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Abstract
The distribution of digital video content over computer
networks has become commonplace. Unfortunately, most
digital video encoding standards do not degrade grace-
fully in the face of packet losses, which often occur in a
bursty fashion. We propose an new video encoding sys-
tem that scales well with respect to the network’s perfor-
mance and degrades gracefully under packet loss. Our
encoder sends packets that consist of a small random
subset of pixels distributed throughout a video frame.
The receiver places samples in their proper location
(through a previously agreed ordering), and applies a re-
construction algorithm on the received samples to pro-
duce an image. Each of the packets is independent, and
does not depend on the successful transmission of any
other packets. Also, each packet contains information
that is distributed over the entire image. We also apply
spatial and temporal optimization to achieve better com-
pression.

1 Introduction
With the advent of the internet, the distribution of digital
video content over computer networks has become com-
monplace. Unfortunately, digital video standards were
not designed to be used on computer networks. Instead,
they generally assume a fixed bandwidth and reliable
transport from the sender to the receiver. However, for
the typical user, the internet does not make any such guar-
antees about bandwidth, latency or errors. This has lead
to the adaptation or repackaging of existing video encod-
ing standards to meet these constraints. These attempts
have met with varying levels of success. In this paper we
propose to design a new video standard specifically for
computer networks from the ground up.

The internet is a heterogeneous network whose basic

unit of transmission is a packet. In order to assure scala-
bility, the internet was designed as a best effort network
- i.e. it makes no guarantees that a packet sent by a host
will arrive at the receiver or that it will be delivered in the
order that it was sent. This also implies that it makes no
guarantees on the latency of the delivery.

A video encoding system designed for computer net-
works would ideally satisfy the following requirements.
The transmitted data stream should be tolerant to vari-
ations in bandwidth and error rates along various net-
working routing paths. A given data stream should also
be capable of supporting different qualities of service.
Where this quality of service might be dictated by local
resources (such as CPU performance) or the other user
requirements. These requirements are only partially sat-
isfied by existing video encoding systems. In this paper
we propose a flexible video encoding system that satis-
fies the following design goals:

� The system must allow for broadcast. We would
like a system where video can be transmitted to a
large audience in real time with no feedback to the
source. This allows for arbitrary scalability.

� The network can arbitrarily drop packets due to con-
gestion or difference of bandwidths between net-
works or receivers. Since this system is targeted to
error prone networks, it must perform well under
packet losses.

� The sender should be able to dynamically vary the
bandwidth and CPU requirements of the encoding
algorithm. In order to guarantee a quality of ser-
vice variations in bandwidth may be necessary. For
instance, at scene changes or during a complex se-
quence. Variations in bandwidth could also occur
due to resource limitations at the source such as
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channel capacity and CPU utilization, or by a policy
decision.

� The receiver should be able construct a reasonable
approximation of the desired stream using a subset
of the data transmitted. Furthermore, the receiver
may also intentionally ignore part of the data re-
ceived to free up resources in exchange for reduced
quality.

� The quality of the video should degrade gracefully
under packet loss by the network or throttling by the
sender or receiver.

� Variations in the algorithm should support a wide
range of performance levels, from small personal
appliances to high-end workstations.

� User should be able to quickly join a session in
progress.

These goals place severe constraints on how the sys-
tem can be built.

Packets are the basic unit of network transmission we
consider [13]. A video frame generally spans many pack-
ets. System throughput and quality are affected by throt-
tling packets at the sender, packet loss in the network,
and ignoring of packets at the receiver. Therefore, we
choose to regard packets as atomic in our system design.
For scalability and error handling we avoid packets that
contain prioritized data or interdependencies, such as the
clustering of data or differential encoding. These goals
motivate our design principles:

Globalness – Individual packets should contain
enough information to reconstruct the whole image.
They also should be additive - each additional packet in-
creases the reconstructed image quality. Conversely, for
each packet that is dropped by the sender, network or re-
ceiver, the image quality degrades.

Independence– All packets are independent of each
other; any one of them can be dropped without abrupt
changes in quality, and in many cases we can process
them out of order.

These principles are quite different than current video
encoding systems. Typical video encoding algorithms
(i.e. H.263 [1] or ISO MPEG), use compression and
encoding techniques that make packets interdependent;

when one packet is lost, all other packets that are related
to it lose their usefulness.

We propose an encoding system that scales well with
respect to the sender’s performance, the number of re-
ceivers, and the network’s performance. This system de-
grades gracefully under packet loss. Briefly stated: the
encoder sends packets that consist of a small random sub-
set of pixels distributed throughout a video frame. The
receiver places samples in their proper location (through
a previously agreed ordering), and applies a reconstruc-
tion algorithm on these samples to produce an image.
Notice that since each packet contains a small random
subset of the image, there is no ordering or priority for
packets. We also apply spatial and temporal optimization
to achieve better compression without compromising our
global and independence principles.

2 Previous Work

Video encoding algorithms specifically tailored for the
internet have been previously proposed. ISO MPEG-1
provides high compression ratios, and it allows for bit-
stream resynchronization using slices. Generally slices
span multiple packets, and few encoders make an ef-
fort to align slices within packet boundaries. The vari-
able length encoding and difference encoding used by
MPEG-1 is very effective in reducing the bitrate, but both
techniques make assumptions about what has been previ-
ously received. If these assumptions are wrong (caused
by packet loss) [8], artifacts will develop in the new
frame. Other discrete cosine transform (DCT) based al-
gorithms like H.261, have been successfully adapted for
use in computer networks by using a technique some-
times called “conditional replenishment” [19]. The idea
is, that instead of encoding the differences from previous
frames, they either keep old blocks or entirely replenish
new blocks independently encoded. These techniques re-
quire that all blocks are replenished within a specified pe-
riod of time. During heavy packet losses, important areas
may not be updated until the losses subside. This is an
all or nothing approach: a block will completely reach its
new state or not change at all.

Layering approaches have partly alleviated this last
problem. Algorithms like L-DCT [2] and PVH [19],
use a base channel to encode a low quality representa-
tion of the block; and use additional channels to encode
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enhancement information to reproduce a more faithful
block. Because enhancement layers usually depend on
the base layered being received, when the base layer
packets are lost, the block cannot be updated at all.

Error handling can also be incorporated into the net-
work layer. By using error correcting codes, or retrans-
mission based schemes, errors can be minimized or elim-
inated, as to create the illusion of a reliable network
stream. Open-loop approaches [28] (i.e. those that
don’t require feedback) such as, Forward Error Correc-
tion (FEC), eliminate errors when they are well char-
acterized. Unfortunately, these systems must include
enough redundancy in advance to deal with the worst-
case packet loss rate scenario. This leads to inefficien-
cies. The overhead for error correction also increases to-
tal network load. Thus the entire network is taxed due
to the worse performing route [23, 12]. The alternative
is to use a closed-loop approach. Close-loop approaches
[25, 22, 7, 29] , where the receivers request the retrans-
mission of lost packets, have the drawback of higher la-
tency and are difficult to scale [6, 4]. Additionally, since
packet loses generally occur during congestion, these re-
quests and subsequent retransmissions can make matters
worse.

The algorithm we propose bears many resemblences to
work in error concealment [3, 11, 30, 27]. While most er-
ror concealment techniques are built upon existing stan-
dards, our technique proposes an entirely novel encod-
ing scheme. Our encoding scheme is tolerant to bursty
errors, and does not require resynchronization. Our re-
construction algorithm is fast, and makes no a-priori as-
sumptions about the existance of specific nearby blocks
or pixels.

3 The Algorithm

The Network Aware Internet Video Encoding (NAIVE)
system sends a small random subset of samples from
each video frame and reconstructs the frame at the re-
ceiver. The random samples can be distributed across one
or more network packets. Randomness is used to select
samples in order to decorrelate errors and reduce artifacts
such as blockiness. Following our design principles, each
packet contains samples uniformly distributed through-
out the whole image, and independent of any previous
packet sent. Our encoding system allows for arbitrary
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Figure 1: 2D pull-push. At lower resolutions the gaps are
smaller.

packet loss, thus there is no guarantee that the client has
received any particular set of image information. This
presents us with the problem of reconstructing an image
from irregularly spaced samples.

3.1 Image Reconstruction
A viable solution to this image reconstruction problem
must have the following features:

� The method must run at frame rate. Thus, it is too
expensive to solve systems of equations (as is done
when using global spline methods [26, 17] ) or to
build spatial data structures (such as a Delauney tri-
angulation [21]).

� The method must deal with spatially scattered sam-
ples. Thus we are unable to use standard interpola-
tion methods, or Fourier-based sampling theory.

� The method must create reconstructions of accept-
able quality.

In this paper we adapt the pull-push algorithm of
Gortler et al. [14]. This algorithm is based on concepts
from image pyramids [9], wavelets [18] and subband
coding [16], and it extends earlier ideas found in [10] and
[20]. The algorithm proceeds in two phases called pull
and push. During the first phase, pull, a hierarchical set
of lower resolution data sets is created in an image pyra-
mid. Each of these lower resolution images represents a
“blurred” version of the input data; at lower resolutions,
the gaps in the data become smaller (see figure 1). Dur-
ing the second phase, push, this low resolution data is
used to fill in the gaps at the higher resolutions. Care is
taken not to destroy high resolution information where it
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(a)

(b)

Figure 2: Grayscale lenna image samples and reconstruc-
tion. Using 22% original pixels (a), and using 5% of orig-
inal pixels (b). The images in the left column show the
input pixels. The right column shows our reconstruction

is available. Figure 2 shows the reconstruction of the
lenna grayscale from 5% and 22% of the original pixels.

3.1.1 Organization

The algorithm uses a hierarchical set of image pixels with
the highest resolution labeled0, and lower resolutions
having higher indices. Each resolution has 1/2 the reso-
lution in both the horizontal and vertical dimensions. For
our 320 by 240 images, we use a 5 level pyramid. As-
sociated with the ij’th pixel valuepri;j at resolutionr is
a weightwr

i;j. These weights, representing pixel confi-
dence, determine how the pixels at different resolution
levels are eventually combined.

3.1.2 Initialize

During initialization, each of the received pixels is used
to set the associated pixel valuep0i;j in the high resolution

image, and the associated weightw0
i;j for this pixel is set

to f . f is the value chosen to represent full confidence.
The meaning off is discussed below. All other weights
at the high resolution are set to 0.

3.1.3 Pull

The pull phase is applied hierarchically, starting from the
highest resolution and going until the lowest resolution in
the image pyramid. In this pull phase, successive lower
resolution approximations of the image are derived from
the adjacent higher resolution by performing a convolu-
tion with a discrete low pass filter~h. In our system, we
use the “tent” sequence.~h[�1::1] � [�1::1]:

2
64

1=16 1=8 1=16
1=8 1=4 1=8
1=16 1=8 1=16

3
75

The lower resolution pixels are computed by combining
the higher resolution pixels using~h. One way to do this
would be to compute

wr+1
i;j :=

P
k;l

~hk�2i;l�2i w
r
k;l

pr+1i;j := 1

wr+1
i;j

P
k;l

~hk�2i;l�2j w
r
k;l p

r
k;l

(1)

This is equivalent to convolving with~h and then down-
sampling by a factor of two.

This computation can be interpreted as follows: Sup-
pose we have a set of continuous tent filter functions as-
sociated with each pixel in the image pyramid. Suppose
~B0
i;j(u; v) is a continuous piecewise bilinear linear tent

function centered ati; j and two units (high resolution
pixels) wide, ~B1

i;j(u; v) at the next lower resolution is
a tent function centered at2i; 2j and is four units (high
resolution pixels) wide,~B2

i;j(u; v) at the next lower res-
olution is a tent function centered at4i; 4j and is 8 units
wide, and so on. These continuous functions are related
using the discrete sequence~h:

~Br+1
i;j (u; v) =

X
k;l

~hk�2i;l�2i
~Br
k;l(u; v)

This means that one can linearly combine finer tents to
obtain a lower resolution tent. The desired multiresolu-
tion pixel values can be expressed as an integral over an
original continuous imageP (u; v) using the~Br

i;j(u; v) as
weighting functions:Z

1

�1

Z
1

�1

du dv ~Br
i;j(u; v)P (u; v) (2)
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If one approximates this integral with a discrete sum over
the received pixel values, one obtains

wr
i;jp

r
i;j =

X
k;l

~Br
i;j(k; l)p

0
k;lw

0
k;l (3)

where

wr
i;j =

X
k;l

~Br
i;j(k; l)w

0
k;l

It is easy to show that the values computed by Equation 3
can be exactly and efficiently obtained by applying Equa-
tion 1 hierarchically.

This method creates good low resolution images when
the original samples are uniformly distributed. But when
the original samples are unevenly distributed, Equation 3
becomes a biased estimator of the desired low resolution
value defined by Equation 2 for it overly emphasizes the
over sampled regions. Our solution to this problem is to
replace Equation 1 with:

wr+1
i;j :=

P
k;l

~hk�2i;l�2i min(wr
k;l; f)

pr+1i;j := 1

w
r+1

i;j

P
k;l

~hk�2i;l�2j min(wr
k;l; f) p

r
k;l

(4)

The valuef represents full confidence, and themin op-
erator is used to place an upper bound on the degree that
one image pyramid pixel corresponding to a highly sam-
pled region, can influence the total sum. Any value of
1=16 � f � 1 creates a well defined algorithm. Iff is
set to one, then no saturation is applied, and this equation
is equivalent to Equation 1. Iff is set to1=16, then even
a single sample under the sum is enough to saturate the
computation for the next lower resolution. In the system
we have experimented with many values, and have ob-
tained the best results withf = 1=8. Although complete
theoretical analysis of the estimator in Equation 4 has yet
to be completed, our experiments show it to be far supe-
rior to Equation 1. Figure 3 shows the reconstruction of
the lenna grayscale image with 10% of its samples recon-
structed using (a) f = 1, (b) f = 1/8.

The pull stage runs in time linear in the number of pix-
els summed over all of the resolutions. Because each
lower resolution has half the density of pixels, the com-
putation time can be expressed as a geometric series and
thus this stage runs in time linear in the number of high
resolution pixels at resolution0.

3.1.4 Push

The push phase is also applied hierarchically, starting
from the lowest resolution in the image pyramid, and

(a) (b)

Figure 3: Grayscale lenna test image reconstruction with
10% of samples: (a) using f = 1, (b) f = 1/8

working to the highest resolution. During the push stage,
low resolution approximations are used to fill in the re-
gions that have low confidence in the higher resolution
images. If a higher resolution pixel has a high associ-
ated confidence (i.e., has weight greater than or equal to
f ), we disregard the lower resolution information for that
high resolution pixel. If the higher resolution pixel does
not have sufficient weight, we blend in the information
from the lower resolution.

To blend this information, the low resolution approx-
imation of the function must be expressed in the higher
resolution. This is done using an interpolation sequence
also based on the tent sequence but with a different nor-
malization: h[�1::1] � [�1::1]:

2
64

1=4 1=2 1=4
1=2 1 1=2
1=4 1=2 1=4

3
75

Push proceeds is done in two steps: we first compute
temporary values

tpri;j :=
X
k;l

hi�2k;j�2l p
r+1
k;l

This computation is equivalent to upsampling by a factor
of 2 (adding0 values), and then convolving withh. These
temporary values are now ready to be blended with the
pr values already at levelr, using thewr as the blending
factors.

pri;j := (1�
wr

i;j

f
) tpri;j +

wr
i;j

f
pri;j
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analogous to the “over” blending performed in image
compositing [24].

3.1.5 Lower Resolution Samples

There can be cases in which the sender wishes to send
only low resolution information about some image re-
gion (perhaps that region is blurry or it is deemed to be
less important). Our algorithm allows the sender to send
lower resolution pixels directly to the appropriate level of
the image pyramid,pri;j for r > 0. When such pixels are
received they are placed directly in the image pyramid at
the appropriate resolution, and we suppress the pulling
of high resolution pixels to it. This allows the sender to
avoid sending many high resolution pixels where the in-
formation content is primarily of low frequency.

3.1.6 Temporal Coherence

In video sequences, image regions can change slowly.
Our system takes advantage of this temporal coherence
by allowing pixels from previous frames to be included
in the pull-push reconstruction process.

3.2 Packetization
The pull-push algorithm provides a means of reconstruct-
ing an image from non-uniform samples. From our prin-
ciple of globalness we need to pick samples from the
whole image. And these have to be selected at random
to avoid visible artifacts and to allow the appearance of
simultaneous update everywhere in the image [5]. We
guarantee coverage of the whole image by dividing it
into 16x16 blocks and making succesive passes over the
image selecting one random sample from each block on
each pass.

In order to minimize the information transmitted, the
sender and the receiver agree on the ordering of samples,
such that the sender only needs to send the location of
the first sample in a packet. This is done as follows. The
image is split into 16x16 blocks, this means that there are
256 samples per block. Say there are N blocks in an im-
age. We generate a table, called the “offset table”, that
has 256*N entries. The first entry contains the coordi-
nate of a random sample in the first block; the second
entry contains the coordinate of a sample in the second
block; The N+1th entry contains the location of a sample

0
1
2

N-1
N
N+1

256N-1

0 1

N-1

2

Offset Table

Image Blocks

Figure 4: Offset Table: There are N 16x16 blocks in the
image. The i’th entry points to a sample in block number
i modulo N. On any selection of N consecutive entries,
there is a sample from every block

again in the first block. The random ordering of the sam-
ples within a block is established by assigning a pseudo-
random number to each pixel. The pixels are then sorted
into a list according to this random number. The offset
table can then be constructed by selecting a pixel from
each of the N lists. The sender and receiver are synchro-
nized through the transmission of a seed for the random
number generator. This seed must be transmitted via a
reliable protocol such as TCP/IP.

This ordering guarantees that if we pick N consecutive
samples, they will span the whole image without large
clusters. Additionally, we can easily compute the block
that a sample belongs to, by computing the module N of
its location in the table. See figure 4.

The reconstruction explained so far applies to a
grayscale image. This same idea can be extended to the
chrominance components of color images. We encode
color images by sampling the chrominance components
at a resolution 1/4 of the luminance image, similar to
MPEG. To encode them, we maintain another offset ta-
ble with 8x8 blocks to correspond to the 16x16 blocks of
the luminance components. We encode the chrominance
samples independently of the luminance samples.

We need to send very little overhead information with
each packet. Each packet consists of: a frame num-
ber; table offset of first chrominance sample, number of
chrominance samples, and the samples themselves; and
table offset of first luminance sample, with the remaining
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Frame
Number

#UV samples Offset
Y samples

Offset 
UV samples

UV samples Y samples

Figure 5: Packet Format

of the packet filled with luminance samples. We use 1024
bytes as our default packet size. This structure satisfies
our global and independence properties. If a packet has
more than N luminance samples (where N is the number
of blocks in a frame), then there will be one sample in ev-
ery block of the image guaranteed by the way we traverse
the offset table.

4 Enhancements
The baseline approach described above works well for
images whose details are uniformly distributed through-
out the whole image. Most images, though, have lo-
calized regions of detail. And most sequences bear a
high level of temporal coherency across frames. We can
take advantages of these characteristics to produce better
quality video with the same or less amount of data.

4.1 Spatial Locality
In image regions with mostly low frequency content, our
encoding system allows us to directly transmit lower res-
olution samples, and the receiver can insert these directly
into lower resolution pyramid levels.

In our encoding system, we encode the sample value
and resolution level in the same byte. We use 7 bits of
precision for level 0 samples, and 6 bits of precision for
level 1 and level 2 samples. If the least significant bit is 0,
the sample is a level 0 sample; if the least significant bits
is 01 or 11 the sample is a level 1 or level 2 sample re-
spectively. With this change we keep the packet structure
unchanged, except for how sample values are interpreted.

Samples that are inserted at lower resolution levels,
correspond spatially to many more samples at finer lev-
els. Thus, when a low resolution sample is sent, fewer
higher resolution samples are needed.

To manage the bookkeeping for this information, we
use a special table, called the SKIP TABLE. There is
a SKIP TABLE entry for each block. The SKIP TA-

BLE contains the encoder/decoder agreed upon number
of samples for this block that will be skipped. When a
packet is received, all entries in the SKIP TABLE are ini-
tialized to 0; thus each block is guaranteed to have one
sample. When a sample is inserted into a lower resolu-
tion level, we load the skip table entry for that block, with
a predefined constant, agreed upon by the sender and the
receiver. In our system, when a sample is sent for level 1,
we skip the next 3 samples for this block. When a sam-
ple is sent for level 2, we skip the next 15 samples for
this block.

Each time that block occurs in the sequence we inspect
the skip table entry to see if it is non-zero, if it is, we
decrement the skip table, and go to the next block without
reading a sample from the packet. Otherwise, we insert
the current sample into the block according to the offset
table entry.

4.2 Temporal Locality

Temporal locality can be exploited even when packets
are independent of each other. MPEG and H.261 ex-
ploit temporal locality by reusing block of pixels that are
closely located in the previous frame, encoding this loca-
tion and their difference. In our approach, we don’t make
any assumptions about the previous frame or what pack-
ets the receiver has processed. We simply take advantage
of the fact that pixels in a block may not change signifi-
cantly across many frames, in which case, we reuse them
to reconstruct a higher quality image. In NAIVE, pix-
els from previous frames can be kept around for up to 20
frames, and used as equal participants in the pull-push
algorithm. When a block has changed significantly, a
KILL BLOCK signal is sent for that block, and all pixels
for that block from previous frames are discarded. For
scene changes, a KILLALL BLOCKS signal will dis-
card all previous pixels from previous frames.

We flush the previous frame samples for a given block
by using a special word (KILLBLOCK) instead of en-
coding the sample. When this code is seen, the block that
corresponds to the offset for that sample, will be marked,
and all corresponding samples from previous frames are
flushed. Additionally, we do not increment the pointer
into the offset table, such that the next sample in the
stream falls in the current block.

Blocks that do not change will slowly improve in
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Figure 6: Rate-distortion curve on the grayscale 512x512
“Lena” test image.

quality because they are reusing samples from previ-
ous frames; therefore we wish to use more samples to
the blocks which are changing more rapidly and are not
reusing samples. We accomplish this by inserting neg-
ative values in the SKIP TABLE in the following way.
When a block is killed, we set its corresponding SKIP
TABLE entry to a negative value (currently -10). After
we have gone around once for all blocks in the image,
we only visit blocks that have a negative SKIP TABLE
entry and increment its SKIP TABLE for each sample
received. This continues until there are no more nega-
tive SKIP TABLE entries left. This increases the recon-
structed quality of blocks that are not reusing previous
samples. This does not violate our globalness principle,
since we still have at least one sample per every block if
they fit in a packet.

5 Results

In this section we evaluate the performance of our com-
pression system. Before we proceed it is important to
note two caveats. First, the policies of the encoder
will greatly determine the quality of the decompressed
stream. The encoder can make many decisions. For ex-
ample, it can make decisions about which blocks to flush
or keep, what offset to start sending samples from, from
which levels samples should be drawn, what proportion
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Figure 7: Average SNR of 3 color sequences with 100
frames encoded at 1 bpp2 and decoded with different
packet drop rates yielding different bpp. receive rates.

of luminance/ chrominance samples to use, among others
decisions. We have manually found reasonable settings
for our video streams. In the optimal case, the encoder
would make these decisions automatically. Secondly, we
have used the signal-to-noise ratio metric (SNR) for eval-
uating our results. It is well known that SNR is not an
optimal measurement for image quality. It is acceptable
for comparing the algorithms based on the same trans-
form with different settings [15]. A better measurement
would be based on models of the human visual system;
but these are usually harder to implement or compute
than the SNR.

Figure 6 shows the rate distortion curve for 512x512
grayscale image, compressed for different target bit per
pixels (bpp) and different packet sizes. Large packet
sizes are important for large images. If the packet is not
larger than the number of blocks in an image, then there
will not be enough space to go around all the blocks once,
and more importantly, the algorithm will not make use of
the SKIP TABLE, which allows it to get more samples
in needed areas. The drawback of using large packets is
that they are more likely to fragmented and lost. When
a packet is fragmented, and one of its fragments get lost,
the whole packet is lost. For small images, a packet size
of 1024 bytes is adequate. For our experiments we used
a packet size of 1024 bytes because it is compatible with
the maximum packet size of most networks.

Figure 7 shows how the quality degrades gracefully
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Figure 8: Base: SNR for each frame given the bpp re-
ceived per frame, constant receive rate of 0.33 bpp

for different kinds of video sequences. For these se-
quences, temporal and spacial locality has been used.
The first sequence,Walk, contains a men in suits walk-
ing from a car, the scene has high detail and motion. The
second sequence,Claire is a standard head and shoulders
shot. Lastly, theInterview, consists of three scenes: a
person walking into a room, a head and shoulders shot
of the person talking inside the room, and close up of
her face. All three sequences contain 100 frames, and
were encoded at 1bpp. To generate all the data, the se-
quences were decoded with different packet drop rates
calculating the average SNR of all frames. The packet
drop rate determines the independent probability that a
packet will be dropped. Over a whole sequence, a video
encoded at 1bpp and decoded with a packet drop rate of
30%, will have a receive bpp of 0.7bpp. The slope of
all three curves is very similar, showing that it degrades
slowly regardless of the kind of video.

The algorithm handles bursty packet losses well. Fig-
ure 8 shows the frame by frame SNR for a 10 second
interview (320x240 color) sequence compressed at 0.33
bpp. This sequence is composed of three shots. The
first 22 frames is a shot sequence of the person walking
into an office. The stride of the person and camera angle
makes the shot contain one slow motion frame and one
fast motion frame, to give the resulting wave-like shape
for the SNR during that shot. The second shot is a head
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Figure 9: Bursty: SNR for each frame given the bpp re-
ceived per frame, there are bursty errors, so the receive
rate drops sporadically

and shoulders shot of the person being interview in her
office. This shot lasts until frame 77. The last shot is a
close up of the person. The quality of the image is above
30dB for most of the sequence, there is a short dip be-
tween frame 77 and frame 78, but it does not take long to
recover.

Figure 9 shows the same sequence under bursty packet
loss. The dashed line represents the actual bit rate during
the reception of each frame. This figure shows that even
under heavy loss (receiving less that 0.1 bpp), the qual-
ity does not degrade significantly. At the end of the first
burst, in frame 28, the quality level recovers rapidly. Ad-
ditionally, the quality hardly degrades during the second
burst, between frames 37 and 47.

The complexity of the algorithm is simple enough to
allow a software-only implementation. Table 1 shows
the decoding frame rate for different sequences. The al-
gorithm was run on a common Intel Pentium Pro 200Mhz
processor running Linux and the X windows system. The
frame rate is not very sensitive to the amount of data re-
ceived. The decoding time is dominated by the pull-push
algorithm after all the samples received from the network
have been placed in the image. The color sequence ran
at 50% lower frame rate, than the comparable gray scale
sequence. This makes sense, since we have to recon-
struct the chrominance data which is half the size of the
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Test Sequence fps 1bpp fps 0.5bpp

interview (color 320x240) 23.5 25.3
susie (gray 352x240) 34.81 36.32
qclaire (gray 176x144) 76.7 84.9

Table 1: Decoding frame rates (without displaying) for
different sequences.

luminance data for color sequences. Displaying QCIF se-
quences in real time would not be a problem, and with a
faster machine and an efficient display system, the same
might be possible for CIF sequences.

6 Conclusions

The NAIVE system that we have presented is an initial
step towards a video compression system tailored specif-
ically for computer networking environments. NAIVE
satisfies our initial design goals. It supports broad-
cast over large-area network and maintains scalability.
NAIVE is tolerant to packet loss at any point along the
network from the sender to the receiver. In fact, the in-
tentional dropping of packets at the source is one method
of increasing the effective compression of the bit stream.
Similarly, the selective dropping of packets at the re-
ceiver effectively sheds CPU load. A NAIVE sender can
also dynamically vary its transmission bandwidth when
required by the video sequence in order to maintain a
given quality level. In all cases, the receiver of a NAIVE
video stream is able to reconstruct a reasonable approxi-
mation of an entire frame using a minimum on informa-
tion (i.e. a single packet). The reception of additional
packets further enhances the quality of the frame. Fi-
nally, our system degrades gracefully under severe packet
losses.

Fundamentally, the randomizing of samples used in
our NAIVE method has the effect of decorrelating the
input signal and effective compression methods essen-
tially depend on highly correlated input signals. Thus,
our NAIVE algorithm sacrifices compression ratio, as
compared to other video compression techniques, in or-
der to achieve our design goals. We believe that other
compression techniques can be layered onto our NAIVE
methods to achieve substantially improved compression.
For instance, variable length encoding techniques can be
applied within individual packets to reduce redundancy

in the transmitted symbols. Differential encoding meth-
ods could be applied to all samples in the packet fol-
lowing the initial sample for each block. We are also
hopeful that motion compensation techniques can be ap-
plied within our framework by encoding motion vector
for each block. These motion vectors would imply that a
block of samples in all pyramid levels would be copied to
the current block. Thus, the sender would make no spe-
cific assumption concerning which samples are available
at the receiver, only that those samples within the trans-
ferred block would form the best basis for reconstruct-
ing the desired block. It is also possible to incorporate
embedded coding techniques to the samples within each
packet. This would potentially allow for trading off the
quantization of samples for increased sampling density.

Another shortcoming of our NAIVE method is that the
sender is fundamentally unable to make any quality guar-
antees to any particular receiver. The need for such a
guarantee might arise based from an economics driven
approach where particular receivers pay a premium for
assurances of a given quality level. Layering is an effec-
tive technique for satisfying such requirements. We be-
lieve that our NAIVE method could be extended to pro-
vide layering.

In summary, we view our NAIVE algorithm as start-
ing point for the development of a new class of video
compression methods that are well suited for computer
networks. By considering the realities of real networks
we believe that is possible to define new classes of al-
gorithms that are scalable in broadcast applications and
degrade gracefully under variations in network activity.
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