V; ~y; d) where V 2 Zk�n, ~y 2 Rk, d 2 R and
kV~z� ~yk2 � d for some ~z 2 f0; 1gn.

� no instances are triples (V; ~y; d) where V 2 Zk�n, ~y 2 Rk, d 2 R and
kV~z� w~yk2 > g(n)d for all ~z 2 Zn and all w 2 Z.
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3 Hardness of approximating CVP

In this section we prove that the modi�ed CVP is NP-hard to approximate
within any constant factor. The proof is by reduction from set cover and is
essentially the same as in [3].

De�nition 4 (Set-Cover) An instance of set-cover consists of a ground set
U and a collection of subsets S1; : : : ; Sm of U . A cover is a subcollection of
the Si's whose union is U . The cover is said to be exact if the sets in the
cover are pairwise disjoint.

In [4], Bellare, Goldwasser et al. show that for every constant c > 1 there
is a polynomial time reduction that, on input an instance � of SAT, produces
an instance of set-cover and an integer d with the following properties:

� If � is satis�able, there is an exact cover of size d,

� If � is not satis�able, then no set cover has size less than cd.

This result is used in [3] to show that the closest vector problem is hard
to approximate within any constant factor. In fact, the same reduction can
be used to prove that the modi�ed CVP is NP-hard to approximate within
any constant factor.

Theorem 1 For every constant c > 1 the promise problem GapCVP0
c
is NP-

hard.

Proof: Let c be a constant greater than one. We reduce SAT to GapCVP0
c
.

Let � be an instance of SAT. Apply the reduction from Bellare, Goldwasser
et al. [4] to the formula �, to obtained instance of set-cover U;S1; : : : ; Sm

and integer k. Let n be the size of U and let S 2 f0; 1gn�m be the matrix
de�ned by Si;j = 1 i� i 2 Sj.

De�ne N and y as follows:

N =

"
�S
I

#
~y =

"
�~1
~0

#

where � is an integer such that �2 > ck.
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� Assume � is satis�able. Then, U has an exact cover fSigi2I of size
jIj = k. Let ~x 2 f0; 1gm be the indicator vector of set I. We have
S~x = ~1 and kxk2 = P

xi = k. Therefore

kN~x� ~yk2 = �2kS~x� ~1k2 + kxk2 = k;

i.e., (N;~y) is a yes instance of the modi�ed CVP.

� Assume � is not satis�able. Then every subset fSigi2I of size jIj < ck
is not a cover. Let ~x 2 Zm and w 2 Z n f0g. We want to prove that
kN~x� w~yk2 > ck. Notice that kN~x� w~yk2 = �2kS~x� w~1k2 + k~xk2.
We show that either �2kS~x�w~1k2 or k~xk2 is greater than ck. Assume
k~xk2 � ck. We will prove that kS~x�w~1k2 � 1, which by our choice of
� implies �2kS~x�w~1k2 > ck. Let I be the set of all i such that xi 6= 0.
Notice that jIj � P jxij � P

x2i = kxk2 � ck. Therefore fSigi2I is not
a cover. Let j 2 U be such that j 62 S

i2I Si. We have [S~x]j = 0 and
therefore kS~x� w~1k2 � ([S~x]j � w)2 � w2 � 1.

2

4 Hardness of approximating SVP

In this section we use the hardness of approximating the closest vector in a
lattice to show that the shortest vector problem is also hard to approximate
within some constant factor. The proof uses the following technical lemma.

Lemma 1 For any constant � > 0 there exists a PPT algorithm that on
input 1k computes a lattice L 2 R(m+1)�m, a vector ~s 2 Rm+1 and a matrix
C 2 Zk�m such that with probability arbitrarily close to one,

� For every non-zero ~z 2 Zm, kLzk2 > 2.

� For all ~x 2 f0; 1gk there exists a ~z 2 Zm such that C~z = ~x and
kL~z�~sk2 < 1 + �.

The proof of the above lemma will be given in the next section. We can
now prove the main theorem.
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Theorem 2 The shortest vector in a lattice is NP-hard to approximate within
any constant factor less than

p
2.

Proof: We will show that for any � > 0 the squared norm of the shortest
vector is NP-hard to approximate within a factor 2=(1 + 2�). The proof is
by reduction from the modi�ed closest vector problem. Formally, we give a
reduction from GapCVP0

c
to GapSVPg with c = 2=� and g = 2=(1 + 2�).

Let (N;~y; d) be an instance of GapCVP0
c
. We de�ne an instance (V; t) of

GapSVPg such that if (N;~y; d) is a yes instance of GapCVP0
c
then (V; t) is a

yes instance of GapSVPg, and if (N;~y; d) is a no instance of GapCVP0
c
then

(V; t) is a no instance of GapSVPg.
Let L;~s and C be as de�ned in lemma 1. Let t = 1+2� and let V be the

matrix

V =

"
L �~s

� �N � C �� � ~y
#

where � =
q
�=d.

� Assume that (N;~y; d) is a yes instance, i.e., there exists a vector ~x 2
f0; 1gk such that kN~x� ~yk2 � d. From lemma 1 there exists a vector
~z 2 Zm such that C~z = ~x and kL~z � ~sk2 < 1 + �. De�ne the vector

~w =

"
~z
1

#
. We have

kV ~wk2 = kL~z �~sk2 + �2kN~x� ~yk2 � 1 + 2� = t

i.e., (V; t) is a yes instance of GapSVPg.

� Now assume that (N;~y; d) is a no instance and let ~w =

"
~z
w

#
2 Zm+1

be a non-zero vector. We want to prove that kV ~wk2 � g � t = 2. Notice
that kV ~wk2 = kL~z � w~sk2 + �2kN~x � w~yk2. We prove that either
kL~z � w~sk2 or �2kN~x� w~yk2 is greater than 2. If w = 0 then ~z 6= 0
and kL~z�w~yk2 = kL~zk2 > 2. If w 6= 0 then �2kN~x�w~yk2 � �2cd = 2.

2
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5 Proof of the Technical Lemma

To prove lemma 1 we need a result from [2] and two other lemmas.

Lemma 2 For all � > 0, for all su�ciently large integers b, the following
holds. Let p1; : : : ; pm be m relatively prime positive integers. Let P 2 Rm

be the vector Pi = logb pi and let D 2 Rm�m be the diagonal matrix Di;i =q
logb pi. De�ne the matrix

L =

2
64 D 0

0 1=a
�P �=b ln b

3
75 =

2
666666664

q
logb p1 0

. . .
...q

logb pm 0

0 � � � 0 1=a
�logb p1 � � � �logb pm �=b ln b

3
777777775

where a = 1
3b

�=2 and � >
p
2b ln b. Then for all non-zero integer vectors

~z 2 Zm+1, kL~zk2 � (2� �).

Proof: Let~z 2 Zm+1 be a non-zero vector. De�ne the vector~z0 = [z1; : : : ; zm]T .
Notice that

kL~zk2 = kD~z0k2 +
�
zm+1

a

�2

+ �2
�
P~z0 +

zm+1

b ln b

�2

:

We want to prove that kL~zk2 � 2� �.
If ~z0 = 0, then zm+1 6= 0 and

kL~zk2 � �2
�
P~z0 +

zm+1

b ln b

�2
=

 
�

b ln b

!2

z2m+1 �
 

�

b ln b

!2

� 2:

So, assume ~z0 6= 0. Let ~z+;~z� 2 Zm be the vectors de�ned by z+i =

maxfz0i; 0g and z�i = maxf�z0i; 0g. De�ne the integers g+ = bP~z
+

= �ip
z+i
i

and g� = bP~z
�
= �ip

z�i
i . Notice that ~z0 6= ~0 implies ~z+ 6= ~z� and since

the pi's are relatively prime, g+ 6= g�. We observe that for any posi-
tive integers x 6= y, j logb x � logb yj � 1p

xy lg b (proof: j logb x � logb yj =
logb(maxfx; yg=minfx; yg) = logb(1+jx�yj=minfx; yg) � logb(1+1=

p
xy) �

logb 2=
p
xy = 1=(

p
xy lg b).) In particular, jP~z0j = j logb g+ � logb g

�j �
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(
p
g+g� lg b)�1, and since logb g

+g� = P~z+ + P~z� � kD~z+k2 + kD~z�k2 =
kD~z0k2 we have

jP~z0j � 1

b
kD~z0k2

2 lg b
:

Now assume for contradiction that kL~zk2 < 2 � �. We have kD~z0k2 < 2 � �
and jzm+1j < a

p
2. It follows

kL~zk � �

����P~z0 + zm+1

b ln b

����
� �

�
jP~z0j �

����zm+1

b ln b

����
�

� �

 
1

b1��=2 lg b
� a

p
2

b ln b

!

>

 
�

b ln b

!�
b�=2 ln 2 � a

p
2
�

>
p
2b�=2(ln 2 �

p
2=3) >

p
2

2

Lemma 3 Let L be the matrix de�ned in lemma 2 and assume � < b2��.
De�ne the vector ~s = [0; : : : ; 0; �]T 2 Rm+2. For every vector ~z0 2 f0; 1gm,
let g = �m

i=1p
zi
i and ~z = [(~z0)T ; b � g]T . For every positive � < 1=2, if

jzm+1j = jb� gj � �a, then kL~z�~sk2 � 1 + �.

Proof: Notice that

kD~z0k2 = P~z0 = logb g = logb(b� zm+1) = 1 + logb

�
1� zm+1

b

�
:

Therefore, using the inequality j ln(1 + x) � xj < x2 valid for all jxj � 1=2,
we have

kL~z�~sk2 = kD~z0k2 +
�
zm+1

a

�2
+ �2

�
P~z0 +

zm+1

b ln b
� 1

�2

= 1 + logb

�
1� zm+1

b

�
+
�
zm+1

a

�2

+

 
�

ln b

!2 �
ln
�
1 � zm+1

b

�
+
zm+1

b

�2
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� 1 � zm+1

b ln b
+
�
zm+1

a

�2

+

 
�

ln b

!2 �
zm+1

b

�4

� 1 + �
�

a

b ln b

�
+ �2 + �4

 
a2�

b2 ln b

!2

< 1 + �

2

Lemma 4 For all 0 < 
 < 1, � > 0 and all large enough n, if b is chosen at
random from the set � of all products of n distinct primes less than n2+2


�1
,

then with probability exponentially close to 1 there are at least nn elements
g 2 � such that jb� gj � �b
 .

Proof: Let m be the number of primes less than n2+2

�1
. From the prime

number theorem we have m > n2+2

�1�
=3 for all large enough n, and

j�j =
�
m
n

�
�
�
m
n

�n � n(1+
2



� 

3 )n. Notice that � � [0; n(2+2


�1)n]. Divide

[0; n(2+2

�1)n] into k = n(

2



� 2


3 )n intervals each of size n(2+
2

3 )n. Let Ib the

interval containing b. We will prove that with probability exponentially close
to one jg � bj < �b
 for all g 2 Ib, and jIb \ �j > nn. Let g 2 Ib. We have
jg � bj < jIbj and

Pr(jIbj > �b
) = Pr
�
b < ��

1


 � jIbj
1




�
� ��

1


 � jIbj
1




j�j

� ��
1


 � n( 2
+ 2

3)n

n(1+
2



� 

3 )n

= ��
1


 � n�( 1�
3 )n:

To bound the size of Ib \ �, observe that each interval Ib is chosen with
probability jIb \ �j=j�j. Therefore we have

Pr(jIb \ �j < nn) = Pr

 
Pr(Ib) <

nn

j�j

!
= k � n

n

j�j

= nn � n( 2
� 2

3 )n=j�j � n(1+

2



� 2


3 )n

n(1+
2



� 


3 )n
= n�(



3 )n:

2
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Lemma 5 For all �1; �2 > 0, there exists �1; �2; �3 2 (0; 1) so that for all
su�ciently large n the following holds: Assume that (S;X) is an n-uniform
hypergraph, n2 � jSj � n�1, jXj � 2�2n lgn, k = n�1 and C1; : : : ; Ck is a
random sequence of pairwise disjoint subsets each with exactly jSjn�(1+�2)

elements, with uniform distribution on the set of all sequences with these
properties. Then, with probability of at least 1�n��3 the following holds: for
each f 2 f0; 1gk there is a T 2 X so that f(j) = jCj \ T j for all j.

Proof: See Theorem 2.2 in [2]. 2

We can now prove lemma 1. Let � be a positive constant less than 1=2 and
let k be a su�ciently large integer. Let �1; �2; �3 be the constant de�ned in
lemma 5 with �1 = 2+ 4��1 and �2 = 1. Let n = k1=�1. Let L be the matrix
de�ned in lemma 2 with p1; : : : ; pm the set of all primes less than n2+4�

�1
and

b chosen at random among the products of n distinct such primes.
From lemma 2 we know that kL~zk2 > 2� � for all non-zero ~z 2 Zm+1.
Let C 2 f0; 1gk�(m+1) be the matrix de�ned by Ci;j = 1 i� j 2 Ci, where

C1; : : : ; Ck are the sets de�ned in lemma 5 with S = fp1; : : : ; pmg.
For every ~x 2 f0; 1gk, let f(j) be the function f(j) = xj. De�ne X to

be the set of all T � S such that jT j = n and jb � �t2T tj � �b�=2

3 . From
lemma 4 (with 
 = �=2 and � = �=3) we have jXj � nn = 2n lgn, and from
lemma 5 there exists a T 2 X such that jCj \ T j = f(j) for all j. Let
~z0 2 f0; 1gm be the indicator vector of the set T , g = �t2Tt and de�ne the

vector ~z = [(~z0)T jb� g]T . Notice that jzm+1j � �b�=2

3 . We have C~z = ~x, and
from lemma 2, kL~zk2 � 1 + �.
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