
Appears as Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer Science, June 1999

Authenticated Byzantine Fault Tolerance Without Public-Key Cryptography

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,

Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

fcastro,liskovg@lcs.mit.edu

Abstract
We have developed a practical state-machine replication
algorithm that tolerates Byzantine faults: it works correctly
in asynchronous systems like the Internet and it incorporates
several optimizations that improve the response time of previous
algorithms by more than an order of magnitude. This paper
describes the most important of these optimizations. It explains
how to modify the base algorithm to eliminate the major
performance bottleneck in previous systems — public-key
cryptography. The optimization replaces public-key signatures
by vectors of message authentication codes during normal
operation, and it overcomes a fundamental limitation on the
power of message authentication codes relative to digital
signatures — the inability to prove that a message is authentic
to a third party. As a result, authentication is more than two
orders of magnitude faster while providing the same level of
security.

1 Introduction
The growing reliance of industry and government on
online information services makes malicious attacks
more attractive and makes the consequences of successful
attacks more serious. Byzantine-fault-tolerant replication
enables the implementation of robust services that
continue to function correctly even when some of their
replicas are compromised by an attacker.

We have developed a practical algorithm for state-
machine replication [14, 29] that tolerates Byzantine
faults. The algorithm is described in [5]. It offers both
liveness and safety provided at most bn�1

3 c out of a total
ofn replicas are faulty. This means that clients eventually
receive replies to their requests and those replies are
correct according to linearizability [12, 4].

Unlike previous algorithms [29, 25, 13], ours works
correctly in asynchronous systems like the Internet, and
it incorporates important optimizations that enable it to
outperform previous systems by more than an order of
magnitude [5]. This paper describes the most important

This research was supported in part by DARPA under contract F30602-
98-1-0237 monitored by the Air Force Research Laboratory, and in part
by NEC. Miguel Castro was partially supported by a PRAXIS XXI
fellowship.

of these optimizations in detail. It explains how to modify
the base algorithm to eliminate the major performance
bottleneck in previous systems — the cost of using public-
key cryptography to produce digital signatures.

The time to perform public-key cryptography oper-
ations to generate and verify signatures is cited as the
major bottleneck [24, 17, 13] in state-machine replica-
tion algorithms designed for practical application. The
optimization described in this paper replaces digital sig-
natures by vectors of message authentication codes dur-
ing normal operation. It uses digital signatures only for
view changes that occur when a replica fails and are likely
to be infrequent. For the same level of security and typ-
ical service configurations, our authentication scheme is
more than two orders of magnitude faster than one using
public-key signatures.

Message authentication codes are widely used. What is
interesting in the work described here is that it overcomes
a fundamental limitation of message authentication codes
relative to digital signatures — the inability to prove
that a message is authentic to a third party. Previous
state-machine replication algorithms [24, 26, 13] (as well
as the base version of our algorithm described in [5])
rely on this property of digital signatures for correctness.
We explain how to modify our algorithm to overcome
this problem while retaining the same communication
performance during normal case operation and the same
resiliency. Our solution to the problem takes advantage
of the bound of bn�1

3 c on the number of faulty replicas
(which is also required by the algorithms that use digital
signatures) and the fact that correct replicas agree on an
order for requests.

This work is part of our research to produce practical
Byzantine fault tolerance algorithms and to demonstrate
their practicality by implementing real systems. Our
initial results are very promising. We have implemented a
Byzantine-fault-tolerant NFS file system and it performs
less than 3% slower than a standard, unreplicated
implementation of NFS [5].

The rest of the paper is organized as follows. Section 2
presents an overview of our system model and lists
our assumptions. Section 3 describes the problem

1



solved by the algorithm and states correctness conditions.
Section 4 describes the algorithm using public-key
signatures. These sections also appeared in [5]. They are
repeated here for completeness and because the version
of the algorithm with public-key signatures is easier
to understand, but can be skipped by a reader that is
familiar with the algorithm in [5]. Section 5 discusses the
changes to the algorithm that allow us to avoid public-
key cryptography during normal operation. Section 6
discusses related work. Our conclusions are presented in
Section 7.

2 System Model

We assume an asynchronous distributed system where
nodes are connected by a network. The network may
fail to deliver messages, delay them, duplicate them, or
deliver them out of order.

We use a Byzantine failure model, i.e., faulty nodes
may behave arbitrarily, subject only to the restriction
mentioned below. We assume independent node failures.
For this assumption to be true in the presence of malicious
attacks, some steps need to be taken, e.g., each node
should run different implementations of the service code
and operating system and should have a different root
password and a different administrator. It is possible
to obtain different implementations from the same code
base [23] and for low degrees of replication one can buy
operating systems from different vendors. N-version
programming, where different teams of programmers
produce different implementations, is another option for
some services.

We use cryptographic techniques to prevent spoofing
and replays and to detect corrupted messages. Our
messages contain public-key signatures [28], message
authentication codes [30], and message digests produced
by collision-resistant hash functions [27]. We denote a
message m signed by node i as hmi�i and the digest of
message m by D(m). We follow the common practice
of signing a digest of a message and appending it to
the plaintext of the message rather than signing the full
message (hmi�i should be interpreted in this way.) All
replicas know the public keys of other replicas and clients
to verify signatures. Clients also know the public keys of
replicas.

We allow for a very strong adversary that can
coordinate faulty nodes, delay communication, or delay
correct nodes in order to cause the most damage to the
replicated service. We do assume that the adversary
cannot delay correct nodes indefinitely. We also assume
that the adversary (and the faulty nodes it controls)
are computationally bound so that (with very high
probability) it is unable to subvert the cryptographic
techniques mentioned above. For example, the adversary

cannot produce a valid signature of a non-faulty node,
or find two messages with the same digest. The
cryptographic techniques we use are thought to have these
properties [28, 30, 27].

3 Service Properties

Our algorithm can be used to implement any deterministic
replicated service with a state and some operations. The
operations are not restricted to simple reads or writes of
portions of the service state; they can perform arbitrary
deterministic computations using the state and operation
arguments. Clients issue requests to the replicated service
to invoke operations and block waiting for a reply. The
replicated service is implemented by n replicas. Clients
and replicas are non-faulty if they follow the algorithm
and if no attacker can forge their signature.

The algorithm provides both safety and liveness assum-
ing no more than bn�1

3 c replicas are faulty. Safety means
that the replicated service satisfies linearizability [12]
(modified to account for Byzantine-faulty clients [4]): it
behaves like a centralized implementation that executes
operations atomically one at a time.

Safety is provided regardless of how many faulty
clients are using the service (even if they collude with
faulty replicas): all operations performed by faulty clients
are observed in a consistent way by non-faulty clients.
In particular, if the service operations are designed to
preserve some invariants on the service state, faulty
clients cannot break those invariants.

This safety property is very strong but it is insufficient
to guard most services against faulty clients, e.g., in a
file system a faulty client can write garbage data to some
shared file. However, we limit the amount of damage
a faulty client can do by providing access control: we
authenticate clients and deny access if the client issuing
a request does not have the right to invoke the operation.
Also, services may provide operations to change the
access permissions for a client. Since the algorithm
ensures that the effects of access revocation operations
are observed consistently by all clients, this provides a
powerful mechanism to recover from attacks by faulty
clients.

The algorithm does not rely on synchrony to provide
safety. Therefore, it must rely on synchrony to provide
liveness; otherwise it could be used to implement
consensus in an asynchronous system, which is not
possible [9]. We guarantee liveness, i.e., clients
eventually receive replies to their requests, provided at
most bn�1

3 c replicas are faulty and delay(t) does not
grow faster than t indefinitely. Here, delay(t) is the
time between the moment t when a message is sent for
the first time and the moment when it is received by
its destination (assuming the sender keeps retransmitting

2



the message until it is received.) This is a rather weak
synchrony assumption that is likely to be true in any real
system provided network faults are eventually repaired,
yet it enables us to circumvent the impossibility result
in [9].

The resiliency of our algorithm is optimal: 3f+1 is the
minimum number of replicas that allow an asynchronous
system to provide the safety and liveness properties when
up to f replicas are faulty (see [2] for a proof.)

4 The Algorithm
Our algorithm is a form of state machine replication [14,
29]: the service is modeled as a state machine that is
replicated across different nodes in a distributed system.
Each state machine replica maintains the service state and
implements the service operations. We denote the set of
replicas byR and identify each replica using an integer in
f0; :::; jRj�1g. For simplicity, we assume jRj = 3f+1
where f is the maximum number of replicas that may be
faulty.

The replicas move through a succession of configura-
tions called views. In a view one replica is the primary
and the others are backups. Views are numbered con-
secutively. The primary of a view is replica p such that
p = v mod jRj, where v is the view number. View
changes are carried out when it appears that the primary
has failed. Viewstamped Replication [21] and Paxos [15]
used a similar approach to tolerate benign faults.

The algorithm works roughly as follows:
1. A client sends a request to invoke a service operation

to the primary
2. The primary multicasts the request to the backups
3. Replicas execute the request and send a reply to the

client
4. The client waits for f + 1 replies from different

replicas with the same result; this is the result of
the operation.

Like all state machine replication techniques [29],
we impose two requirements on replicas: they must
be deterministic (i.e., the execution of an operation in
a given state and with a given set of arguments must
always produce the same result) and they must start in the
same state. Given these two requirements, the algorithm
ensures the safety property by guaranteeing that all non-
faulty replicas agree on a total order for the execution of
requests despite failures.

Section 5 explains how to avoid using public-key
signatures in the common case. The remainder of this
section describes a simplified version of the algorithm
that uses digital signatures for message authentication
and omits a description of message retransmissions. A
detailed formalization of the algorithm using the I/O
automaton model [16] is presented in [4].

4.1 The Client

A client c requests the execution of state machine
operation o by sending a hREQUEST; o; t; ci�c message
to the primary. Timestamp t is used to ensure exactly-
once semantics for the execution of client requests.
Timestamps for c’s requests are totally ordered such that
later requests have higher timestamps than earlier ones;
for example, the timestamp could be the value of the
client’s local clock when the request is issued.

Each message sent by the replicas to the client includes
the current view number, allowing the client to track the
view and hence the current primary. A client sends
a request to what it believes is the current primary
using a point-to-point message. The primary atomically
multicasts the request to all the backups using the protocol
described in the next section.

A replica sends the reply to the request directly to
the client. The reply has the form hREPLY; v; t; c; i; ri�i
where v is the current view number, t is the timestamp of
the corresponding request, i is the replica number, and r
is the result of executing the requested operation.

The client waits for f + 1 replies with valid signatures
from different replicas, and with the same t and r, before
accepting the result r. This ensures that the result is valid,
since at most f replicas can be faulty.

If the client does not receive replies soon enough, it
broadcasts the request to all replicas. If the request has
already been processed, the replicas simply re-send the
reply; replicas remember the last reply message they sent
to each client. Otherwise, if the replica is not the primary,
it relays the request to the primary. If the primary does
not multicast the request to the group, it will eventually
be suspected to be faulty by enough replicas to cause a
view change.

4.2 Normal-Case Operation

The state of each replica includes the state of the
service, a message log containing messages the replica
has accepted, and an integer denoting the replica’s current
view. We describe how to truncate the log in Section 4.3.

When the primary, p, receives a client request, m, it
starts a three-phase protocol to atomically multicast the
request to the replicas.

The three phases are pre-prepare, prepare, and commit.
The pre-prepare and prepare phases are used to totally
order requests sent in the same view even when the
primary, which proposes the ordering of requests, is
faulty. The prepare and commit phases are used to ensure
that requests that commit are totally ordered across views.

In the pre-prepare phase, the primary assigns a
sequence number, n, to the request, multicasts a pre-
prepare message with m piggybacked to all the backups,
and appends the message to its log. The message has the
form hhPRE-PREPARE; v; n; di�p ;mi, where v indicates

3



the view in which the message is being sent, m is the
client’s request message, and d is m’s digest.

A backup accepts a pre-prepare message provided:

� the signatures in the request and the pre-prepare
message are correct and d is the digest for m;

� it is in view v;

� it has not accepted a pre-prepare message for view v

and sequence number n containing a different digest;

� the sequence number in the pre-prepare message is
between a low water mark, h, and a high water mark,
H .

The last condition prevents a faulty primary from
exhausting the space of sequence numbers by selecting
a very large one. We discuss how H and h advance in
Section 4.3.

If backup i accepts the hhPRE-PREPARE; v; n; di�p ;mi
message, it enters the prepare phase by multicasting a
hPREPARE; v; n; d; ii�i message to all other replicas and
adds both messages to its log. Otherwise, it does nothing.

A replica (including the primary) accepts prepare
messages and adds them to its log provided their
signatures are correct, their view number equals the
replica’s current view, and their sequence number is
between h and H .

We define the predicate prepared(m; v; n; i) to be true
if and only if replica i has inserted in its log: the request
m, a pre-prepare for m in view v with sequence number
n, and 2f prepares from different backups that match
the pre-prepare. The replicas verify whether the prepares
match the pre-prepare by checking that they have the
same view, sequence number, and digest.

The pre-prepare and prepare phases of the algorithm
guarantee that non-faulty replicas agree on a total order
for the requests within a view. More precisely, they
ensure the following invariant: if prepared(m; v; n; i) is
true then prepared(m0; v; n; j) is false for any non-faulty
replica j (including i = j) and anym0 such thatD(m0) 6=
D(m). This is true because prepared(m; v; n; i) and
jRj = 3f+1 imply that at least f+1 non-faulty replicas
have sent a pre-prepare or prepare for m in view v with
sequence number n. Thus, for prepared(m0; v; n; j)
to be true at least one of these replicas needs to have
sent two conflicting prepares (or pre-prepares if it is the
primary for v), i.e., two prepares with the same view
and sequence number and a different digest. But this is
not possible because the replica is not faulty. Finally, our
assumption about the strength of message digests ensures
that the probability that m 6= m0 and D(m) = D(m0) is
negligible.

Replica imulticasts a hCOMMIT; v; n;D(m); ii�i to the
other replicas when prepared(m; v; n; i) becomes true.
This starts the commit phase. Replicas accept commit
messages and insert them in their log provided they are

properly signed, the view number in the message is equal
to the replica’s current view, and the sequence number is
between h and H

We define the committed and committed-local predi-
cates as follows: committed(m; v; n) is true if and only
if prepared(m; v; n; i) is true for all i in some set of
f+1 non-faulty replicas; and committed-local(m; v; n; i)
is true if and only if i has accepted 2f + 1 commits (pos-
sibly including its own) from different replicas and a
matching pre-prepare message for m; a commit matches
a pre-prepare if they have the same view, sequence num-
ber, and digest.

The commit phase ensures the following invariant: if
committed-local(m; v; n; i) is true for some non-faulty
i then committed(m; v; n) is true. This invariant and
the view-change protocol described in Section 4.4 ensure
that non-faulty replicas agree on the sequence numbers
of requests that commit locally even if they commit in
different views at each replica. Furthermore, it ensures
that any request that commits locally at a non-faulty
replica will commit at f + 1 or more non-faulty replicas
eventually.

Each replica i executes the operation requested by
m after committed-local(m; v; n; i) is true and i’s state
reflects the sequential execution of all requests with
lower sequence numbers. This ensures that all non-
faulty replicas execute requests in the same order as
required to provide the safety property. After executing
the requested operation, replicas send a reply to the client.
Replicas discard requests whose timestamp is lower than
the timestamp in the last reply they sent to the client to
guarantee exactly-once semantics.

We do not rely on ordered message delivery, and
therefore it is possible for a replica to commit requests
out of order. This does not matter since it keeps the pre-
prepare, prepare, and commit messages logged until the
corresponding request can be executed.

Figure 1 shows the operation of the algorithm in the
normal case of no primary faults. Replica 0 is the primary,
replica 3 is faulty, and C is the client.

X

request pre-prepare prepare commit reply
C

0

1

2

3

Figure 1: Normal Case Operation

4



4.3 Garbage Collection

This section discusses the mechanism used to discard
messages from the log. For the safety condition to hold,
messages must be kept in a replica’s log until it knows
that the requests they concern have been executed by at
least f + 1 replicas and it can prove this to others in view
changes.

Generating these proofs after executing every opera-
tion would be expensive. Instead, they are generated
periodically, when a request with a sequence number di-
visible by some constant (e.g., 100) is executed. We will
refer to the states produced by the execution of these re-
quests as checkpoints and we will say that a checkpoint
with a proof is a stable checkpoint.

A replica maintains several logical copies of the service
state: the last stable checkpoint, zero or more checkpoints
that are not stable, and a current state. Copy-on-write
techniques can be used to reduce the space overhead to
store the extra copies of the state, as was done in [5].

The proof of correctness for a checkpoint is generated
as follows. When a replica i produces a checkpoint,
it multicasts a message hCHECKPOINT; n; d; ii�i to the
other replicas, where n is the sequence number of the
last request whose execution is reflected in the state
and d is the digest of the state. Each replica collects
checkpoint messages in its log until it has f + 1 of
them for sequence number n with the same digest d
signed by different replicas (including possibly its own
such message.) These f + 1 messages are the proof of
correctness for the checkpoint.

A checkpoint with a proof becomes stable and the
replica discards all pre-prepare, prepare, and commit
messages with sequence number less than or equal to
n from its log; it also discards all earlier checkpoints and
checkpoint messages.

Computing the proofs is efficient because the digest
can be computed using incremental cryptography [1] (as
was done in [5]), and proofs are generated rarely.

The checkpoint protocol is used to advance the low
and high water marks (which limit what messages will
be accepted.) The low-water mark h is equal to the
sequence number of the last stable checkpoint. The high
water mark H = h + k, where k is big enough so that
replicas do not stall waiting for a checkpoint to become
stable. For example, if checkpoints are taken every 100
requests, k might be 200.

4.4 View Changes

The view-change protocol provides liveness by allowing
the system to make progress when the primary fails. View
changes are triggered by timeouts that prevent backups
from waiting indefinitely for requests to execute. A
backup is waiting for a request if it received a valid request
and has not executed it. A backup starts a timer when it

receives a request and the timer is not already running.
It stops the timer when it is no longer waiting to execute
the request, but restarts it if at that point it is waiting to
execute some other request.

If the timer of backup i expires in view v, the
backup starts a view change to move the system to
view v + 1. It stops accepting messages (other than
checkpoint, view-change, and new-view messages) and
multicasts a hVIEW-CHANGE; v+ 1; n; C;P ; ii�i message
to all replicas. Here n is the sequence number of the last
stable checkpoint s known to i, C is a set of f + 1 valid
checkpoint messages proving the correctness of s, and
P is a set containing a set Pm for each request m that
prepared at iwith a sequence number higher thann. Each
setPm contains a valid pre-prepare message (without the
corresponding client message) and 2f matching, valid
prepare messages signed by different backups with the
same view, sequence number, and the digest of m.

When the primary p of view v + 1 receives 2f valid
view-change messages for view v+1 from other replicas,
it multicasts a hNEW-VIEW; v+ 1;V ;Oi�p message to all
other replicas, where V is a set containing the valid view-
change messages received by the primary plus the view-
change message for v+1 the primary sent (or would have
sent), andO is a set of pre-prepare messages (without the
piggybacked request.) O is computed as follows:
1. The primary determines the sequence number min-s

of the latest stable checkpoint in V and the highest
sequence number max-s in a prepare message in V .

2. The primary creates a new pre-prepare message for
view v+1 for each sequence numbern between min-s
and max-s. There are two cases: (1) there is at least
one set in the P component of some view-change
message in V with sequence number n, or (2) there
is no such set. In the first case, the primary creates
a new message hPRE-PREPARE; v + 1; n; di�p , where
d is the request digest in the pre-prepare message for
sequence number n with the highest view number
in V . In the second case, it creates a new pre-
prepare message hPRE-PREPARE; v + 1; n; dnulli�p ,
where dnull is the digest of a special null request;
a null request goes through the protocol like other
requests, but its execution is a no-op. (Paxos [15]
used a similar technique to fill in gaps.)

Next the primary appends the messages in O to its
log. If min-s is greater than the sequence number of its
latest stable checkpoint, the primary also inserts the proof
of stability for the checkpoint with sequence number
min-s in its log, and discards information from the log
as discussed in Section 4.3. Then it enters view v+ 1: at
this point it is able to accept messages for view v + 1.

A backup accepts a new-view message for view v + 1
if it is signed properly, if the view-change messages it
contains are valid for view v + 1, and if the set O is

5



correct; it verifies the correctness of O by performing a
computation similar to the one used by the primary to
create O. Then it adds the new information to its log as
described for the primary, multicasts a prepare for each
message inO to all the other replicas, adds these prepares
to its log, and enters view v + 1.

Thereafter, the protocol proceeds as described in
Section 4.2. Replicas redo the protocol for messages
between min-s and max-s but they avoid re-executing
client requests (by using their stored information about
the last reply sent to each client.)

A replica may be missing some request message m

or a stable checkpoint (since these are not sent in new-
view messages.) It can obtain missing information from
another replica. For example, replica i can obtain a
missing checkpoint state s from one of the replicas
whose checkpoint messages certified its correctness in
V . Since one of those replicas is correct, replica i will
always obtain s or a later certified stable checkpoint. We
can avoid sending the entire checkpoint by partitioning
the state and stamping each partition with the sequence
number of the last request that modified it. To bring
a replica up to date, it is only necessary to send it the
partitions where it is out of date, rather than the whole
checkpoint.

4.5 Safety

This section sketches the proof that the algorithm
provides safety; details can be found in [4]. As discussed
earlier, the algorithm provides safety if all non-faulty
replicas agree on the sequence numbers of requests that
commit locally.

In Section 4.2, we showed that if prepared(m; v; n; i)
is true, prepared(m0; v; n; j) is false for any non-faulty
replica j (including i = j) and any m0 such that
D(m0) 6= D(m). This implies that two non-faulty
replicas agree on the sequence number of requests that
commit locally in the same view at the two replicas.

The view-change protocol ensures that non-faulty
replicas also agree on the sequence number of requests
that commit locally in different views at different replicas.
A request m commits locally at a non-faulty replica with
sequence number n in view v only if committed(m; v; n)
is true. This means that there is a setR1 containing at least
f + 1 non-faulty replicas such that prepared(m; v; n; i)
is true for every replica i in the set.

Non-faulty replicas will not accept a pre-prepare for
view v0 > v without having received a new-view message
for v0 (since only at that point do they enter the view.) But
any correct new-view message for view v0 > v contains
correct view-change messages from every replica i in a
set R2 of 2f+1 replicas. Since there are 3f+1 replicas,
R1 and R2 must intersect in at least one replica k that is
not faulty. k’s view-change message will ensure that the

fact that m prepared in a previous view is propagated to
subsequent views, unless the new-view message contains
a view-change message with a stable checkpoint with a
sequence number higher than n. In the first case, the
algorithm redoes the three phases of the atomic multicast
protocol for m with the same sequence number n and the
new view number. This is important because it prevents
any different request that was assigned the sequence
number n in a previous view from ever committing. In
the second case no replica in the new view will accept any
message with sequence number lower than n. In either
case, the replicas will agree on the request that commits
locally with sequence number n.

5 Avoiding Public-Key Cryptography
The algorithm in the previous section performs poorly
because it requires a large number of digital signature
operations for each client request. This section describes
a modified version of the algorithm that eliminates
this performance bottleneck by replacing public-key
signatures by vectors of message authentication codes
during normal operation.

The section begins with a description of the new
authentication mechanism and a discussion of its benefits.
Then, it explains how to modify the algorithm to
overcome the inability of message authentication codes
to prove authenticity of a message to a third party.

5.1 Authenticators
The optimized algorithm uses vectors of message
authentication codes to authenticate messages. We call
these vectors authenticators.

Message authentication codes use symmetric cryptog-
raphy to authenticate the communication between two
parties that share a secret session key. They work as
follows: the sender of a message m computes a small
bit string, which is a function of m and the key it shares
with the receiver, and appends this string (the message
authentication code or MAC) to the message; the receiver
can check the authenticity of m by computing the MAC
in the same way and comparing it to the one appended to
the message.

To compute message authentication codes,each replica
and each (active) client shares a secret session key with
each replica. There is actually a pair of session keys for
each pair of replicas i and j: Ki;j is used for messages
sent from i to j, andKj;i is used for messages sent from j

to i. Each replica has in addition a secret session key for
each client; this key is used for communication in both
directions.

We use a pair of keys for communication between
replicas, rather than a single session key, to allow replicas
to change independently the keys that they use to verify
incoming messages. The use of a different session key

6



for each replica also prevents the failure of a node from
affecting the authentication of messages sent between
pairs that do not include the faulty node.

The session keys are established (and refreshed)
dynamically using a corrected version of the Denning-
Sacco protocol [7]. For example, replica i chooses a new
(random) key Kj;i to be used by replica j to compute
MACs for messages sent by j to i. Then, it sends
hNEW-KEY; i; j; hKj;ii�j ; ti�i to j and stops accepting
messages from j that are not authenticated using Kj;i.
Here, hKj;ii�j denotes encryption with j’s public-key,
and t is a timestamp. The timestamps are monotonically
increasing and j rejects any new-key message with a
timestamp lower than the timestamp of the last such
message it accepted from i; this prevents replay attacks.
If replica j accepts the message, it caches Kj;i and uses
it to authenticate messages it sends to i.

The session key establishment between clients and
replicas is similar. A client, c, establishes a new session
key, Kc;i with a replica, i, by sending the message
hNEW-KEY; c; i; hKc;ii�i ; ti�c to i. Replica i rejects
any new-key message with a timestamp lower than the
timestamp of the last such message it accepted from c. If
replica i accepts the message, it caches Kc;i and uses it
to check whether requests sent by c are authentic and
to authenticate the replies to requests by c. Replica
i will accept messages authenticated with Kc;i until
c establishes a new session key, explicitly closes the
session, or a predefined key lifetime expires.

These session keys are used to authenticate the
messages in the algorithm. The digital signature in a reply
message is replaced by a single MAC, which is sufficient
because these messages have a single intended recipient.
We denote the MAC produced using a session keyKi;j for
some message m as �i;j(m). The signatures in all other
messages (including client requests but excluding view
changes) are replaced by authenticators. An authenticator
generated by i for a message m has an entry for every
replica j other than i; each entry is the MAC, �i;j(m).
We use the notation hmi�i

to represent a messagemwith
an authenticator generated by i appended.

In our current implementation [5], session keys are
16 bytes. We compute message authentication codes by
applying MD5 to the concatenation of the message with
the secret key. Rather than using the 16 bytes of the final
MD5 digest, we use only the 10 least significant bytes.
This truncation has the obvious advantage of reducing
the size of MACs and it also improves their resilience to
certain attacks [22]. This is a variant of the secret suffix
method [30], which is secure as long as MD5 is collision
resistant [22, 8].

Discussion

The advantage of MACs over digital signatures is that
they can be computed three orders of magnitude faster.
For example, a 200MHz Pentium Pro takes 43ms to gen-
erate a 1024-bit modulus RSA signature of an MD5 digest
and 0.6ms to verify the signature [31], whereas it takes
only 10.3�s to compute the MAC of a 64-byte message
on the same hardware in our implementation. There are
other public-key cryptosystems that generate signatures
faster, e.g., elliptic curve public-key cryptosystems, but
signature verification is slower [31] and in our algorithm
each signature is verified many times.

There may be doubts that authenticators benefit from
a similar performance advantage over digital signatures
because some of the costs of managing authenticators
grow linearly with the number of replicas. The
next paragraphs argue that for typical configurations
authenticators are more than two orders of magnitude
faster than digital signatures.

The time to verify an authenticator is constant but the
time to generate one grows linearly with the number
of replicas. This is not a problem because the time to
generate an authenticator is independent of the number
of clients and we do not expect to have a large number
of replicas. Furthermore, we compute authenticators
efficiently; MD5 is applied to the message once and the
resulting context is used to compute each vector entry
by applying MD5 to the corresponding session key. For
example, in a system with 37 replicas (i.e., a system
that can tolerate 12 faults) an authenticator can still be
computed much more than two orders of magnitude faster
than a 1024-bit modulus RSA signature.

Similarly, the size of authenticators grows linearly with
the number of replicas but it grows slowly: it is equal to
30 � bn�1

3 c bytes. An authenticator is smaller than an
RSA signature with a 1024-bit modulus for n � 13 (i.e.,
systems that can tolerate up to 4 faults), which we expect
to be true in most configurations.

Another potential problem is session key management.
Since session keys can be established easily as we
explained, the only possible problem is the cost of storing
session keys. Clients only store n keys; this account for
less than 208 bytes for n � 13. Replicas store 2n + c

session keys where c is the number of active clients. This
is also reasonable because replicas can limit the number
of active clients, e.g., it takes approximately 1 MB to
store the keys for 50000 active clients (assuming 8 byte
client identifiers and in spite of our large session keys.)

5.2 Modified Algorithm

The real problem with authenticators is that they lack
the following important property of digital signatures: if
some replica accepts a signed message as authentic, all
other replicas will also accept the message as authentic.

7



With authenticators, the receiver of a message may be
unable to prove its authenticity to a third party. The
version of our algorithm described in Section 4 relies
on the additional power of signatures for correctness;
replicas use digital signatures to prove to other replicas
that requests prepared and that checkpoints are correct.
Rampart [25] and SecureRing [13] also relied on
signatures for correctness.

This section explains how to modify the algorithm
to overcome this fundamental limitation of message
authentication codes. The modified algorithm is based on
three key observations. First, authenticators are sufficient
to guarantee safety in the normal case. A replica only
needs to prove to others that messages it accepted are
authentic during view changes, or when an out-of-date
replica is brought up to date by transferring a checkpoint.

Second, replicas can use authenticators in the normal
case and obtain digital signatures lazily only when they
need to send a proof to another replica. If a replica
accepted l messages with authenticators from different
replicas, it can later ask those replicas to send signatures
for their messages; it is guaranteed to obtain l � f

replies because of the bound on the number of faults.
Unfortunately, l is only guaranteed to be at least 2f + 1
in a system with a total of 3f + 1 replicas. Therefore, a
replica may obtain only f+1 signatures. This is sufficient
to prove the correctness of a checkpoint but not that a
request prepared.

The third observation is that it is not necessary to
prove that a request prepared in view changes, i.e., it is
not necessary to send 2f + 1 signed pre-prepare/prepare
messages within a view-change message. Instead, f + 1
signed messages are sufficient if the view change protocol
is modified to take advantage of the invariant that non-
faulty replicas agree on the sequence numbers assigned
to requests that prepare in the same view.

The rest of this section explain how these observations
enable a correct algorithm that uses signatures only for
view changes.

5.2.1 Normal Case Operation

We will now describe the modifications to the protocol
during normal case operation. These modifications are
simple except that the protocol needs to defend against
faulty clients that create partially incorrect authenticators
(as discussed at the end of this section.)

Clients interact with the service as described before by
sending requests and receiving replies. Requests have the
same format except that the client’s signature is replaced
by an authenticator and there is an additional MAC
appended to the message. This MAC authenticates the
authenticator to allow the primary, p, to detect tampering.
The new format is: hr = hREQUEST; o; t; ci�c

; �c;p(r)i.
The only difference in reply messages is that the replica’s

signature is replaced by a MAC computed with the key
shared by the replica and the client.

When the primary p receives a client request m, it
checks whether �c;p and its MAC in m’s authenticator
are both correct. If they are not, it ignores the request.
Otherwise, it assigns a sequence number n to m and
multicasts a pre-prepare message with m piggybacked
to all the backups. The only difference in the pre-
prepare message format is that the primary’s signature
is replaced by an authenticator. Since �c;p guarantees the
authenticity ofm’s authenticator, all backups will be able
to authenticate m provided the client is non-faulty (and
there is no tampering while the pre-prepare message is in
transit.)

Backups accept the pre-prepare message under the
conditions that were described in Section 4 except that
they only accept the pre-prepare if the corresponding
MACs in the authenticators of the pre-prepare and
request messages are correct. The rest of the protocol
remains unchanged. The only difference is that replicas’
signatures in prepare and commit messages are replaced
by authenticators.

Faulty clients can attack this protocol by sending
requests with partially incorrect authenticators, i.e.,
authenticators with correct MACs for some replicas but
incorrect ones for others. There are three types of attacks.

First, a faulty client could potentially leave non-faulty
replicas in an inconsistent state by sending partially
incorrect authenticators. This is prevented by having
replicas check the authenticator in the client request when
they receive a pre-prepare. If replica i receives a pre-
prepare for request m with a valid authenticator from the
primary, the pre-prepare is entered in the log and i will
not send a prepare for a different request with the same
view and sequence number. But i only sends a prepare
message if it can authenticate m. If later m commits at
i (i.e., committed-local becomes true,) i can execute m
even if it is unable to authenticate it because at least one
correct replica was able to authenticate m.

Second, a faulty client can send a request with an
authenticator that has a correct MAC for the primary
but incorrect MACs for sufficiently many replicas that it
cannot prepare at 2f + 1 replicas. This attack does not
compromise the safety of the algorithm but it can affect
the performance because it allows faulty clients to force
view changes. To avoid this problem, we extended the
protocol to allow the primary to abort these requests. The
mechanism used is similar to a view change and therefore
we omit a description here. The main differences are that
it does not change views (i.e., it does not change who the
primary is) and, since it concerns a single request, it is
significantly less expensive than a view change. After a
primary aborts a client request, it will only accept requests
from that client that are signed with the client’s private

8



key. This prevents faulty clients from causing the abort
protocol to run frequently.

Third, a client can force a view change by sending a
retransmitted request to at least f + 1 backups with an
authenticator that contains a correct MAC for each of
those backups but an incorrect MAC for the primary. To
prevent this problem, backups only accept retransmitted
requests with digital signatures.

5.2.2 Garbage Collection

There are only two changes to the garbage collection
mechanism: the replica’s signature in checkpoint
messages is replaced by an authenticator; and replicas
collect 2f + 1 matching checkpoint messages before
they can discard information from the log (whereas only
f + 1 were necessary in the algorithm in Section 4.)
The 2f + 1 messages are necessary to ensure that
the replica can obtain a proof of correctness for its
stable checkpoint when required. During normal case
operation, replicas never obtain proofs of correctness for
their stable checkpoints but view change messages sent
by the replica need to include these proofs. The proofs
may also be needed to bring another replica up-to-date
by transferring a checkpoint.

The following mechanism allows a replica i to obtain
a proof for its stable checkpoint or for a later checkpoint:
i signs its own checkpoint message and asks the other
replicas for signed checkpoint messages. This is done by
multicasting a check-sign request to these replicas with
the form hCHECK-SIGN; n; ii�i

(where n is the sequence
number of the checkpoint for which the signature is
requested.) When a non-faulty replica j receives a check-
sign message, it replies with a set of checkpoint messages
with its signature. This set includes all the checkpoint
messages j sent that are still in its log and have sequence
number greater than or equal to n.

Replica i waits until it has f + 1 matching signed
checkpoint messages from different replicas for its stable
checkpoint or a checkpoint with a higher sequence
number. If it does not receive enough messages, it
keeps retransmitting the check-sign request. Replica i is
guaranteed to eventually have the f + 1 signed messages
for the following reasons.

1. Replica i starts with 2f + 1 matching checkpoint
messages from different replicas.

2. There is a bound f on the number of faults.

3. Non-faulty replicas retain information about check-
point messages they sent in their log until they have
2f + 1 matching checkpoint messages from different
replicas with a higher sequence number.

5.2.3 View Changes

The algorithm in Section 4 requires replicas to include
proofs for checkpoints and prepared requests in view
change messages. A proof for a checkpoint consists
of f + 1 signed checkpoint messages and a proof for a
prepared request consists of a signed pre-prepare and 2f
signed prepare messages. The previous section explains
how to obtain the proof for a checkpoint lazily in the
optimized algorithm. Unfortunately, it is not possible to
obtain lazily a proof that a request prepared; a replica
may be unable to obtain more than f + 1 signed pre-
prepare/prepare messages. The optimized algorithm
overcomes this problem by modifying the view change
protocol such that it is sufficient to include f + 1 signed
pre-prepare/prepare messages in view-change messages.

View-Change Messages

View-change messages are sent as before and they retain
the same format: hVIEW-CHANGE; v + 1; n; C;P ; ii�i .
The only difference is that each set Pm in P contains
only f + 1 signed pre-prepare/prepare messages rather
than 2f + 1.

Replicas obtain the f + 1 signed checkpoint messages
in C as described in the previous section and use a
similar mechanism to obtain the signed messages for each
Pm. For each request m such that prepared(m; v; n0; i)
is true (for some v and n0 > n), i obtains Pm

by signing any matching pre-prepare/prepare message
it sent and by multicasting a message with the form
hPREPARE-SIGN; v; n0; D(m); ii�i

to the other replicas.
When a non-faulty replica j receives a prepare-sign
message, it checks whether its stable checkpoint has a
sequence number greater than or equal to n0; if it has,
j replies as if the prepare-sign message was a check-
sign message with sequence number n0. Else, if j sent
a matching pre-prepare or prepare message that is still
in its log, it sends back a signed copy of that message.
Otherwise, the prepare-sign message is ignored.

Replica i retransmits the prepare-sign until it has
f + 1 signed pre-prepare/prepare messages matching
the prepare-sign or f + 1 matching signed checkpoint
messages with a sequence number greater than or equal
to n0. This will eventually happen because:

1. prepared(m; v; n0; i) = true;

2. there is a bound f on the number of faults; and

3. Non-faulty replicas retain information about check-
point and pre-prepare/prepare messages they sent in
their log until they have 2f + 1 matching checkpoint
messages from different replicas with a higher se-
quence number.

9



If i obtains a proof of correctness for a checkpoint with
sequence number greater than or equal to n0, it includes
the proof in C and prunes P accordingly.

New-View Messages

The problem with this protocol is that it is possible for
replicas to produce correct view-change messages that
conflict whereas this was impossible in the algorithm
described in Section 4. Two view-change messages
conflict if they both contain a set of f + 1 signed pre-
prepare/prepare messages for the same view and sequence
number and each set corresponds to a different request.
Since it is possible for one of the requests to have
committed, the primary must be able to choose the correct
view-change message from a set of conflicting ones.

The optimized protocol overcomes this problem in a
subtle but surprisingly simple way. It takes advantage
of the following invariant: non-faulty replicas agree on
the sequence numbers assigned to requests that prepare
in the same view. The invariant implies that view-
changes sent by non-faulty replicas never conflict and
the bound f on the number of faulty replicas implies
that the primary will eventually have 2f + 1 view-
change messages from non-faulty replicas. Therefore,
the primary p of view v + 1 waits until it has 2f + 1
correct, non-conflicting view-change messages for view
v + 1 signed by different replicas (including its own.)
Then, it builds a hNEW-VIEW; v+ 1;V ;Oi�p message (as
before) and multicasts this message to all other replicas.
(It is actually not necessary to include O in the message
because it can be computed from V by the backups.)

The rest of the protocol proceeds as before. Note that a
replica can still obtain missing requests and checkpoints
from the replicas whose f + 1 signatures appear in the
corresponding set in some view-change message; this is
guaranteed to work because at least one of those replicas
is non-faulty.

The modified view change protocol verifies the key
correctness conditions listed in Section 4.5. In particular,
any pre-prepare message in O is guaranteed to be
consistent with what happened in previous views. This is
true because f + 1 signed pre-prepare/prepare messages
for a requestm in a view vwith sequence numbern ensure
that at least one non-faulty replica accepted a pre-prepare
for m with sequence number n in view v. And, if a
request committed in a previous view, it will be proposed
by at least f + 1 non-faulty replicas in their view-change
messages and at least one of these will be part of the
new-view message.

Optimization

This protocol can be optimized by not sending signed
pre-prepare/prepare and checkpoint messages in view
changes. Instead, the C component of a view-change

message sent by a replica i can be replaced by a digest
of the checkpoint and the P component can be a set of
tuples of the form hn; v; di (where n is the sequence
number of the request, v is the latest view in which
the request prepared at i, and d is a digest of the
request.) If the set of view-change messages in the new-
view message contains f + 1 elements with the same
checkpoint digest for the same sequence number, there
is no need to obtain f + 1 signed checkpoint messages
to certify the checkpoint value. Otherwise, the primary
will ask one of the proponents of the checkpoint to
obtain such checkpoint messages. Signatures of pre-
prepare and prepare messages are avoided in a similar
way. We expect this optimization to avoid most signature
generation operations.

6 Related Work

Most previous work on replication techniques ignored
Byzantine faults or assumed a synchronous system model
(e.g., [14, 21, 15, 29, 6, 10].) But some agreement
and consensus algorithms tolerate Byzantine faults in
asynchronous systems (e.g,[2, 3, 19].) However, they
do not provide a complete solution for state machine
replication, and furthermore, most of them were designed
to demonstrate theoretical feasibility and are too slow to
be used in practice. Our algorithm during normal-case
operation is similar to the Byzantine agreement algorithm
in [2], which also does not use public-key cryptography.
But their algorithm is insufficient to implement state-
machine replication; it only guarantees that non-faulty
processes agree on the messages sent by a primary. It does
not handle view changes on primary failures (i.e.,does not
provide liveness if the primary fails), garbage collection,
or client authentication. Handling these issues is the most
interesting and subtle contribution of the optimization
presented in this paper.

The two systems that are most closely related to our
work are Rampart [24, 25, 26, 17] and SecureRing [13].
They implement state machine replication but are more
than an order of magnitude slower than our system and,
most importantly, they rely on synchrony assumptions
for safety. The time to perform public-key cryptography
operations to generate and verify signatures is cited as
the major latency [24] and throughput bottleneck [17]
in Rampart and SecureRing. It is interesting to note
that this is true despite the fact that these systems
include sophisticated techniques to reduce the cost of
public-key cryptography. Rampart [24] uses short-
term public/private key pairs in a 300-bit modulus RSA
cryptosystem and refreshes these keys with periodic view
changes. The modification to Rampart described in [17]
and SecureRing [13] improve throughput at the expense
of latency by chaining signatures to reduce the number

10



of signatures per request.
This paper describes a technique to eliminate the

public-key cryptography bottleneck completely without
increasing the number of message delays to execute a
request. The number of message delays introduced by
our algorithm between the moment the client sends a
request and receives a reply is only 4 for read-write
requests and 2 for read-only requests [5]. Rampart
requires 5 message delays to execute client requests and
SecureRing requires significantly more. Furthermore,
our efficient authentication scheme allows us to use
hardware multicast to transmit protocol messages rather
than relying on point-to-point authenticated channels as
in Rampart or penalizing latency in favor of throughput
as in SecureRing.

Phalanx [18, 20] applies quorum replication tech-
niques [11] to achieve Byzantine fault-tolerance in asyn-
chronous systems. This work does not provide generic
state machine replication; instead, it offers a data reposi-
tory with operations to read and write individual variables
and to acquire locks. There are no published performance
numbers for Phalanx but we believe our algorithm is faster
because it has fewer message delays in the critical path
and because Phalanx relies on public-key cryptography
during normal case operation.

7 Conclusion

This paper described an algorithm for Byzantine-fault-
tolerant state machine replication that eliminates the
major performance bottleneck in previous systems —
public-key cryptography. The algorithm replaces public-
key signatures by vectors of message authentication codes
during normal operation. It uses public-key signatures
only for view changes that occur when the primary fails
and are likely to be rare. This new technique decreases
the cost of authentication by more than two orders of
magnitude relative to previous systems while preserving
the same level of security.

Our algorithm is interesting because it overcomes a
fundamental limitation of message authentication codes
relative to digital signatures — the inability to prove that
a message is authentic to a third party. We explain how
to overcome this limitation by taking advantage of the
assumed bound of bn�1

3 c on the number of faulty replicas
(which is also required by the algorithms that use digital
signatures) and the fact that correct replicas agree on the
sequence numbers of requests that prepare in the same
view. Previous systems for Byzantine-fault-tolerant state
machine replication relied on the extra power of public-
key digital signatures for correctness.

Byzantine-fault-tolerant replication is a promising
solution to increase the availability and integrity of
current systems. However, previous algorithms were

not practical because they were too slow or relied on
synchrony assumptions for correctness. This paper is
an important step towards the development of practical
algorithms; a Byzantine-fault-tolerant NFS file system
implemented using the optimized algorithm described in
this paper performs less than 3% slower than a standard,
unreplicated implementation of NFS [5].

References
[1] M. Bellare and D. Micciancio. A New Paradigm for

Collision-free Hashing: Incrementality at Reduced Cost.
In Advances in Cryptology – Eurocrypt 97, 1997.

[2] G. Bracha and S. Toueg. Asynchronous Consensus and
Broadcast Protocols. Journal of the ACM, 32(4), 1995.

[3] R. Canneti and T. Rabin. Optimal Asynchronous Byzan-
tine Agreement. Technical Report #92-15, Computer Sci-
ence Department, Hebrew University, 1992.

[4] M. Castro and B. Liskov. A Correctness Proof for
a Practical Byzantine-Fault-Tolerant Replication Algo-
rithm. Technical Memo MIT/LCS/TM-590, MIT Lab-
oratory for Computer Science, 1999.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine
Fault Tolerance. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation, New
Orleans, LA, February 1999.

[6] F. Cristian, H. Aghili, H. Strong, and D. Dolev. Atomic
Broadcast: From Simple Message Diffusion to Byzantine
Agreement. In International Conference on Fault Tolerant
Computing, 1985.

[7] D. E. Denning and G. M. Sacco. Timestamps in Key
Distribution Protocols. Comm. of the ACM, 24(8):533–
536, August 1981.

[8] H. Dobbertin. The Status of MD5 After a Recent Attack.
RSA Laboratories’ CryptoBytes, 2(2), 1996.

[9] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
Distributed Consensus With One Faulty Process. Journal
of the ACM, 32(2), 1985.

[10] J. Garay and Y. Moses. Fully Polynomial Byzantine
Agreement for n >3t Processors in t+1 Rounds. SIAM
Journal of Computing, 27(1), 1998.

[11] D. Gifford. Weighted Voting for Replicated Data. In
Symposium on Operating Systems Principles, 1979.

[12] M. Herlihy and J. Wing. Axioms for Concurrent Objects.
In ACM Symposium on Principles of Programming
Languages, 1987.

[13] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The Se-
cureRing Protocols for Securing Group Communication.
In Hawaii International Conference on System Sciences,
1998.

[14] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
21(7), 1978.

[15] L. Lamport. The Part-Time Parliament. Technical
Report 49, DEC Systems Research Center, 1989.

11



[16] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[17] D. Malkhi and M. Reiter. A High-Throughput Secure
Reliable Multicast Protocol. In Computer Security
Foundations Workshop, 1996.

[18] D. Malkhi and M. Reiter. Byzantine Quorum Systems. In
ACM Symposium on Theory of Computing, 1997.

[19] D. Malkhi and M. Reiter. Unreliable Intrusion Detection
in Distributed Computations. In Computer Security
Foundations Workshop, 1997.

[20] D. Malkhi and M. Reiter. Secure and Scalable Replication
in Phalanx. In IEEE Symposium on Reliable Distributed
Systems, 1998.

[21] B. Oki and B. Liskov. Viewstamped Replication: A
New Primary Copy Method to Support Highly-Available
Distributed Systems. In ACM Symposium on Principles
of Distributed Computing, 1988.

[22] B. Preneel and P. Oorschot. MDx-MAC and Building Fast
MACs from Hash Functions. In Crypto 95, 1995.

[23] C. Pu, A. Black, C. Cowan, and J. Walpole. A
Specialization Toolkit to Increase the Diversity of
Operating Systems. In ICMAS Workshop on Immunity-
Based Systems, 1996.

[24] M. Reiter. Secure Agreement Protocols. In ACM
Conference on Computer and Communication Security,
1994.

[25] M. Reiter. The Rampart Toolkit for Building High-
Integrity Services. Theory and Practice in Distributed
Systems (LNCS 938), 1995.

[26] M. Reiter. A Secure Group Membership Protocol. IEEE
Transactions on Software Engineering, 22(1), 1996.

[27] R. Rivest. The MD5 Message-Digest Algorithm. Internet
RFC-1321, 1992.

[28] R. Rivest, A. Shamir, and L. Adleman. A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 21(2), 1978.

[29] F. Schneider. Implementing Fault-Tolerant Services
Using The State Machine Approach: A Tutorial. ACM
Computing Surveys, 22(4), 1990.

[30] G. Tsudik. Message Authentication with One-Way Hash
Functions. ACM Computer Communications Review,
22(5), 1992.

[31] M. Wiener. Performance Comparison of Public-Key
Cryptosystems. RSA Laboratories’ CryptoBytes, 4(1),
1998.

12


