
Dynamic Load Balancing

with Group Communication∗

Shlomi Dolev∗ Roberto Segala‡ Alex Shvartsman§

October 19, 1999

Abstract

This work considers the problem of efficiently performing a set of tasks using a network of
processors in the setting where the network is subject to dynamic reconfigurations, including
partitions and merges. A key challenge for this setting is the implementation of dynamic load
balancing that reduces the number of tasks that are performed redundantly because of the re-
configurations. We explore new approaches for load balancing in dynamic networks that can
be employed by applications using a group communication service. The group communication
services that we consider include a membership service (establishing new groups to reflect dy-
namic changes) but does not include maintenance of a primary component. For the n-processor,
n-task load balancing problem defined in this work, the following specific results are obtained.

For the case of fully dynamic changes including fragmentation and merges we show that the
termination time of any on-line task assignment algorithm is greater than the termination time
of an off-line task assignment algorithm by a factor greater than n/12.

We present a load balancing algorithm that guarantees completion of all tasks in all fragments
caused by partitions with work O(n + f · n) in the presence of f fragmentation failures.

We develop an effective scheduling strategy for minimizing the task execution redundancy
and we prove that our strategy provides each of the n processors with a schedule of Θ(n1/3)
tasks such that at most one task is performed redundantly by any two processors.

Keywords: Load balancing, scheduling, dynamic networks, group communications.

1 Introduction
The problem of performing a set of tasks in a decentralized setting where the computing medium
is subject to failures is one of the fundamental problems in distributed computing. This problem
has been studied in a variety of setting, e.g., in shared-memory models [15] and message-passing
models [10, 8]. In this work we consider this problem in the partitionable distributed setting where
the computation can take advantage of group communication services and where the processors

1Department of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel. Email:
dolev@cs.bgu.ac.il. Part of this research was done while visiting the Laboratory of Computer Science at MIT.

3Dip. di Scienze dell’Informazione, Università di Bologna, Italy. Email: segala@cs.unibo.it.
4Dept. of Computer Science and Engineering, 191 Auditorium Rd., U-155, University of Connecticut, Storrs,

CT 06269, USA and Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139, USA. Email: alex@cse.uconn.edu. Part of this work was supported by a grant from AFOSR and the
GTE Laboratories.

∗The preliminary version of this works appears in the proceedings of the 6th International Colloquium on Structural
Information and Communication Complexity (SIROCCO’99), 1999.

1

Network

P1 P2 P3 Pn

�
�

�
�

. . .

� � ���
Input/Output Ports

Figure 1: The distributed system and its input/output setting

have to perform the tasks efficiently even if they have to resort to scheduling the tasks in isolation
due to network partition.

Group communication services can be used as effective building blocks for constructing fault-
tolerant distributed applications [1]. The services enable the application components at different
processors to operate collectively as a group, using the service to multicast messages. For applica-
tions involving coherent data, it is important to know when a processor has a view of the current
group membership that is primary. Maintaining a primary group is one of the most sophisticated
tasks of the group communication service. In a dynamic network environment the primary group
will at times include only a portion of the distributed system. Thus in the cases where the compu-
tation has to be carried out in the primary group, only a fraction of the computation power of the
distributed system is effectively used. However, there are settings in which any group of processors
may meaningfully carry on with the computation irrespective of any other groups. For example,
this is the case when a set of tasks, whose effects are idempotent, i.e., executing a task more than
once yields identical results, needs to be performed in a distributed system. A simple example of
this occurs when a collection of print servers is charged with the task of printing a set of reports.
In a more dramatic setting suggested in [10], the tasks may consist of shutting a set of valves on a
nuclear reactor.

In this work we investigate a new approach whose goal is to utilize the resources of every
component of the system during the entire computation. We consider the problem in the following
setting: a set of tasks must be performed by a distributed system (the tasks to be performed by the
system may be submitted via the input ports. To simplify our presentation, we assume that the set
of tasks has already been submitted). Group communication is used to coordinate the execution
of the tasks. The requests for the tasks’ results are submitted via the input/output ports. Once
the results are known, the processors respond (see Figure 1). The main point in prescribing such
input/output setting is that requests for results may be submitted externally to any processor. Our
focus is on the investigation of effective load balancing schemes that lead to efficient execution of
the set of tasks in such settings. Thus, we suggest a best effort approach, namely, an approach in
which every processor that receives a request for results will eventually be able to respond with the
complete set of results.

Our contributions. We study the problem of performing a set of tasks reliably and in parallel
using multiple processors in the setting of message-passing processors that are interconnected by a
network, which is subject to partitions and merges. We seek distributed solutions to the problem
and we assume that computation is more expensive than communication. This assumption forces us
to seek solutions that are more efficient than the trivial solutions, in which each processor performs
each task. To assess the efficiency of solutions we use the complexity measure of work that accounts

2

for each task performed by the processors including the tasks that are performed redundantly.

Our distributed system model, in addition to the processors and the network, includes a set of
input/output ports accessible to the processors. In this model we enable a client of the required
computation to query any processor for results. This makes it mandatory, even for isolated proces-
sors, to be able to provide the results of the computation regardless of whether any other processors
may already have the results. In other words, in this setting it is no longer sufficient to know that
each of the tasks have been performed. It is also necessary for each processor to learn the results.
In this paper we present the following results.

We show in Section 3 that developing efficient solutions for our model is difficult. For the
problem of performing n tasks on n processors we present a linear (in the number of processors)
lower bound for the worst case competitive ratio of the termination time of any on-line algorithm
relative to an off-line algorithm. This competitive ratio is for the adversary that may cause arbitrary
partitions and merges of the original network. We make no specific assumptions about the group
communication service used.

The linear lower bound result suggests that to achieve more efficient load balancing, we need
to limit the power of the adversary. In Section 4 we consider a setting with a restricted adversary
that can dynamically cause fragmentation failures, i.e., the adversary can partition any existing
connected component into two or more smaller components. We present and analyze an algorithm
that relies on a group communication service. For this setting our load balancing algorithm for n
processors guarantees completion in all network fragments, and with the total work O(n + f · n)
in the presence of any f fragmentation failures. Note that this result also holds if we consider
processor stop-failures since stopped processors can be modeled by isolating such processors from
all other groups of processors.

The linear lower bound for the competitive ratio also shows that an on-line algorithm cannot
do much better than the trivial solution in which every processor behaves as if it is a singleton and
executes the entire set of tasks. With this in mind, in Section 5 we present an effective scheduling
strategy for minimizing the task execution redundancy. We prove that for n processors and n
tasks it is possible to schedule Θ(n1/3) tasks for each processor with at most one overlap in task
executions. This means that using our algorithm, any two isolated processors can each perform up
to n1/3 tasks such that if the processors are merged into a group after n1/3 such steps, then there
is at most one task that is performed redundantly by the two processors.

Related work. Group communication services have become important as building blocks for
fault-tolerant distributed systems. Such services enable processors located in a fault-prone network
to operate collectively as a group, using the services to multicast messages to group members. Ex-
amples of group communication services are found in Isis [5], Transis [9], Totem [18], Newtop [11],
Relacs [2], Horus [20] and Ensemble [4]. Examples of recent work dealing with primary groups
are [7, 16]. An example of an application using a group communication service for load balancing is
by Fekete, Khazan and Lynch [12]. To evaluate the effectiveness of partitionable group communi-
cation services, Sussman and Marzullo [23] proposed a measure (cushion) precipitated by a simple
partition-aware application. Babaoglu et al. [3] study systematic support for partition awareness
based on group communication services in a wide range of application areas, including applications
that require load balancing. The main focus of the paper is the simplicity of implementing any
load balancing policy within the group membership paradigm rather than the study of balancing
policies that lead to good performance.

Our definition of work follows that of Dwork, Halpern and Waarts [10]. Our fragmentation

3

model of failures creates a setting, within each fragment, that is similar to the setting in which the
network does not fragment but the processors are subject to crash failures. Performing a set of
tasks in such settings is the subject of [6, 8, 10, 14], however the analysis is quite different when
work in all fragments has to be considered.

Our distributed problem has an analogous counterpart in the shared-memory model of compu-
tation, called the collect problem. The collect problem was originally abstracted by Saks, Shavit
and Woll [21] (it also appears in Shavit’s Ph.D. thesis). Although the algorithmic techniques are
different, the goal of having all processors to learn a set of values is similar.

In Section 2 we present the problem and define our model, measures of efficiency and the group
communication service. A lower bound on the competitive ratio is presented in Section 3. An
algorithm for the fragmentation model is presented and analyzed in Section 4. Task scheduling
algorithms for minimizing redundant work are in Section 5.

2 Problem Statement and Definitions
A distributed system consists of n processors (P1, P2, . . . , Pn) connected by communication links.
Each processor Pi has a unique identifier. In Section 3 and Section 5 we assume that the identifiers
are in the set {1, 2, . . . , n}. At any given time a communication link may be operational or faulty.
Faulty communication links can partition the system into several connected components. The
recovery of the links may merge separated connected components into a single component. Link
failures and recoveries trigger group membership activity to establish eventually a group for every
connected component. The group membership service is used by the processors in the group to
coordinate load balancing of task execution.

A set of tasks T is to be executed by the distributed system. Processors receive T from input
ports and communicate T to their group members. (Thus at the start of the computation, T is
known to all processors.) For the sake of simplicity of presentation we assume that the number of
tasks in T is exactly n, the number of processors in the system. Our results naturally extend to any
c · n number of tasks (c > 1) by either creating task groups of c tasks in each group, or considering
c instances of the problem.

2.1 Performance Measures

The algorithms that we present in this paper are asynchronous. However, in order to study the
performance of an asynchronous algorithm, we measure properties that are independent of time,
and we study time bounds under some additional assumptions on the timings of the messages
that are sent. In this paper we define a round based measure of the total work performed by the
processors, and we study performance under the assumption that messages are delivered within
time 1.

We define completion and termination times of a computation.

Definition 2.1 Given a set of processors and a set of tasks, the completion time of a computation
is the minimal time at which every task is executed at least once.

Definition 2.2 Given a set of processors and a set of tasks, the termination time of a computation
is the time it takes for every processor to know the task execution results of all the tasks.

From the above definitions it easy to see that completion time bounds, from below, the termina-
tion time for any computation. Our performance measures are based on a measure of the number

4

of failures that occur within a computation. For the algorithm in Section 4 we consider only the
fragmentation failures. In this setting, the initial group of n processors is dynamically partitioned
by failures into several fragments. The system begins with the initial fragment containing all n
processors, and each fragmentation failure “splits off” a fragment from an existing fragment.

Definition 2.3 For a computation in the fragmentation model that begins with c1 fragments and
terminates with c2 fragments define the number of failures f to be c2 − c1.

Since fragments never merge, the number of fragmentation failures f is at most n−1. Members of
distinct fragments, existing concurrently, cannot communicate, and our model allows for processors
in different fragments to terminate independently. Processors spend their lives communicating and
working. We structure the lives of processors in terms of rounds. During a round, a processor may
send a multicast message, receive some messages and perform a task. Within a specific fragment,
each processor is charged for each round of the computation.

Definition 2.4 For a computation that terminates, we define work to be
∑

1≤i≤n Ri, where Ri is
the number of rounds performed by processor i.

In this work we do not explicitly deal with processor failures. However the definitions apply to,
and the complexity results hold for the model that includes processor stop-failures. A processor
that stops is modeled as a processor that is isolated from all others in a singleton group. Since a
stopped processor does no work, it cannot increase the work complexity.

2.2 A Group Communication Service

We assume a virtual synchronous (or view synchronous) group communication service. The service
is used to communicate information concerning the executed tasks once a new group is established.
Each connected component of the system is an independent group that executes the (remaining)
tasks in T until the group is ready to output the final result. During the execution, the group
communication service is used by the processors to notify each other of the results of task executions.
Upon completion of the entire set of tasks the processors in the group supply the results to any
external clients via the input/output ports.

The virtual synchronous service (or view synchronous service) that we rely on provides the
following basic operations:

gpsnd(message) The gpsnd primitive lets a processor multicast a message to the members of the
current group. The messages are guaranteed to be delivered unless a group change occurs.
Messages are delivered in the same group they are sent in.

gprcv(message) The gprcv primitive enables a processor to receive multicasts from other pro-
cessors in the current group view. (We do not require that message deliveries are ordered
within a view.)

newview(〈id, set〉) The newview primitive tells a processor that a dynamic change caused a new
group to be formed and it informs the processor of the identifier of the new group and the
set of the identifiers of the processors in the group.

Figure 4 in the Appendix gives a formal specification (using I/O automata [17, 19]) of a view
synchronous service that supports the operations we need. This service is the vs (view-syncrhonous)
service from [13]. This service provides a total order on the messages sent in each view, and each

5

processor receives some prefix of this order in the view. The group communication service sufficient
for our needs is provided by several other existing specifications (cf. [2, 9, 20]). In the context of
this work, our focus is not on the features provided by group communication services, but on the
complexity of computation involving load balancing in the presence of commonly occuring group
reconfigurations, e.g., group fragmentations and merges. In algorithm specification in Section 4 we
assume that the group communication service is specified using Input/Output Automata, e.g., as
in [7, 13].

3 Competitive Ratio for Dynamic Networks
In a fully dynamic network the system is subject to splits and merges, and the performance of the
system may be drastically influenced by the exact pattern of such dynamic changes. A classical
approach for evaluating an algorithm under such uncertain conditions is the competitive analysis
proposed by Sleator and Tarjan in [22].

In this section we study the competitive ratio for the n-task assignment problem. The choice of
the dynamic changes is a major parameter in computing a lower bound for the competitive ratio.
For example under the assumption that the system is connected during the entire execution, there
exists an optimal on-line (and an off-line) algorithm with completion and termination time 1. In
this algorithm each processor, Pi, executes the i’th task first and reports the result to the other
processors. In the other extreme when the system consists of n singletons, there exists an optimal
on-line (and off-line) algorithm with completion time 1 and termination time n. In this algorithm
each processor, Pi, first executes the i’th task (thus the completion time is 1) and then the rest of
the tasks (say by the order of their indices). The optimality of the above algorithms is due to the
fact that any off-line algorithm does not performs better under the same partition pattern.

Next we present a lower bound for the worst case ratio of the termination time of an on-line
task assignment algorithm versus the termination time of an off-line task assignment algorithm.
Before we present the lower bound let us remark that it is easy to achieve completion time 1 when
the number of the processors that participate is equal to the number of tasks. Completion time 1
is achieved by every algorithm in which each processor, Pi, executes the ith task first.

Theorem 3.1 There exists a group split and merge pattern for which the termination time of any
on-line task assignment algorithm is greater than the termination time of an off-line task assignment
algorithm by a factor greater than n/12.

Proof. In the beginning the system is fully connected and the information concerning the tasks
to be executed is sent to every processor. Then the processor set is partitioned into four groups
G1, G2, G3, G4, with equal number of processors in each group. This partition is done before any
of the results of the task execution is exchanged by the processors. “Notify” the on-line algorithm
that two pairs of groups will be merged (Gx with Gy and Gu with Gv) after the first two steps,
without identifying their indices1. Also notify the on-line algorithm that immediately after the
groups are combined and the information concerning the task executed is exchanged, the groups
will be separated to singletons.

Note first that the off-line algorithm can terminate by the end of the group merge, since the
identities of the groups to be merged are known to the off-line algorithm. Specifically and without

1Note that in reality the processors that execute the on-line algorithm do not know the partition pattern of the
system nor the future dynamic changes, however we are interested in lower bounds for the competitive ratio, thus if
we give a partial knowledge to the processors and still conclude a long termination time then we achieve our goal.

6

loss of generality, if the off-line algorithm knows that G1 will be merged with G2, the processors in
G1 may execute the tasks 1 · · · n/4 and then n/2+1 · · · 3n/4 while the processors in G2 execute the
tasks n/4 + 1 · · ·n/2 and then 3n/4 + 1 · · · n. Once G1 and G2 merge and exchange the execution
results, the processors in G1 and G2 may terminate. A similar argument holds for G3 and G4.

On the other hand, assume that the on-line algorithm assigns to each of G2, G3 and G4 the
tasks that are not executed by G1. Then the merged group (say G1 and G3) that contains G1 may
be done with the tasks, however the other merged group (say G2 and G4) will have to execute half
of the work, namely, the tasks executed by G1 in the previous two steps. Since the processors (of
the merged group formed by G2 and G4, in our example) are immediately partitioned into singleton
groups, each will have to execute n/2 tasks, which leads to at least a linear in n termination time.

Assume that the smallest set of tasks executed by both G1 and another group G�, 2 ≤ � ≤ 4,
does not include exactly one task, then the merged pair of groups that does not include G1, has at
least n/2−2 tasks to execute. Similarly, when the smallest set of tasks executed by G1 with another
group G�, 2 ≤ � ≤ 4, does not include m tasks, then the merged pair of groups that does not include
G1, has at least n/2 − 2m tasks to execute. The pair of groups that includes G1 must execute at
least m tasks — since at least m tasks are executed twice. Thus, the minimal possible number of
tasks left to execute by either the group in which the processors in G1, or the the processors of
the other group participate is obtained from the equation m = n/2 − 2m, thus m = n/6. We can
conclude that the competitive ratio is at least (n/6 + 2)/2 = n/12 + 1 = Ω(n). �

The linear ratio in the above result shows that an on-line algorithm cannot do much better than
a trivial solution in which every processor behaves as if it is a singleton group and executes the entire
set of tasks. With this in mind, we present in the next two sections first a scheduling algorithm
for network fragmentation failures, and then a scheduling algorithm that minimizes redundant task
executions even if processors may have to work initially in isolation from one another and then
subsequently be merged into larger groups.

4 Load Balancing and Fragmentations
We now consider the setting with fragmentation failures and present a strategy for efficient task
scheduling. We present this in terms of the algorithm that relies on a group communication ser-
vice. We call it algorithm AF. The basic idea of the algorithm is that each processor performs
(remaining) tasks according to a permutation until it learns that all tasks have been performed.
The permutations are established by a global load balancing rule when there are no fragmentation
failures. A processor performs tasks according to an arbitrary local rule when fragmentations do
occur. We state the algorithm as a protocol that uses the group communication service described
in Section 2.2. For completeness, we provide the code of a service sufficient for our needs, the
vs service [13], in the Appendix.

Task allocation. The set T of the initial tasks is known to all processors. During the execution
each processor i maintains a local set D of tasks already done, a local set R of the corresponding
results, and the set G of processors in the current group. (The set D may be an underestimate
of the set of tasks done globally.) The processors allocate tasks based on the shared knowledge of
the processors in G about the tasks done. For a processor i, let k be the rank of i in G sorted in
ascending order. Our load balancing rule is that processor i performs the task k mod |U |, where U
is the number of remaining tasks.

Algorithm structure. The algorithm code is given in Figure 2 using I/O automata notation [19].

7

Data types:
T : tasks
R : results
Result : T → R
M : messages
P : processor ids
G : group ids
views = G × P : group views,

selectors id and set
IO : input/output ports

m ∈ M
i, j ∈ P
v ∈ views
E ∈ 2T

Q ∈ 2R

s ∈ T
round ∈ N
q ∈ IO

States:
T ∈ 2T , set of n = |T | tasks
D ∈ 2T , set of done tasks, initially ∅
R ∈ 2R, set of results, initially ∅
G ∈ 2P , group members, initially P
M ∈ 2M, messages, initially ∅
Rnd ∈ N, round number, initially 0
Phase ∈ {send , receive, stop},

initially send
requests ∈ 2IO , set of ports, initially ∅

Derived variables:
U : T − ∪{E : 〈∗, ∗, E, Rnd〉 ∈M},

reported remaining tasks
t : let k be the rank of i in G sorted in

ascending order, then t is the id of the task whose
rank is (k mod |U |) in U sorted by id

Transitions at i:
input requestq,i

Effect:
requests ← requests ∪ {q}

input newview(v)i

Effect:
G← v.set
if D
= T then

s← if t ∈ D
then some task in T −D
else t

R← R ∪ {Result(s)}
D ← D ∪ {s}

M ← ∅
Rnd← 0
Phase ← send

output gpsnd(m)i

Precondition:
Phase = send
m = 〈i, D, R, Rnd + 1〉

Effect:
Rnd← Rnd + 1
Phase ← receive

input gprcv(〈j, Q, E, round〉)i

Effect:
M ←M ∪ {〈j, Q, E, round〉}
R← R ∪Q
D ← D ∪E
if G = {j : ∃Q′,E′ :

〈j, Q′, E′, Rnd〉 ∈M} then
if D
= T then

R← R ∪ {Result(t)}
D ← D ∪ {t}

if T = ∩{E : 〈∗, ∗, E,Rnd〉
∈M} then

Phase ← stop
else

Phase ← send

output report(results)q,i

Precondition:
T = D
q ∈ requests
results = R

Effect:
requests ← requests − {q}

Figure 2: Algorithm AF.

The algorithm uses the group communication service to structure its computation in terms of
rounds numbered sequentially within each group view.

Rounds numbered 0 correspond to group reconfigurations. If a fragmentation occurs, the pro-
cessor receives the new set of members from the group membership service. The processor performs

8

one task among those it believes are not done, and starts the next round. At the beginning of each
round, denoted by a round number Rnd, processor i knows G, the local set D of tasks already
done, and the set R of the results. In each round (Rnd > 0), each processor reports D and R to
the members of G, collects such reports from other processors, updates D and R, and performs one
task according to the load balancing rule.

For generality, we assume that multicast messages may be delivered out of order with respect
to the rounds. The set of messages within the current view is saved in the local variable M . The
saved messages are also used to determine when all messages for a given round have been received.
Processing continues until each member of G knows all results.

When requests for computation results arrive from a port q, each processor keeps track of this
in a local variable requests , and, when all results are known, sends the results to the port.

Analysis of algorithm AF. We now determine the worst-case work of the algorithm as a function
of the initial number of processors n (we are assuming that initially there is a single task per
processor), and of the number of fragmentation failures f . We assume that a failure causes no
more than one new view to be installed at each member of the group that fragments. We start by
showing algorithm termination.

Lemma 4.1 In algorithm AF, each processor terminates having performed O(n) tasks and execut-
ing O(n) rounds.

Proof. Since each processor keeps track of tasks performed in variable D, it never performs more
than n tasks. In each round without view changes, each processor performs at least one task that
it does not have the results for. Since no processor performs the same task twice, there are at most
n such rounds.

Additional rounds may be executed due to fragmentations. Even if a particular processor has
all the results, it must ensure that all members of the new group know the results2. Since there
are at most n − 1 fragmentations, the number of iterations attributable to view changes is also
bounded by n. �

We define complete rounds for a view v to be the rounds during which all processors in v.set
are allocated to tasks in the effect of the gprcv actions. Lemma 4.2 shows that in all complete
rounds the loads of processors are balanced.

Lemma 4.2 [Load balancing] In algorithm AF, for each view v, in each round Rnd > 0, whenever
processor i is assigned to a task in the effects of the gprcv action (1) for any processor j that is
assigned to a task in the same round, Ui = Uj , and (2) no more than �|v.set|/Ui� processors are
allocated to any task.

Proof. Part (1) follows from the definition of U and by observing that in the action gprcv a
processor is allocated to a tasks only upon receiving messages from all members of v. Part (2) then
follows from the load balancing rule. �

Lemma 4.3 In algorithm AF, any processor is a member of at most f + 1 views during the com-
putation.

2In the fragmentation failure model this scenario does not occur for the virtually synchronous group communication
services. We give this lemma here in the form suited for weaker group communication services for generality.

9

Proof. Each fragmentation failure causes each processor to become a member of at most one new
view. (It is possible for all processors in an existing view to successfully terminate, even if the group
communication service installs subsequent views.) There are at most f such views. Additionally,
all processors participate in the initial view, making the total number of views for each processor
to be at most f + 1. �

We call the last round of any view, whether complete or not, the final round of the view.

Lemma 4.4 The work of algorithm AF in all zero-numbered and final rounds of all views v installed
during the computation is O(n + f · n).

Proof. By Lemma 4.3 any processor participates in at most f +1 views during the computation.
Since there are n processors, the work in the zero-numbered and final rounds is O(n + f · n). �

Lemma 4.5 In algorithm AF, in each view v there can be at most one non-final completed round
such that if a processor i is assigned to tasks in the effects of the gprcv action, then Ui < |v.set|.

Proof. Assume round r is the first such completed round. If Ui = 0 then all processors terminate
(i.e., set Phase to stop) and there are no subsequent rounds in the view, thus round r is the final
round in v. Else if Ui �= 0 and Ui < |v.set| then all remaining tasks are performed in this round. If
the round r + 1 is completed, then it is the final round in v. If the round r + 1 is not completed,
then it is also the final round in v. �

Lemma 4.6 In algorithm AF, the total work in all views v during non-final completed rounds with
Ui < |v.set| is O(n + f · n).

Proof. Since each view has at most one such round (Lemma 4.5), and at most n processors
complete such rounds in any view, and since each processor is a member of at most f + 1 views,
the total work is O(n + f · n). �

We call a view in which processors terminate, i.e., set Phase to stop, a terminal view.

Lemma 4.7 In algorithm AF, the total work in all views v during completed rounds r with U
(r)
i ≥

|v.set| is O(n + f · n).

Proof. Consider a view v. By Lemma 4.2, each processor is assigned to at most one task in
any completed round in this view. Let Uv be any of the Ui computed in the first such completed
round. Then there can be no more than
Uv/|v.set|� rounds r with U

(r)
i ≥ |v.set|. The work in

such rounds in any view v is thus O(
Uv/|v.set|� · |v.set|) = O(Uv) = O(n). Since there are at most
f + 1 different views, the total work is O(n) · (f + 1) = O(n + f · n). �

Now the main complexity result and its tightness.

Theorem 4.8 The termination work of the algorithm is O(n + f · n).

Proof. Follows directly from Lemmas 4.4, 4.6 and 4.7. �

10

Theorem 4.9 The termination work of the algorithm is Ω(n + f · n).

Proof. For any fragmentation pattern with f fragments that immediately follows the initial view,
there are f + 1 groups. The processors in each of these groups perform no fewer than n tasks. �

It is also interesting to note that there are small dynamic fragmentation patterns that leave
almost all processors connected in a large group that nevertheless accounts for most work.

Theorem 4.10 There is a fragmentation pattern with f = log n/ log log n such that the largest
group has at least n − n/ log log n = Θ(n) processors at all times and has termination work of
Ω(n log n/ log log n).

Proof. Follows from a straightforward adaption of the lower bound for the analogous problem in
the shared memory model as given in Theorem 4.2.4 in [15].

The adversary that leads to this result is specified as follows. In the largest current group,
the adversary precomputes the pattern of assignments of processors to tasks in the group. It then
allows the processors to perform the tasks and subsequently splits off into a separate group the
processors that were assigned to some arbitrary u/ log n tasks, where u is the number of remaining
tasks (for the initial group, u is n). In [15] it is shown that this strategy can be continued for
log n/ log log n steps, thus causing f = log n/ log log n fragmentations. Under these circumstances,
the largest group still contains at least n−n/ log log n = Θ(n) processors. Thus the work performed
by the processors that complete all tasks in the largest group is Ω(n log n/ log log n). �

5 Low Redundancy Task Scheduling
In this section we consider a fully dynamic network where both fragmentations and merges are
possible. Our goal is to produce a scheduling strategy that avoids redundant task executions in
scenarios where there are periods in which processors work in isolation and then are merged into
larger groups. In particular, we seek solutions where the isolated processors can execute tasks
independently for as long as possible such that when any two processors are merged into a larger
group, the number of tasks they have both executed is as small as possible.

Definition 5.1 For a set of p processors with identifiers {P1, . . . , Pp} and a set of n tasks
{T1, . . . , Tn}, where p ≤ n, a scheduling scheme S is called [α, β]-redundant if it provides each
processor Pi with a sequence of α tasks si = Ti1 , . . . , Tiα such that for any si and sj (i �= j),
|{q : Tq in si} ∩ {r : Tr in sj}| ≤ β.

It is easy to avoid redundant task executions among the tasks performed first by any processor.
One possibility is to begin with a step in which each processor, Pi, executes the ith task. The first
step does not introduce any overlaps in task execution. Clearly, in the second step we cannot avoid
executing tasks that have been already executed. This means that there will always be pairs of
processors such that at least one task would have been executed by both. Surprisingly, it is possible
to make task scheduling decisions for a substantial number of steps such for any pair of processors,
there is at most one task that is executed by both.

We start with a simple scheduling strategy that extends the simple scheduling step we described
above. In this scheme, a processor Pi is using a schedule si = Ti1 , . . . , Tij , . . ., where Tij is the task

11

number ij = (kj + i) mod n. Thus, the scheme is fully defined by the values of kj, where 1 ≤ j ≤ n.
Note that we already fixed k1 to be zero.

Next we suggest a way to determine the values of kj , 2 ≤ j ≤ n.

The first scheme we present, called the logarithmic scheme, guarantees that there is at most
one overlap. This scheme uses kj = 2j−1 − 1 for every j such that 2 ≤ j ≤
log n�.

Theorem 5.2 The logarithmic scheme is [Θ(log n), 1]-redundant.

Proof. Assume by way of contradiction that two processors Px and Py execute two tasks Tu and
Tv. Assume, without loss of generality, that y > x. Note that by symmetry arguments we may
assume that y−x < n/2 and that Px is P1. The indices, u and v, of the tasks Tu and Tv are chosen
by Px and Py, thus u = x + 2z1 = y + 2z2 and v = x + 2z3 = y + 2z4 . Since u �= v and x �= y, all zm

(1 ≤ m ≤ 4) are distinct. Thus, y − x = 2z1 − 2z2 = 2z3 − 2z4 which is impossible. �

It turn out that the number of tasks that can be executed while at most one task execution
overlaps is greater than Θ(log n). In Figure 3 we present a scheme, called the cubic root scheme,
that provides schedules of Θ(n1/3) tasks for the processors with only one overlap. An important
observation used for the design of our algorithm is the following observation: to guarantee at most
one overlap, the difference between every kx and ky must be distinct.

Definitions:

Let Kj be a set of j indices k1, k2, · · · , kj (that were chosen so far). Let Dj be the set
consisting of two integers, d[kl, km] and d[km, kl] for each possible pair of elements, km

and kl in Kj , where d[kx, ky] is defined to be (ky − kx) mod n.

Initialization:

In the beginning K1 includes only the element 0 and D1 is assigned the empty set.

Step, calculating kj:

The algorithm chooses kj < n/2 to be the smallest value such that kj paired with any
element ky of Kj−1 does not introduce an element d[kj , ky] ∈ Dj−1 or d[ky , kj] ∈ Dj−1.

Termination Condition:

No kj is found in Step.

Figure 3: Scheduling Tasks with One Overlap.

Theorem 5.3 If and only if the difference between every kx and ky is distinct then the number of
overlaps is at most one.

Proof. Assume there are kx, ky and ku, kv (where ky may be equal to ku, kx �= ky, ky �= kv,
and kx �= ku) such that ky − kx = kv − ku (and thus kv − ky = ku − kx). Consider processors Pj

and Pj+(kv−ku). According to the cubic root scheme, at some step t1 processor Pj performs the
task number (kt1 + j) mod n, and at some step t2 processor Pj+(kv−ky) performs the task number
(kt2 + j +(kv − ky)) mod n. First, choosing t1 = u, processor Pj performs the task number (ku + j)
mod n. Choosing t2 = x, processor Pj+(kv−ky) performs the task number (kx + j + (kv − ky))

12

mod n = (kx + j + ku − kx) mod n = (ku + j) mod n, i.e., the same task as Pj at step u. Next,
choosing t1 = v, processor Pj performs the task number (kv +j) mod n. Choosing t2 = y, processor
Pj+(kv−ky) performs the task number (ky + j + (kv − ky)) mod n = (kv + j) mod n, i.e., the same
task as Pj at step v (and distinct from the task (ku + j) mod n).

On the other hand if two processors Pj and Pj+z have two identical tasks to execute then it
holds that ky−kx = (ky +z)−(kx +z) = kv−ku. ///is this sufficient or do we need more detail?///

�

In general, to guarantee at most l overlaps the number of pairs, kx, ky, with the same difference
should be no more than l − 1.

Theorem 5.4 The cubic root scheme is [Θ(n1/3), 1]-redundant.

Proof. Let Ui be the set of possible kj values that are candidates to be chosen while obeying the
one overlap requirement after k1, k2, · · · , ki are chosen. Initially U0 is the set of values {0, 1, · · · , n−
1}. After scheduling the first task (the one determined by k1 = 0), 0 is not included in U1 since
it was used. After choosing k2 = 1, the values in U2 are 3 · · · n − 2. The index 1 is excluded from
U1 because it is used. The indices 2 and n − 1 are excluded because they are at a distance one
(the distance one is in D2) from a member of K2 (See Figure 2 for the definitions of D2 and K2).
We can see that the number of members in Uj can be computed as a function of Kj−1 as follows:
When an element kj is added to Kj−1 the number of elements in Uj−1 is decremented by at most
1 + 2 + · · · + |Kj−1| + 1 + |Kj−1|: The first member that is removed from U0 is kj + (k2 − k1), the
second and third elements are kj +(k3−k1) and kj +(k3−k2). The fourth, fifth and sixth elements
that are removed from Uj−1 are kj +(k4−k1), kj +(k4−k2) and kj +(k4−k3), continuing the same
way we obtain the sum 1 + 2 + · · · + |Kj−1|. The next additional 1 is due to kj itself and the last
|Kj−1| is due to the distances from k1 in the opposite direction: (1−d[kj , k1]) mod n, (1−d[kj , k2])
mod n, and so on. Hence, the number of members that are removed from Uj−1 following the choice
of kj is 1 + 2 + · · ·+ j − 1 + 1 + j − 1 = (j + 1)j/2. The total number of elements that are removed
from U0 is Σl=j

l=1(l + 1)l/2 < j3. The proof is completed by using Theorem 5.3 and the fact that in
our construction every two elements in Kj are in distinct distance. �

The schemes presented in this section allow the processors to schedule tasks in isolation. This
is the case when the processors find themselves in singleton groups. We now suggest a way to use
the scheme when groups are merged or when larger groups are formed initially. Processors within
a group identify the overlapping task executions and agree which is the single processor within
the group that executes each such task. The processors will continue to execute the tasks in their
(“singleton”) schedule that are not executed by other processors in the group. Thus, in case the
system is partitioned into singletons, at most one overlap between every two processors is achieved
for Θ(n1/3) steps and still no redundant task execution exists within a group.

6 Concluding Remarks
We considered the problem of dynamic load balancing in networks subject to reconfigurations,
and we have presented three new directions in the investigation of load balancing with group
communication. First, we have shown that in the presence of fully dynamic changes no on-line
algorithm can do much better than the trivial solution in which every processor behaves as if it is a
singleton and executes all tasks. This led us to examine the last two scenarios. For fragmentation
failures we presented an algorithm that guarantees completion with total work O(n + f · n), where

13

f is the number of fragmentation failures. Finally, for the case of fully dynamic reconfigurations we
presented a scheduling strategy for minimizing the task execution redundancy between processors
that can schedule Θ(n1/3) tasks with at most one overlap of task execution for any two processors.
Finally, the problem of minimizing overlaps for singleton groups bears similarity to some problems
in design theory and we intend to pursue this connection in future work.

Acknowledgments: We thank Nancy Lynch and Dahlia Malki for several discussions that moti-
vated parts of this work. We also thank Shmuel Zaks for insightful remarks and Chryssis Georgiou
for helpful comments.

References

[1] Comm. of the ACM, Special Issue on Group Communication Services, vol. 39, no. 4, 1996.
[2] O. Babaoglu, R. Davoli and A. Montresor. “Group Membership and View Synchrony in Partitionable

Asynchronous Distributed Systems: Specification,” in Operating Sys. Review, 31(2):11-22, April 1997.
[3] O. Babaoglu, R. Davoli, A. Montresor and R. Segala, “System support for partition-aware network

applications”, in Proc. of the 18th Int-l Conference on Distributed Computing Systems, May 1998.
[4] M. Hayden, doctoral thesis, Cornell University, 1999.
[5] K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE Computer

Society Press, Los Alamitos, CA, 1994.
[6] B. Chlebus, R. De Prisco and A. Shvartsman, “Performing tasks on restartable message-passing pro-

cessors”, in Proc. of the 11th Int-l Workshop on Distr. Alg. (WDAG’97), pp. 99–114, 1997.
[7] R. De Prisco, A. Fekete, N. Lynch and A. Shvartsman, “A Dynamic View-Oriented Group Communi-

cation Service”, in Proc. of the ACM Symp. on Principles of Distributed Computing, 1998.
[8] R. De Prisco, A. Mayer, and M. Yung, “Time-Optimal Message-Efficient Work Performance in the

Presence of Faults,” in Proc. 13th ACM Symp. on Principles of Distributed Comp., pp. 161-172, 1994.
[9] D. Dolev and D. Malki, “The Transis Approach to High Availability Cluster Communications”, Comm.

of the ACM, vol. 39, no. 4, pp. 64–70, 1996.
[10] C. Dwork, J. Halpern, O. Waarts, “Performing Work Efficiently in the Presence of Faults”, SIAM J.

on Computing, 1994; prelim. vers. appeared as Accomplishing Work in the Presence of Failures in Proc.
11th ACM Symposium on Principles of Distributed Computing, pp. 91-102, 1992.

[11] P. Ezhilchelvan, R. Macedo and S. Shrivastava “Newtop: A Fault-Tolerant Group Communication
Protocol” in Proc. of IEEE Int-l Conference on Distributed Computing Systems, 1995, pp 296–306.

[12] A. Fekete, R. Khazan and N. Lynch, “Group Communication as a base for a Load-Balancing, Replicated
Data Service”, in Proc. of the 12th International Symposium on Distributed Computing, 1998.

[13] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and Using a Partitionable Group Communication
Service,” Proc. of the 16th Annual ACM Symp. on Principles of Distributed Computing, pp. 53-62, 1997.

[14] Z. Galil, A. Mayer, and M. Yung, “Resolving Message Complexity of Byzantine Agreement and Be-
yond,” in Proc. 36th IEEE Symposium on Foundations of Computer Science, 1995, pp. 724–733.

[15] P. Kanellakis and A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Academic Publishers,
1997.

[16] E. Y. Lotem, I. Keidar, and Danny Dolev, “Dynamic Voting for Consistent Primary Components,”
Proc. of the 16th Annual ACM Symp. on Principles of Distributed Computing, pp. 63-71, 1997.

[17] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.
[18] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-Papadopolous, “Totem:

A Fault-Tolerant Multicast Group Communication System”, Comm. of the ACM, vol. 39, no. 4, pp.
54-63, 1996.

14

[19] N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output Automata”, CWI Quarterly, vol.2,
no. 3, pp. 219-246, 1989.

[20] R. van Renesse, K.P. Birman and S. Maffeis, “Horus: A Flexible Group Communication System”,
Comm. of the ACM, vol. 39, no. 4, pp. 76-83, 1996.

[21] M. Saks, N. Shavit and H. Woll, “ Optimal time randomized consensus – making resilient algorithms
fast in practice”, in Proc. of the 2nd ACM-SIAM Symp. on Discrete Algorithms, pp. 351-362, 1991.

[22] D. Sleator and R. Tarjan, “Amortized Efficiency of List Update and Paging Rules,” CACM 28, pp.
202-208, 1985.

[23] J. Sussman and K. Marzullo, “The Bancomat Problem: An Example of Resource Allocation in a
Partitionable Asynchronous System”, in Proc of 12th Int-l Symp. on Distributed Computing, 1998.

15

Appendix: VS Service

The functions provided by the vs service [13], given in Figure 4, are sufficient for algorithm AF. The
algorithm does not assume that messages are ordered within a view and does not take advantage
of the safe notifications.

Data types:

M : messages
P : processor ids
G : group ids
views = G × P : group views with selectors id and
set

m ∈ M
p, q ∈ P
g0, g ∈ G (g0 is a distinguished view)
v ∈ views

States:

created ⊆ views , initially {〈g0,P〉}
for each p ∈ P :

current-viewid [p] ∈ G, initially g0

for each g ∈ G:
queue [g], a finite sequence of M×P , initially ∅

for each p ∈ P , g ∈ G:
pending [p, g], a finite sequence of M, initially ∅
next [p, g] ∈ N>0, initially 1
next-safe [p, g] ∈ N>0, initially 1

Transitions at i:

output createview(v)
Precondition:

v.id > max{g : ∃S : 〈g, S〉 ∈ created}
Effect:

created ← created ∪ {v}

output newview(v)p

Precondition:
v ∈ created
p ∈ v.set
v.id > current-viewid [p]

Effect:
current-viewid [p]← v.id

input gpsnd(m)p

Effect:
append m to pending [p, current-viewid [p]]

internal vs-order(m, p, g)
Precondition:

m is head of pending [p, g]
Effect:

remove head of pending [p, g]
append 〈m, p〉 to queue[g]

output gprcv(m)p,q, hidden g
Precondition:

g = current-viewid [q]
queue [g](next [q, g]) = 〈m,p〉

Effect:
next [q, g]← next [q, g] + 1

output safe(m)p,q, hidden g, S
Precondition:

g = current-viewid [q]
〈g, S〉 ∈ created
queue [g](next-safe [q, g]) = 〈m, p〉
for all r ∈ S:

next [r, g] > next-safe [q, g]
Effect:

next-safe [q, g]← next-safe [q, g] + 1

Figure 4: View synchronous group communication service

16

