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1 Introduction

We have developed a practical algorithm for state-machine replication [7, 11] that tolerates Byzan-
tine faults. The algorithm is described in [4]. It offers a strong safety property — it implements
a linearizable [5] object such that all operations invoked on the object execute atomically despite
Byzantine failures and concurrency. Unlike previous algorithms [11, 10, 6], ours works correctly
in asynchronous systems like the Internet, and it incorporates important optimizations that enable
it to outperform previous systems by more than an order of magnitude [4].

Since Byzantine-fault-tolerant algorithms are rather subtle, it is important to reason about them
formally. This paper presents a formal specification for the unoptimized version of our algorithm
presented in Section 4 of [4] and proves its safety (but not its liveness.) The specification uses the
I/O automaton formalism of Tuttle an Lynch [8] and the proof is based on invariant assertions and
simulation relations. 1

The specification and proof presented in this paper have some interesting, novel properties
that are independent of our algorithm. First, we use an I/O automaton to formalize the correct
behavior of our Byzantine-fault-tolerant object implementation. This technique has been used for
benign failures [8] but we believe we are the first to use it for Byzantine faults. The advantage of
using an I/O automaton to formalize the correct behavior is that it enables the use of state-based
proof techniques like simulation relations. These techniques are more stylized than trace-based
proof techniques — they are more convincing and they are amenable to machine verification.
Second, our formalization accounts for Byzantine faults of both replicas and clients. A trace-based
formalization of linearizability in the presence of Byzantine-faulty clients [9] has been proposed
recently. Our formalization has the advantage that it enables the use of simulation relations. And
it differs from the one in [9] because it makes authentication and access control explicit in the
formalization. Revocable access control is a powerful defense against Byzantine faulty clients.

This research was supported in part by DARPA under contract F30602-98-1-0237 monitored by the Air Force Research
Laboratory, and in part by NEC.

1The paper assumes the reader is familiar with I/O automata, invariant assertions, and simulation relations. Lynch’s
book [8] provides a good description of the formalism and the two proof techniques.
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Third, we structure our proof such that our assumptions about authenticated communication are
isolated in a small number of invariants and in the proofs of a small number of simulation steps.
This leads to a simpler proof.

The paper is organized as follows. Section 2 presents the high-level model for the system
and our assumptions. Section 3 formalizes the correctness condition for our algorithm using a
simple I/O automaton S as a specification of correct behavior. Section 4 defines the automata that
compose our replicated system implementation. But it does not attempt to explain the algorithm.
The reader is referred to [4] for a natural language description of the algorithm that should be easier
to understand. This section also proves the safety of the algorithm by using invariant assertions and
simulation relations to show that it implements S. The automata defined in Section 4 implement
a simplified version of the algorithm that does not garbage collect information. Section 5 defines
a version of the algorithm with garbage collection and proves its safety by using a simulation
relation to show that it implements the simplified version of the algorithm in 4.

2 Model

The goal of our algorithm is to provide a Byzantine-fault-tolerant implementation of an atomic
object [8] for a given variable of some type T . Our atomic object implementation uses replication
to enable concurrent sharing of the variable by many clients in a distributed system. It ensures
linearizability [5] — all operations invoked on the variable execute atomically despite Byzantine
failures and concurrency. We start by defining the variable typeT and then describe the architecture
of the atomic object implementation.

Variables of type T have a value in a set V , which is initially equal to vo. Their behavior is
defined by the function:

g : C � O � V ! O0 � V

The arguments to the function are a client identifier in C, an operation in a set O (which encodes
an operation identifier and any arguments to that operation) and an initial value. These arguments
are mapped by g to the result of the operation in O0 and a new value for the variable. We require
g to be total. This can be achieved in practice by having g map all pairs with an invalid operation
to a pair with an error result and the argument value.

The client identifier is included explicitly as an argument to g to make it clear that g can return
different results for different clients. In particular, g can perform access control; if the client is not
allowed to perform the argument operation, g can return a special no-access error and leave the
variable’s value unmodified. Additionally, access control can depend on the state of the service
thereby allowing atomic access revocations. Access control with revocable access is an important
defense against Byzantine-faulty clients.

We model the atomic object implementation and its clients as a set of I/O automata [8]. Each
client has a unique identifier c in a set C and is modeled by a client automatonCc. The composition
of all clients is denoted by C . The atomic object automaton A is the composition of three types
of automata: proxy, multicast channel, and replica. Figure 1 shows the architecture of the system
and Figure 2 presents the external interface of A.
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Figure 1: Implementation Architecture

There is a proxy automaton Pc for each client Cc. Pc provides an input action for client c to
invoke an operation o on the shared variable, REQUEST(o)c, and an ouput action for c to learn the
result r of an operation it requested, REPLY(r)c. The communication between Cc and Pc does not
involve any network; they are assumed to execute in the same node in the distributed system. Pc

communicates with a set of server replicas to implement the interface it offers to the client.

Each replica has a unique identifier i in a set R and is modeled by an automaton Ri. We
assume jRj = 3f + 1 for some positive integer f . This threshold f is the maximum number of
replica faults that can be tolerated by the system. The resiliency of our algorithm is optimal: 3f+1
is the minimum number of replicas that allow an asynchronous replication system to implement
an atomic object when up to f replicas are faulty (see [3] for a proof.)

We assume replicas execute in different nodes in the distributed system. Communication
between a proxy and the set of replicas and among replicas is performed using a multicast channel
automaton MC . Automata have no access to the state components of automata running on other
nodes in the distributed system.

The multicast channel automaton MC may fail to deliver messages, it may delay them,
duplicate them, or deliver them out of order. We do not assume synchrony. The nodes are part of
an asynchronous distributed system with no known bounds on message delays or on the time for
automata to take enabled actions.

We use a Byzantine failure model, i.e., faulty automata may behave arbitrarily (except for
the restrictions discussed next.) The CLIENT-FAILURE and REPLICA-FAILURE actions are used to
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model client and replica failures. Once such a failure action occurs the corresponding automaton
is replaced by an arbitrary automaton with the same external interface and it remains faulty for
the rest of the execution. We assume however that this arbitrary automaton has a state component
called faulty that is set to true. It is important to understand that the failure actions and the faulty
variables are used only to formally model failures for the correctness proof; our algorithm does
not know whether a client or replica is faulty or not.

Input: REQUEST(o)c, o 2 O, c 2 C

CLIENT-FAILUREc, c 2 C

REPLICA-FAILUREi, i 2 R

Output: REPLY(r)c, r 2 O0, c 2 C

Figure 2: External Signature of A

We allow for a very strong adversary that can coordinate faulty nodes, delay communication,
or delay correct nodes in order to cause the most damage to the replicated service. But we
assume two restrictions on the adversary and the faulty nodes it controls: automata can use
unforgeable digital signatures to authenticate communication; and they can use collision-resistant
hash functions. These assumptions are defined in more detail next.

Unforgeable signatures: Any non-faulty client proxy or replica automaton, x, can authenticate
messages it sends on the multicast channel by signing them. We denote a messagem signed by x
as hmi�x . And (with high probability) no automaton other than x can send hmi�x (either directly
or as part of another message) on the multicast channel for any value of m.

Collision-resistant hash functions Any automaton can compute a digest D(m) of a message m
such that (with high probability) it is impossible to find two distinct messagesm and m0 such that
D(m) 6= D(m0).

These assumptions are probabilistic but there exist signature schemes (e.g., [2]) and hash
functions (e.g, [1]) for which they are believed to hold with very high probability. Therefore, we
will assume that they hold with probability one in the rest of the paper.

3 Correctness Condition

We specify the correct behavior for A by using another I/O automaton S with the same external
signature as A. We say that A is correct if it implements S. S is a simple abstract atomic object
for a variable of type T that is defined as follows:
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Signature:
Input: REQUEST(o)c

CLIENT-FAILUREc

REPLICA-FAILUREi

Internal: EXECUTE(o; t; c)

FAULTY-REQUEST(o; t; c)

Output: REPLY(r)c

Here, o 2 O, t 2N, c 2 C, i 2 R, and r 2 O0

State:

val 2 V , initially vo
in � O � N� C, initially fg
out � O0 � N� C, initially fg
8 c 2 C; last-reqc 2 N, initially last-reqc = 0
8 c 2 C; last-rep-tc 2 N, initially last-rep-tc = 0
8 c 2 C; faulty-clientc 2 Bool, initially faulty-clientc = false
8 i 2 R; faulty-replicai 2 Bool, initially faulty-replicai = false
n-faulty � jf i j faulty-replicai = true gj

Transitions (if n-faulty � f ):

REQUEST(o)c
Eff: last-reqc := last-reqc + 1

in := in [ fho; last-reqc; cig

CLIENT-FAILUREc
Eff: faulty-clientc := true

REPLICA-FAILUREi

Eff: faulty-replicai := true

REPLY(r)c
Pre: faulty-clientc = true _ 9t : (hr; t; ci 2 out
Eff: out := out � fhr; t; cig)

FAULTY-REQUEST(o; t; c)
Pre: faulty-clientc = true
Eff: in := in [ fho; t; cig

EXECUTE(o; t; c)
Pre: ho; t; ci 2 in
Eff: in := in� fho; t; cig

if t > last-rep-tc then
(r; val) := g(c; o; val)
out := out [ fhr; t; cig
last-rep-tc := t

Most of the definition of S is self-explanatory but some issues deserve clarification. To
model the fact that A does not behave correctly when more than f replicas are Byzantine-faulty,
the behavior of S is left unspecified when n-faulty > f , i.e., S may behave arbitrarily with the
restriction that the faulty-client and faulty-replica variables that have value true cannot be modified.
The FAULTY-REQUEST actions model execution of requests by faulty clients that bypass the external
signature of A, e.g., by injecting the appropriate messages into the multicast channel. Similarly,
the REPLY precondition is weaker for faulty clients to allow arbitrary replies for such clients.

The last-reqc component is used to distinguish requests by c to execute the same operation
o. And, last-rep-tc remembers the value of last-reqc that was associated with the last operation
executed for c. This models a well-formedness condition on non-faulty clients: they are expected
to wait for the reply to the last requested operation before they issue the next request. Otherwise,
one of the requests may not even execute and the client may be unable to match the replies with
the requests.
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4 The System

This section defines the multicast channel, proxy, and replica automata.

4.1 The Multicast Channel Automaton

The multicast channel automaton models the communication network connecting the proxy and
replica automata. There is a single multicast automaton in the system with SEND and RECEIVE

actions for each proxy and replica. These actions allow automata to send messages in a universal
message set M to any subset of automata with identifiers in X = C [R. The channel automaton
does not provide authenticated communication; the RECEIVE actions do not identify the sender of
the message. It is defined as follows.

Signature:
Input: SEND(m;X)x

Internal: MISBEHAVE(m;X;X 0)

Output: RECEIVE(m)x

Here, m 2 M, X;X 0 � X , and x 2 X

State:

wire � M� 2X , initially fg

Transitions:

SEND(m;X)x
Eff: wire := wire [ f(m;X)g

RECEIVE(m)x
Pre: 9(m;X) 2 wire : (x 2 X

Eff: wire := wire� f(m;X)g [ f(m;X � fxg)g)

MISBEHAVE(m;X;X 0)
Pre: (m;X) 2 wire
Eff: wire := wire� f(m;X)g [ f(m;X 0)g

The MISBEHAVE actions allow the channel to loose messages or duplicate them and the RECEIVE

actions are defined such that messages may be reordered. Additionally, the automaton is defined
such that every message that was ever sent on the channel is remembered and can be replayed
later.

4.2 The Proxy Automaton

Each client Cc Öinteracts with the atomic object through a proxy automaton Pc, which is defined
as follows.
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Signature:
Input: REQUEST(o)c

RECEIVE(hREPLY; v; t; c; i; ri�i)c

CLIENT-FAILUREc

Output: REPLY(r)c

SEND(m;X)c

Here, o 2 O, v; t 2 N, c 2 C, i 2 R, r 2 O0, m 2M , and X � X

State:

viewc 2 N, initially 0
inc � M, initially fg
outc � M, initially fg
last-reqc 2 N, initially 0
retransc 2 Bool, initially false
faultyc 2 Bool, initially false

Transitions:

REQUEST(o)c
Eff: last-reqc := last-reqc + 1

outc := fhREQUEST; o; last-reqc; ci�cg
inc := fg
retransc := false

RECEIVE(hREPLY; v; t; c; i; ri�i)c
Eff: if (outc 6= fg ^ last-reqc = t) then

inc := inc [ fhREPLY; v; t; c; i; ri�ig

CLIENT-FAILUREc

Eff: faultyc := true

REPLY(r)c
Pre: outc 6= fg ^ 9R : (jRj > f ^ 8i 2 R : (9v : (hREPLY; v; last-reqc; c; i; ri�i 2 inc)))
Eff: viewc := max(fvjhREPLY; v; last-reqc; c; i; ri�i 2 incg)

outc := fg

SEND(m; fviewc mod jRjg)c
Pre: m 2 outc ^ :retransc
Eff: retransc := true

SEND(m;R)c
Pre: m 2 outc ^ retransc
Eff: none

4.3 The Replica Automaton

Each replica automaton Ri is defined as follows.
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Signature:

Input: RECEIVE(hREQUEST; o; t; ci�c)i

RECEIVE(hPRE-PREPARE; v; n;mi�j )i

RECEIVE(hPREPARE; v; n; d; ji�j )i

RECEIVE(hCOMMIT; v; n; d; ji�j )i

RECEIVE(hVIEW-CHANGE; v; P; ji�j )i

RECEIVE(hNEW-VIEW; v; V; O; Ni�j )i

REPLICA-FAILUREi

Internal: SEND-PRE-PREPARE(m;v; n)i

SEND-COMMIT(m;v; n)i

EXECUTE(m;v; n)i

VIEW-CHANGE(v)i

SEND-NEW-VIEW(v; V )i

Output: SEND(m;X)c

Here, t; v; n 2 N, c 2 C, i; j 2 R, m 2 M, V; O;N � M, X � X , and

d 2 D = fd j 9m 2 M : (d = D(m))g

State:
vali 2 V , initially vo
viewi 2 N, initially 0
ini � M, initially fg
outi � M, initially fg
last-repi : C ! O0, initially 8 c 2 C : last-repi(c) = null-rep
last-rep-ti : C ! N, initially 8 c 2 C : last-rep-ti(c) = 0
seqnoi 2 N, initially 0
last-execi 2 N, initially 0
faultyi 2 Bool, initially false

Auxiliary functions:
tag(m;u) � m = hu; :::i
primary(v) � v mod j Rj
primary(i) � viewi mod j Rj
in-v(v; i) � viewi = v

prepared(m; v; n;M) � hPRE-PREPARE; v; n;mi�primary(v)
2 M ^

9 R : (jRj � 2f ^ primary(v) 62 R ^ 8 k 2 R : (hPREPARE; v; n; D(m); ki�k 2 M))
prepared(m; v; n; i) � prepared(m;v; n; ini)
last-prepared(m; v; n;M) � prepared(m; v; n;M) ^
69m0; v0 : ((prepared(m0; v0; n;M) ^ v0 > v) _ (prepared(m0; v; n;M) ^ m 6= m0))

last-prepared(m; v; n; i) � last-prepared(m; v; n; ini)
committed(m; v; n; i) � (9 v0 : (hPRE-PREPARE; v0; n;mi�primary(v0)

2 ini) _ m 2 ini) ^

9 R : (jRj � 2f + 1 ^ 8 k 2 R : (hCOMMIT; v; n;D(m); ki�k 2 ini))
correct-view-change(m; v; j) � 9 P : (m = hVIEW-CHANGE; v; P; ji�j ^
8 hPRE-PREPARE; v0; n;m0i�primary(v0)

2 P : (last-prepared(m0; v0; n; P ) ^ v0 < v)

merge-P(V ) � fm j 9 hVIEW-CHANGE; v; P; ki�k 2 V : m 2 P g
max-n(M) � max(f n j hPRE-PREPARE; v; n;mi�i 2 Mg)
correct-new-view(m;v) �
9 V; O;N; R : (m = hNEW-VIEW; v; V; O; Ni�primary(v)

^ jV j = jRj = 2f + 1 ^

8 k 2 R : (9m0 2 V : (correct-view-change(m0; v; k))) ^
O = f hPRE-PREPARE; v; n;m0i�primary(v)

j 9 v0 : last-prepared(m0; v0; n;merge-P(V ))g ^

N = f hPRE-PREPARE; v; n; nulli�primary(v)
j n < max-n(O) ^
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6 9 v0;m0; n : last-prepared(m0; v0; n;merge-P(V )))
has-new-view(v; i) � v = 0 _ 9m : (m 2 ini ^ correct-new-view(m; v))

Input Transitions:

RECEIVE(hREQUEST; o; t; ci�c)i
Eff: let m = hREQUEST; o; t; ci�c

if t = last-rep-ti(c) then
outi := outi [ fhREPLY; viewi; t; c; i; last-repi(c)i�ig

else
ini := ini [ fmg
if primary(i) 6= i then

outi := outi [ fmg

RECEIVE(hPRE-PREPARE; v; n;mi�j )i (j 6= i)
Eff: if j = primary(i) ^ in-v(v; i) ^ has-new-view(v; i)^

69d : (d 6= D(m) ^ hPREPARE; v; n; d; ii�i 2 ini) then
let p = hPREPARE; v; n; D(m); ii�i

ini := ini [ fhPRE-PREPARE; v; n;mi�j ; pg
outi := outi [ fpg

else if 9o; t; c : (m = hREQUEST; o; t; ci�c) then
ini := ini [ fmg

RECEIVE(hPREPARE; v; n; d; ji�j )i (j 6= i)
Eff: if j 6= primary(i) ^ in-v(v; i) then

ini := ini [ fhPREPARE; v; n; d; ji�j g

RECEIVE(hCOMMIT; v; n; d; ji�j )i (j 6= i)
Eff: if viewi � v then

ini := ini [ fhCOMMIT; v; n; d; ji�j g

RECEIVE(hVIEW-CHANGE; v;P; ji�j )i (j 6= i)
Eff: let m = hVIEW-CHANGE; v;P; ji�j

if v � viewi ^ correct-view-change(m;v; j) then
ini := ini [ fmg

RECEIVE(hNEW-VIEW; v;X;O;Ni�j )i (j 6= i)
Eff: let m = hNEW-VIEW; v;X;O;Ni�j ,

P = fhPREPARE; v; n0; D(m0); ii�i jhPRE-PREPARE; v; n0;m0i�j 2 (O [N)g
if v > 0 ^ v � viewi ^ correct-new-view(m; v) ^ :has-new-view(v; i) then

viewi := v

ini := ini [O [N [ fmg [ P
outi := P

REPLICA-FAILUREi

Eff: faultyi := true
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Output Transitions:

SEND(m;R� fig)i
Pre: m 2 outi ^ :tag(m;REQUEST) ^ :tag(m; REPLY)
Eff: outi := outi � fmg

SEND(m; fprimary(i)g)i
Pre: m 2 outi ^ tag(m;REQUEST)
Eff: outi := outi � fmg

SEND(hREPLY; v; t; c; i; ri�i ; fcg)i
Pre: hREPLY; v; t; c; i; ri�i 2 outi
Eff: outi := outi � fhREPLY; v; t; c; i; ri�ig

Internal Transitions:

SEND-PRE-PREPARE(m;v; n)i
Pre: primary(i) = i ^ seqnoi = n� 1 ^ in-v(v; i) ^ has-new-view(v; i)^

9o; t; c : (m = hREQUEST; o; t; ci�c ^m 2 ini)^ 69hPRE-PREPARE; v; n0;mi�i 2 ini
Eff: seqnoi := seqnoi + 1

let p = hPRE-PREPARE; v; n;mi�i
outi := outi [ fpg
ini := ini [ fpg

SEND-COMMIT(m; v; n)i
Pre: prepared(m; v; n; i) ^ hCOMMIT; v; n;D(m); ii�i 62 ini
Eff: let c = hCOMMIT; v; n;D(m); ii�i

outi := outi [ fcg
ini := ini [ fcg

EXECUTE(m;v; n)i
Pre: n = last-execi + 1 ^ committed(m; v; n; i)
Eff: last-execi := n

if (m 6= null) then
let hREQUEST; o; t; ci�c = m

if t � last-rep-ti(c) then
if t > last-rep-ti(c) then

last-rep-ti(c) := t

(last-repi(c); vali) := g(c; o; vali)
outi := outi [ fhREPLY; viewi; t; c; i; last-repi(c)i�ig

ini := ini � fmg

SEND-VIEW-CHANGE(v)i
Pre: v = viewi + 1
Eff: viewi := v

let P 0 = fhm; v; nijlast-prepared(m; v; n; i)g,
P =

S
hm;v;ni2P 0

(fp = hPREPARE; v; n;D(m); ki�k jp 2 inig [ fhPRE-PREPARE; v; n;mi�primary(v)
g),

m = hVIEW-CHANGE; v; P; ii�i
outi := outi [ fmg
ini := ini [ fmg
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SEND-NEW-VIEW(v; V )i
Pre: primary(v) = i ^ v � viewi ^ v > 0 ^ V � ini ^ jV j = 2f + 1 ^ :has-new-view(v; i)^

9R : (jRj = 2f + 1 ^ 8k 2 R : (9P : (hVIEW-CHANGE; v; P; ki�k 2 V )))
Eff: viewi := v

let O = fhPRE-PREPARE; v; n;mi�i j9v
0 : last-prepared(m;v0; n;merge-P(V ))g,

N = fhPRE-PREPARE; v; n; null; ki�i jn < max-n(O)^ 69v0;m; n : last-prepared(m;v0; n;merge-P(V ))g,
m = hNEW-VIEW; v; V; O;Ni�i
seqnoi := max-n(O)
ini := ini [ O [N [ fmg
outi := fmg

4.4 Safety Proof

This section proves the safety of our algorithm, i.e., it proves that A implements S. We start by
proving some invariants.

Invariant 4.1 The following is true of any reachable state in an execution ofA,

8 i; j 2 R; m 2 M : ((:faultyi ^ :faultyj ^ :tag(m;REPLY)) )
((hmi�i 2 inj _ 9m0 = hVIEW-CHANGE; v; P; ki�k : (m0 2 inj ^ hmi�i 2 P ) _
9m0 = hNEW-VIEW; v; V; O;Ni�k : (m0 2 inj ^ (hmi�i 2 V _ hmi�i 2 merge-P(V ))))
) hmi�i 2 ini))

The same is also true if one replaces inj by fm j 9X : (m;X) 2 wireg or by outj

Proof: For any reachable state x of A and message valuem that is not a reply message, if replica i
is not faulty in state x, hmi�i 2 outi ) hmi�i 2 ini. Additionally, if hmi�i 2 ini is true for some
state in an execution, it remains true in all subsequent states in that execution or until i becomes
faulty. By inspection of the code for automaton Ri, these two conditions are true because every
action of Ri that inserts a message hmi�i in outi also inserts it in ini and no action ever removes a
message signed by i from ini.

Our assumption on the strength of authentication guarantees that no automaton can imper-
sonate a non-faulty replica Ri by sending hmi�i (for all values of m) on the multicast channel.
Therefore, for a signed message hmi�i to be in some state component of a non-faulty automaton
other than Ri, it is necessary for SEND(hmi�i ;X)i to have executed for some value of X at some
earlier point in that execution. The precondition for the execution of such a send action requires
hmi�i 2 outi. The latter and the two former conditions prove the invariant.

Invariant 4.2 The following is true of any reachable state in an execution of A, for any replica i
such that faultyi is false:

1. 8hPREPARE; v; n; d; ii�i 2 ini : (6 9d0 6= d : (hPREPARE; v; n; d0; ii�i 2 ini))

2. 8v; n;m : ((i = primary(v) ^ hPRE-PREPARE; v; n;mi�i 2 ini))
69m0 : (m0 6= m ^ hPRE-PREPARE; v; n;m0i�i 2 ini))

3. 8hPRE-PREPARE; v; n;mi�i 2 ini : (i = primary(v)) n � seqnoi)

4. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini :

(v > 0 ) 9m0 = hNEW-VIEW; v;X;O;Ni�primary(v)
: (m0 2 ini ^ correct-new-view(m0; v)))
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5. 8m0 = hNEW-VIEW; v;X;O;Ni�primary(v)
2 ini : correct-new-view(m0; v)

6. 8m0 = hVIEW-CHANGE; v;P; ji�j 2 ini : correct-view-change(m0; v; j)

7. 8hPREPARE; v; n;D(m); ii�i 2 ini : (hPRE-PREPARE; v; n;mi�primary(v)
2 ini)

8. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini : (i 6= primary(v)) hPREPARE; v; n;D(m); ii�i 2 ini)

9. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini : v � viewi

Proof: The proof is by induction on the length of the execution. The initializations ensure that
ini = fg and, therefore, all conditions are vacuously true in the base case. For the inductive step,
assume that the invariant holds for every state of any execution � of length at most l. We will
show that the invariant also holds for any one step extension �1 of �.

Condition (1) can be violated in �1 only if an action that may insert a prepare message signed
by i in ini executes. These are actions of the form:

1. RECEIVE(hPRE-PREPARE; v; n;m0i�j )i

2. RECEIVE(hPREPARE; v; n; d; ji�j )i

3. RECEIVE(hNEW-VIEW; v; V; O;Ni�j )i

The first type of action cannot violate condition (1) because the condition in the if
statement ensures that hPREPARE; v; n;D(m0); ii�i is not inserted in ini when there exists a
hPREPARE; v; n; d; ii�i 2 ini such that D(m0) 6= d. Similarly, the second type of action can-
not violate condition (1) because it only inserts the argument prepare message in ini if it is signed
by a replica other than Ri.

For the case v = 0, actions of type 3 never have effects on the state of Ri. For the case v > 0,
we can apply the inductive hypothesis of conditions (7) and (4) to conclude that if there existed a
hPREPARE; v; n;D(m); ii�i 2 ini in the last state in �, there would also exist a new-view message
for view v in ini in that state. Therefore, the precondition of actions of type 3 would prevent
them from executing in such a state. Since actions of type 3 may insert multiple prepare messages
signed by Ri into ini, there is still a chance they can violate condition (1). However, this cannot
happen because these actions are enabled only if the argument new-view message is correct and
the definition of correct-new-view ensures that there is at most one pre-prepare message with a
given sequence number in O [N .

Condition (2) can be violated in �1 only by the execution of an action of one of the following
types:

1. RECEIVE(hPRE-PREPARE; v; n;m0i�j )i,

2. RECEIVE(hNEW-VIEW; v; V; O;Ni�j )i,

3. SEND-PRE-PREPARE(m;v; n)i, or

4. SEND-NEW-VIEW(v; V )i

Actions of the first two types cannot violate condition (2) because they only insert pre-prepare
messages in ini that are not signed by Ri. Actions of the third type cannot violate condition (2)
because the inductive hypothesis for condition (3) and the precondition for the send-pre-prepare
action ensure that the pre-prepare message inserted in ini has a sequence number that is one higher
than the sequence number of any pre-prepare message for the same view signed by Ri in ini.
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Finally, actions of the fourth type cannot violate condition (2). For v = 0, they are not enabled.
For v > 0, the inductive hypothesis of condition (4) and the precondition for the send-new-view
action ensure that no pre-prepare for view v can be in ini when the action executes, and the
definition of O andN ensures that there is at most one pre-prepare message with a given sequence
number in O [N .

Condition (3) can potentially be violated by actions that insert pre-prepares in ini or modify
seqnoi. These are exactly the actions of the types listed for condition (2). As before, actions of the
first two types cannot violate condition (3) because they only insert pre-prepare messages in ini
that are not signed by Ri and they do not modify seqnoi. The send-pre-prepare action preserves
condition (3) because it increments seqnoi such that it becomes equal to the sequence number of
the pre-prepare message it inserts in ini. The send-new-view actions also preserve condition (3):
(as shown before) actions of this type only execute if there is no pre-prepare for view v in ini and,
when they execute, they set seqnoi := max-n(O), which is equal to the sequence number of the
pre-prepare for view v with the highest sequence number in ini.

To violate condition (4), an action must either insert a pre-prepare message in ini or remove a
new-view message from ini. No action ever removes new-view messages from ini. The actions that
may insert pre-prepare messages in ini are exactly the actions of the types listed for condition (2).
The first type of action in this list cannot violate condition (4) because the if statement in its body
ensures that the argument pre-prepare message is inserted in ini only when has-new-view(v; i) is
true. The second type of action only inserts pre-prepare messages for view v in ini if the argument
new-view message is correct and in this case it also inserts the argument new-view message
in ini. Therefore, the second type of action also preserves condition (4). The precondition of
send-pre-prepare actions ensures that send-pre-prepare actions preserve condition (4). Finally,
the send-new-view actions also preserve condition (4) because their effects and the inductive
hypothesis for condition (6) ensure that a correct new-view message for view v is inserted in ini
whenever a pre-prepare for view v is inserted in ini.

Conditions (5) and (6) are never violated. First, received new-view and view-change messages
are always checked for correctness before being inserted in ini. Second, the effects of send-view-
change actions together with the inductive hypothesis of condition (9) and the precondition of
send-view-change actions ensure that only correct view-change messages are inserted in ini.
Third, the inductive hypothesis of condition (6) and the effects of send-new-view actions ensure
that only correct new-view messages are inserted in ini.

Condition (7) is never violated because no action ever removes a pre-prepare from ini
and the actions that insert a hPREPARE; v; n;D(m); ii�i in ini (namely actions of the form
RECEIVE(hPRE-PREPARE; v; n;m0i�j )i and RECEIVE(hNEW-VIEW; v; V;O;Ni�j )i) also insert a
hPRE-PREPARE; v; n;mi�primary(v) in ini.

Condition (8) can only be violated by actions that insert pre-prepare messages in ini because
prepare messages are never removed from ini. These are exactly the actions listed for condition (2).
The first two types of actions preserve condition (8) because whenever they insert a pre-prepare
message in ini they always insert a matching prepare message. The last two types of actions can
not violate condition (8) because they never insert pre-prepare messages for views v such that
primary(v) 6= i in ini.
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The only actions that can violate condition (9) are actions that insert pre-prepare messages in
ini or make viewi smaller. Since no actions ever make viewi smaller, the actions that may violate
condition (9) are exactly those listed for condition (2). The if statement in the first type of action
ensures that it only inserts pre-prepare messages in ini when their view number is equal to viewi.
The if statement in the second type of action ensures thatv it only inserts pre-prepare messages
in ini when their view number is greater than or equal to viewi. Therefore, both types of actions
preserve the invariant. The precondition for the third type of action and the effects of the fourth
type of action ensure that only pre-prepare messages with view number equal to viewi are inserted
in ini. Thus, these two types of actions also preserve the invariant.

Definition 4.3 n-faulty � jfi 2 Rjfaultyi = truegj

Invariant 4.4 The following is true of any reachable state in an execution of A,

8 i; j 2 R; n; v 2 N; m;m0 2 M : ((:faultyi ^ :faultyj ^ n-faulty � f) )
(prepared(m; v; n; i) ^ prepared(m0; v; n; j) ) D(m) = D(m0)))

Proof: By contradiction, assume the invariant does not hold. Then prepared(m; v; n; i) = true
and prepared(m0; v; n; j) = true for some values of m;m0; v; n; i; j such that D(m0) 6= D(m).
Since there are 3f + 1 replicas, this condition and the definition of the prepared predicate imply:

(a) 9R : (jRj > f ^ 8k 2 R :
(((hPRE-PREPARE; v; n;mi�k 2 ini ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ini) ^
((hPRE-PREPARE; v; n;m0i�k 2 inj ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 inj)))

Since there are at most f faulty replicas and R has size at least f + 1, condition (a) implies:

(b) 9k 2 R : (faultyk = false^
(((hPRE-PREPARE; v; n;mi�k 2 ini ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ini) ^
((hPRE-PREPARE; v; n;m0i�k 2 inj ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 inj)))

Invariant 4.1 and (b) imply:

(c) 9k 2 R : (faultyk = false^
(((hPRE-PREPARE; v; n;mi�k 2 ink ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ink) ^
((hPRE-PREPARE; v; n;m0i�k 2 ink ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 ink)))

Condition (c) contradicts Invariant 4.2 (conditions 1, 7 and 2.)

Invariant 4.5 The following is true of any reachable state in an execution of A,

8 i 2 R : ((:faultyi ^ n-faulty � f) )
(8 hNEW-VIEW; v; V; O; Ni�k 2 ini; n; v0 2 N :
(prepared(m; v0; n;merge-P(V )) ^ prepared(m0; v0; n;merge-P(V )) ) D(m) = D(m0))))

Proof: Since Invariant 4.2 (condition 6) ensures any new-view message in ini for a non-faulty i sat-
isfies correct-new-view, the proof for Invariant 4.4 can also be used here with minor modifications.
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Invariant 4.6 The following is true of any reachable state in an execution of A,
8i 2 R : (:faultyi ) 8hCOMMIT; v; n; d; ii�i 2 ini : (9m : (D(m) = d ^ prepared(m;v; n; i) = true))

Proof: The proof is by induction on the length of the execution. The initializations ensure that
ini = fg and, therefore, the condition is vacuously true in the base case. For the inductive step,
the only actions that can violate the condition are those that insert commit messages in ini, i.e.,
actions of the form RECEIVE(hCOMMIT; v; n; d; ji�j )i or SEND-COMMIT(m; v; n)i. Actions of the
first type never violate the lemma because they only insert commit messages signed by replicas
other than Ri in ini. The precondition for send-commit actions ensures that they only insert
hCOMMIT; v; n;D(m); ii�i in ini if prepared(m; v; n; i) is true.

Invariant 4.7 The following is true of any reachable state in an execution of A,

8 i 2 R; n; v 2 N; m 2 M : ((:faultyi ^ committed(m; v; n; i)) )
(9 R : (jRj > 2f � n-faulty ^ 8 k 2 R : (faultyk = false ^ prepared(m; v; n; k)))))

Proof: From the definition of the committed predicate committed(m; v; n; i) = true implies
(a) 9R : (jRj � 2f + 1 ^ 8k 2 R : (hCOMMIT; v; n;D(m); ki�k 2 ini)).
Invariant 4.1 implies
(b) 9R : (jRj > 2f � n-faulty^ 8k 2 R : (faultyk = false ^ hCOMMIT; v; n;D(m); ki�k 2 ink)).
Invariant 4.6 and (b) prove the invariant.

Invariant 4.8 The following are true of any reachable state in an execution of A, for any replica
i such that faultyi is false:

1. 8m; v; n; P : (hVIEW-CHANGE; v; P; ii�i 2 ini )
8v0 < v : (last-prepared-b(m; v0; n; i; v), last-prepared(m; v0; n; P )))

2. 8m = hNEW-VIEW; v; V; O;Ni�primary(v)
2 ini : ((O [N) � ini)

Where last-prepared-b is defined as follows:
last-prepared-b(m; v; n; i; b) � v < b ^ prepared(m; v; n; ini)^

69m0; v0 : ((prepared(m0; v0; n; ini) ^ v < v0 < b) _ (prepared(m0; v; n; ini) ^m 6= m0)).

Proof: The proof is by induction on the length of the execution. The initializations ensure that
ini = fg and, therefore, the condition is vacuously true in the base case.

For the inductive step, the only actions that can violate condition (1) are those that insert
view-change messages in ini and those that insert pre-prepare or prepare messages in ini (no pre-
prepare or prepare message is ever removed from ini.) These actions have one of the following
schemas:

1. RECEIVE(hVIEW-CHANGE; v; P; ji�j )i

2. VIEW-CHANGE(v)i

3. RECEIVE(hPRE-PREPARE; v; n;m0i�j )i,

4. RECEIVE(hPREPARE; v; n; d; ji�j )i,
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5. RECEIVE(hNEW-VIEW; v; V; O;Ni�j )i,

6. SEND-PRE-PREPARE(m;v; n)i, or

7. SEND-NEW-VIEW(v; V )i

Actions of the first type never violate the lemma because they only insert view-change mes-
sages signed by replicas other than Ri in ini. The effects of actions of the second type ensure that
when a view-change message hVIEW-CHANGE; v; P; ii�i is inserted in ini the following condition
is true:
(a) 8v0 < v : (last-prepared(m; v0; n; i) , last-prepared(m; v0; n;P)). Condition (a) and Invari-
ant 4.2 (condition 9) imply condition 1 of the invariant.

For the other types of actions, assume there exists at least a view change message for v signed
by Ri in ini before one of the other types of actions executes (otherwise the lemma would be
vacuously true) and pick any m0 = hVIEW-CHANGE; v; P; ii�i 2 ini. The inductive hypothesis
ensures that the following condition holds before the actions execute:

8m;n; v0 < v : (last-prepared-b(m; v0; n; i; v) , last-prepared(m; v0; n;P))

Therefore, it is sufficient to prove that the actions preserve this condition. The logical value
of last-prepared(m; v0; n;P)) does not change (for all m0;m; n; v0) because the view-change
messages in ini are immutable.

To prove that the value of last-prepared-b(m; v0; n; i; v) is also preserved (for allm0;m; n; v0),
we will first prove the following invariant (b): For any reachable state in an execution of A, any
non-faulty replica Ri, and any view-change messagem0 = hVIEW-CHANGE; v; P; ii�i , m

0 2 ini )
viewi � v.

The proof for (b) is by induction on the length of the execution. It is vacuously true in the base
case. For the inductive step, the only actions that can violate (b) are actions that insert view-change
messages signed by Ri in ini or actions that make viewi smaller. Since there are no actions that
make viewi smaller, these actions have the form VIEW-CHANGE(v)i. The effects of actions of this
form ensure the invariant is preserved by setting viewi to the view number in the view-change
message.

Given (b) it is easy to see that the other types of actions do not violate condition 1 of the
lemma. They only insert pre-prepare or prepare messages in ini whose view number is equal to
viewi after the action executes. Invariant (b) guarantees that viewi is greater than or equal to the
view number v of any view-change message in ini. Therefore, these actions cannot change the
value of last-prepared-b(m; v0; n; i; v) for any m0;m; n; v0.

Condition (2) of the lemma can only be violated by actions that insert new-view messages in
ini or remove pre-prepare messages from ini. Since no action ever removes pre-prepare messages
from ini, the only actions that can violate condition (2) are: RECEIVE(hNEW-VIEW; v; V;O;Ni�j )i
and SEND-NEW-VIEW(v; V )i. The first type of action preserves condition (2) because it inserts all
the pre-prepares in O [N in ini whenever it inserts the argument new-view message in ini. The
second type of action preserves condition (2) in a similar way.

Invariant 4.9 The following is true of any reachable state in an execution of A,
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8 i 2 R; m 2 M; v; n 2 N : ((:faultyi ^ n-faulty � f ^
9 R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))) )
8 v0 > v 2 N; m0 2 M : (hPRE-PREPARE; v0; n;m0i�primary(v0)

2 ini ) m0 = m))

Proof: Rather than proving the invariant directly, we will prove the following condition is true:
8 i 2 R; m 2 M; v; n 2 N : ((:faultyi ^ n-faulty � f ^
9 R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))) )
8 v0 > v 2 N; hNEW-VIEW; v0; V; O;Ni�primary(v0)

2 ini :

(hPRE-PREPARE; v0; n;mi�primary(v0)
2 O))

Condition (a) implies the invariant. Invariant 4.2 (condition 4) states that there is never a
pre-prepare message in ini for a view v0 > 0 without a correct new-view message in ini for the
same view. But if there is a correct new-view message hNEW-VIEW; v0; V;O;Ni�primary(v0) 2 ini
then Invariant 4.8 (condition 2) implies that (O[N) � ini. This and condition (a) imply that there
is a hPRE-PREPARE; v0; n;mi�primary(v0) 2 ini and Invariant 4.2 (conditions 1,2 and 8) implies

that no different pre-prepare message for sequence number n and view v0 is ever in ini.

The proof is by induction on the number of views between v and v0. For the base case,
v = v0, condition (a) is vacuously true. For the inductive step, assume condition (a) holds for v00

such that v < v00 < v0. We will show that it also holds for v0. Assume there exists a new-view
message m1 = hNEW-VIEW; v0; V1; O1; N1i�primary(v0) in ini (otherwise (a) is vacuously true.)

From Invariant 4.2 (condition 5), this message must verify correct-new-view(m1; v
0). This implies

that it must contain 2f + 1 correct view-change messages for view v0 from replicas in some set
R1.

Assume that the following condition is true (b) 9R : (jRj > f ^ 8k 2 R : (faultyk = false ^
prepared(m; v; n; k) = true)) (otherwise (a) is vacuously true.) Since there are only 3f +1 replicas,
R and R1 intersect in at least one replica and this replica is not faulty; call this replica k. Let k’s
view-change message in m1 be m2 = hVIEW-CHANGE; v0; P2; ki�k .

Since k is non-faulty and prepared(m; v; n; k) = true, Invariant 4.4 implies that
last-prepared-b(m; v; n; k; v + 1) is true. Therefore, one of the following conditions is true:

1. last-prepared-b(m; v; n; k; v0)

2. 9v00;m0 : (v < v00 < v0 ^ last-prepared-b(m0; v00; n; k; v0))

Since condition (a) implies the invariant, the inductive hypothesis implies that m = m0 in the
second case. Therefore, Invariants 4.1 and 4.8 imply that (c) 9v2 � v : last-prepared(m; v2; n; P2)

Condition (c), Invariant 4.5, and the fact that correct-new-view(m1; v
0) is true imply that one

of the following conditions is true:

1. last-prepared(m; v2; n;merge-P(V1))

2. 9v00;m0 : (v2 < v00 < v0 ^ last-prepared(m0; v00; n;merge-P(V1)))

In case (1), (a) is obviously true. If case (2) holds, Invariant 4.1 and Invari-
ant 4.2 (condition 7) imply that there exists at least one non-faulty replica j such that
hPRE-PREPARE; v00; n;m0i�primary(v00) 2 inj . Since condition (a) implies the invariant, the in-

ductive hypothesis implies that m = m0 in the second case.
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Invariant 4.10 The following is true of any reachable state in an execution of A,

8 n; v; v0 2 N; m;m0 2 M : (n-faulty � f )
(9 R � R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))) ^
9 R0 � R : (jR0j > f ^ 8 k 2 R0 : (:faultyk ^ prepared(m0; v0; n; k)))) ) D(m) = D(m0))

Proof: Assume without loss of generality that v � v0. For the case v = v0, the negation
of this invariant implies that there exist two requests m and m0 (D(m0) 6= D(m)), a se-
quence number n, and two non-faulty replicas Ri; Rj , such that prepared(m; v; n; i) = true
and prepared(m0; v; n; j) = true; this contradicts Invariant 4.4.

For v > v0, assume this invariant is false. The negation of the invariant and the definition of
the prepared predicate imply:

9 n; v; v0 2 N; m;m0 2 M : (v > v0 ^ n-faulty � f ^
(9 R � R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))) ^
9 i 2 R : (:faultyi ^ hPRE-PREPARE; v0; n;m0i�primary(v0)

2 ini) ^ D(m) 6= D(m0))

But this contradicts Invariant 4.9 as long as the probability thatm 6= m0 whileD(m) = D(m0)
is negligible.

Invariant 4.11 The following is true of any reachable state in an execution of A,

8 i; j 2 R; n; v; v0 2 N; m;m0 2 M : ((:faultyi ^ :faultyj ^ n-faulty � f) )
(committed(m; v; n; i) ^ committed(m0; v0; n; j) ) D(m) = D(m0)))

Invariant 4.12 The following is true of any reachable state in an execution of A,

8 i 2 R; n; v; v0 2 N; m;m0 2 M : ((:faultyi ^ n-faulty � f) ) (committed(m; v; n; i) ^
9 R0 � R : (jR0j > f ^ 8 k 2 R0 : (:faultyk ^ prepared(m0; v0; n; k)))) ) D(m) = D(m0))

Proof: Both Invariant 4.11 and 4.12 are implied by Invariants 4.10 and 4.7.

Rather than proving that A implements S directly, we will prove that A implements S0, which
implements S and is better suited for the proof. We start by defining a set of auxiliary functions
that will be useful for the proof.

Definition 4.13 We define the following functions inductively:

val : (N� O0 �N� C)� ! V
last-rep : (N� O0 �N� C)� ! ( C ! O0)
last-rep-t : (N� O0 �N� C)� ! ( C ! N)

val(�) = vo
8 c : (last-rep(�)(c) = null-rep)
8 c : (last-rep-t(�)(c) = 0)

val(�:hn; o; t; ci) = s
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last-rep(�:hn; o; t; ci)(c) = r

last-rep-t(�:hn; o; t; ci)(c) = t

8 c0 6= c : (last-rep(�:hn; o; t; ci)(c0) = last-rep(�)(c0))
8 c0 6= c : (last-rep-t(�:hn; o; t; ci)(c0) = last-rep-t(�)(c0))
where (r; s) = g(c; o; val(�))

Automaton S0 has the same signature as S except for the addition of an internal action
EXECUTE-NULL. It also has the same state components except that the val component is replaced by
a sequence of operations:

hist 2 (N�O0 �N� C)�, initially �;
and there is a new seqno component:

seqno 2 N, initially 0.

Similarly to S, the transitions for S0 are only defined when n-faulty � f . Also, the transitions
for S0 are identical to S’s except for those defined bellow.

EXECUTE(o; t; c)
Pre: ho; t; ci 2 in
Eff: seqno := seqno + 1

in := in� fho; t; cig
if t > last-rep-t(hist)(c) then

hist := hist:hseqno; o; t; ci
out := out [ fhlast-rep(c); t; cig

EXECUTE-NULL

Eff: seqno := seqno + 1

The EXECUTE-NULL actions allow the seqno component to be incremented without removing
any tuple from in. This is useful to model execution of null requests.

Theorem 4.14 S0 implements S

Proof: The proof uses a forward simulation [8] F from S0 to S. F is defined as follows:

Definition 4.15 F is a subset of states(S0)� states(S); (x; y) is an element of F (also written as
y 2 F [x]) if and only if all the following conditions are satisfied:

1. All state components with the same name are equal in x and y.

2. x:val = val(y:hist)

3. x:last-rep-tc = last-rep(y:hist)(c);8c 2 C

To prove that F is in fact a forward simulation from S0 to S one most prove that both of the
following are true [8].

1. For all x 2 start(S0), F [x] \ start(S) 6= fg

2. For all (x; �; x0) 2 trans(S0), where x is a reachable state of S0, and for all y 2 F [x], where
y is reachable in S, there exists an execution fragment � of S starting with y and ending
with some y0 2 F [x0] such that trace(�) = trace(�).
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It is clear that F verifies the first condition because all variables with the same name in S and
S0 are initialized to the same values and, since hist is initially equal to �, x:val = vo = val(�) and
x:last-rep-tc = 0 = last-rep(�)(c).

We use case analysis to show that the second condition holds for each � 2 acts(S0). For
all actions � except EXECUTE-NULL, let � consist of a single � step. For � = EXECUTE-NULL,
let � be �. It is clear that this satisfies the second condition for all actions but EXECUTE. For
� = EXECUTE(o; t; c), definition 4.13 and the inductive hypothesis (i.e., x:val = val(y:hist) and
x:last-rep-tc = last-rep(y:hist)(c)) ensure that y0 2 F [x0].

Definition 4.16 We define the function prefix : (N�O0�N�C)� ! (N�O0�N�C)� as follows:
prefix(�; n) is the subsequence obtained from � by removing all tuples whose first component is
greater than n.

Invariant 4.17 The following is true of any reachable state in an execution of S0,

8 hn; o; t; ci 2 hist : (t > last-rep-t(prefix(hist; n� 1))(c))

Proof: The proof is by induction on the length of the execution. The initial states of S0 verify
the condition vacuously because hist is initially �. For the inductive step, the only actions that
can violate the invariant are those that modify hist, i.e., EXECUTE(o; t; c). But these actions only
modify hist if t > last-rep-t(hist)(c).

Invariant 4.18 The following are true of any reachable state in an execution of S0:
1. 8hn; o; t; ci 2 hist : (:faultyc ) t � last-reqc)
2. 8ho; t; ci 2 in : (:faultyc ) t � last-reqc)

Proof: The proof is by induction on the length of the execution. The initial states of S0 verify
the condition vacuously because hist is initially � and in is empty. For the inductive step, since
no action ever decrements last-reqc or changes faultyc from true to false, the only actions that
can violate the invariant are those that append tuples from a non-faulty client c to hist, i.e.,
EXECUTE(o; t; c) or to in, REQUEST(o; c). The EXECUTE actions only append a tuple hn; o; t; ci to
hist if ho; t; ci 2 in; therefore, the inductive hypothesis for condition 2 implies that they preserve
the invariant. The REQUEST actions also preserve the invariant because the tuple ho; t; ci inserted
in in has t equal to the value of last-reqc after the action executes.

Theorem 4.19 A implements S

Proof: We prove that A implements S0, which implies that A implements S (Theorem 4.14.) The
proof uses a forward simulation G from A0 to S0 (A0 is equal to A but with all output actions not
in the external signature of S hidden.) G is defined as follows.
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Definition 4.20 G is a subset of states(A0)� states(S0); (x; y) is an element of G if and only if the
following are satisfied:

1. 8i 2 R : (x:faultyi = y:faulty-replicai)

2. 8c 2 C : (x:faultyc = y:faulty-clientc)

and the following are satisfied when n-faulty � f

3. 8c 2 C : (:x:faultyc ) x:last-reqc = y:last-reqc)

4. 8i 2 R : (:x:faultyi ) x:last-execi � y:seqno)

5. 8i 2 R : (:x:faultyi ) x:vali = val(prefix(y:hist; x:last-execi)))

6. 8i 2 R : (:x:faultyi ) 8c 2 C : (x:last-repi(c) = last-rep(prefix(y:hist; x:last-execi))(c)))

7. 8i 2 R : (:x:faultyi ) 8c 2 C : (x:last-rep-ti(c) = last-rep-t(prefix(x:hist; y:last-execi))(c)))

8. 80 < n � y:seqno : (9hn; o; t; ci 2 y:hist : (9R � R; v 2 N : (jRj > 2f � y:n-faulty ^
8k 2 R : (:x:faultyk ^ prepared(hREQUEST; o; t; ci�c ; v; n; A

0:k))))
_ 9R � R; v; t 2 N; o 2 O; c 2 C : (jRj > 2f � y:n-faulty ^ t � last-rep-t(prefix(y:hist; n� 1))(c)) ^

8k 2 R : (:x:faultyk ^ prepared(hREQUEST; o; t; ci�c ; v; n; A
0:k))))

_ 9R � R; v 2 N : (jRj > 2f � y:n-faulty ^ 8k 2 R : (:x:faultyk ^ prepared(hnull; v; n; A0:k))))

9. 8hREPLY; v; t; c; i; ri�i 2 (x:outi [ fmj9X : (m;X) 2 x:wireg [ x:inc) :
(:x:faultyi ) 9hn; o; t; ci 2 y:hist : (r = last-rep(prefix(y:hist; n))(c)))

10. 8hn; o; y:last-reqc; ci 2 y:hist :
((:x:faultyc ^ x:outc 6= fg)) 9hlast-rep(prefix(y:hist; n))(c); y:last-reqc; ci 2 y:out)

11. Let Mc = x:outc [ fmj9i 2 R : (:x:faultyi ^m 2 x:ini [ x:outig [ fmj9X : (m;X) 2 x:wireg,
and M 1

c = merge-P(fm = hVIEW-CHANGE; v; P; ji�j jm 2Mc _
9hNEW-VIEW; v; V; O; Ni�j 2Mc : (m 2 V )g),

8c 2 C : (:x:faultyc ) 8o 2 O; t 2 N : ((m = hREQUEST; o; t; ci�c 2Mc_
9hPRE-PREPARE; v; n;mi�j 2Mc [M 1

c)) (ho; t; ci 2 y:in _ 9n : (hn; o; t; ci 2 y:hist))))

Note that most of the conditions in the definition of G only need to hold when n-faulty � f ,
for n-faulty > f any relation will do because the behavior of S0 is unspecified. To prove that G is
in fact a forward simulation from A0 to S0 one most prove that both of the following are true.

1. For all x 2 start(A0), G[x] \ start(S0) 6= fg

2. For all (x; �; x0) 2 trans(A0), where x is a reachable state of A0, and for all y 2 G[x], where
y is reachable in S0, there exists an execution fragment � of S0 starting with y and ending
with some y0 2 G[x0] such that trace(�) = trace(�).

It is easy to see that the first condition holds. We use case analysis to show that the second
condition 2 holds for each � 2 acts(A0)

Non-faulty proxy actions. If � = REQUEST(o)c, � = CLIENT-FAILUREc, or � = REPLY(r)c,
let � consist of a single � step. G is preserved in a trivial way if � is a CLIENT-FAILURE action.
If � is a REQUEST action, neither � nor � modify the variables involved in all conditions in the
definition of G except 3, and 10 and 11. Condition 3 is preserved because both � and � increment
y:last-reqc. Condition 10 is also preserved because Invariant 4.18 implies that there are no tuples
in y:hist with timestamp y0:last-reqc and � does not add any tuple to y:hist. Even though � inserts
a new request in x:outc, condition 11 is preserved because � inserts ho; t; ci in y:in.
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If � is a REPLY(r)c action that is enabled in x, the REPLY(r)c action in � is also enabled. Since
there are less than f faulty replicas, the precondition of � ensures that there is at least one non-
faulty replica i and a view v such that hREPLY; v; x:last-reqc; c; i; ri�i 2 x:inc and that x:outc 6= fg.
Therefore, the inductive hypothesis (conditions 9 and 10) implies that hr; t; ci 2 y:out and thus
REPLY(r)c is enabled. G is preserved because � ensures that x0:outc = fg.

If � = RECEIVE(m)c, or � = SEND(m;X)c, let � be �. This preserves G because y 2 G[x]
and the preconditions require that the reply message being received is in some tuple in x:wire and
the request message being sent is in x:outc.

Internal channel actions. If � is a MISBEHAVE(m;X;X 0) action, let � be �. G is preserved
because � does not add new messages to x:wire and retains a tuple with m on x0:wire.

Non-faulty replica actions. For all actions � except � = REPLICA-FAILUREi and � =
EXECUTE(m; v; n)i, let � be �. It is clear that this could only violate conditions 8, 9 and 11
because these actions do not modify the state components involved in the other conditions. They
can not violate condition 8; since no messages are ever removed from ink (where k is any non-faulty
replica), if prepared(m; v; n; k) = true, it remains true for the entire execution or until replica k
becomes faulty. And these actions do not violate conditions 9 and 11 because any request or reply
messages they add to x:ini, x:outi, or x:wire (either directly or as part of other messages) was
already in x:wire, x:ini, or x:outi.

For � = REPLICA-FAILUREi, let � consist of a single � step. This does not violate the
conditions in the definition of G. For conditions other than 1 and 8, it either does not change
variables involved in these conditions (2 and 3), or makes them vacuously true. Condition 1 is
satisfied in a trivial way because � also sets y:faulty-replicai to true. And condition 8 is not
violated because the size of the sets R in the condition is allowed to decrease when additional
replicas become faulty.

Non-faulty replica execute (non-null request.)

For � = EXECUTE(hREQUEST; o; t; ci�c ; v; n)i, there are two cases: if x:last-execi < y:seqno,
let � be �; otherwise, let � consist of the execution of a single EXECUTE(o; t; c) action preceeded
by FAULTY-REQUEST(o; t; c) in the case where x:faultyc = true. In any of these cases, it is clear
that only conditions 4 to 11 can be violated.

For the case where � = �, conditions 4, 8, 10 and 11 are also preserved in a trivial way.
For the other conditions we consider two cases (a) t > last-rep-ti(c) and (b) otherwise. The
precondition of � ensures that x:committed(hREQUEST; o; t; ci�c ; v; n; i) is true. In case (a), this
precondition, Invariant 4.12, and the definition of G (condition 8) imply that there is a tuple in
y:hist with sequence number n and that it is equal to hn; o; t; ci. Therefore, conditions 5 to 7 and
9 are preserved. In case (b), the precondition of �, Invariant 4.12, the definition of G (condition
8), and Invariant 4.17 imply that there is no tuple with sequence number n in y:hist. Therefore,
conditions 5 to 9 are preserved in this case.

For the case where � 6= �, when � is enabled in x the actions in � are also enabled in
y. In the case where c is faulty, FAULTY-REQUEST(o; t; c) is enabled and its execution enables
EXECUTE(o; t; c). Otherwise, since y 2 G[x], condition 11 in Definition 4.20 and the precondition
of � imply that EXECUTE(o; t; c) is enabled in y.
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It is easy to see that conditions 4 to 7 and 9 to 11 are preserved. For condition 8, we consider
two cases (a) t > last-rep-ti(c) and (b) otherwise. In both cases, the precondition of � ensures
that x:committed(hREQUEST; o; t; ci�c ; v; n; i) is true. This precondition, Invariant 4.7 and the fact
that � appends a tuple hy0:seqno; o; t; ci to y:hist, ensure that condition 8 is preserved in this case.
In case (b), the precondition Invariant 4.7 and the assumption that t � last-rep-ti(c), ensure that
condition 8 is preserved also in this case.

Non-faulty replica execute (null request.)

For � = EXECUTE(null; v; n)i, if x:last-execi < y:seqno, let � be �; otherwise, let � consist
of the execution of a single EXECUTE-NULL action. Execution of a null request only increments
x:last-execi and� can at most increment y:seqno. Therefore, only conditions 4 to 8 can be violated.
Condition 4 is not violated because� increments y:seqno in the case wherex:last-execi = y:seqno.

For the case where, � = �, conditions 5 to 7 are also not violated because � does not append
any new tuple to y:hist and all tuples in y:hist have sequence number less than y0:seqno; therefore,
prefix(y:hist; x:last-execi) = prefix(y0:hist; x0:last-execi). Since the precondition of � implies
that x:committed(null; v; n; i) is true, Invariant 4.7 ensures condition 8 is also preserved in this
case.

For the case where � consists of a EXECUTE-NULL step, x:committed(null; v; n; i),
n-faulty � f , Invariant 4.12, and the definition of G (condition 8) imply that there is no
tuple in y0:hist with sequence number x0:last-execi; therefore, prefix(y:hist; x:last-execi) =
prefix(y0:hist; x0:last-execi).

Faulty replica actions. If � is an action of a faulty replica i (i.e., x:faultyi = true), let � be
�. Since � can not modify faultyi and a faulty replica cannot forge the signature of a non-faulty
automaton this preserves G in a trivial way.

Faulty proxy actions. If � is an action of a faulty proxy c (i.e., x:faultyc = true), let � consist
of a single � step for REQUEST, REPLY and CLIENT-FAILURE actions and � for the other actions.
Since � can not modify faultyc and faulty clients cannot forge signatures of non-faulty automata
this preserves G in a trivial way. Additionally, if � is a REPLY action enabled in x, � is also enabled
in y.

5 Garbage Collection

This section describes a modified version of our algorithm that garbage collects messages from
replica’s logs. It also proves that the modified algorithmAgc is safe, i.e., it proves that it implements
S.

5.1 The Modified Algorithm

The client proxy and multicast channel automata are identical inAgc andA. The replica automaton
Ri is modified as follows. The signature remains the same except for the actions listed below.
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Input: RECEIVE(hCHECKPOINT; v; n; d; ji�j )i

RECEIVE(hVIEW-CHANGE; v; n; s;C; P; ji�j )

Internal: COLLECT-GARBAGEi

Here, v; n 2 N, i; j 2 R, s 2 V 0, C;P �M, d 2 D0

where V 0 = V � (C ! O)� (C ! N) and D0 = fd j 9s 2 V 0 : (d = D(m))g

The state components also remain the same except for the addition of a new variable chkptsi
and a new initial value for ini:

ini � M, initially fhCHECKPOINT; 0; D(hv0; null-rep; 0i); ki�k j 8 k 2 Rg
chkptsi � N � V 0, initially fh0; hv0; null-rep; 0iig
stable-ni � min(fn j hn; �i 2 chkptsig)
stable-chkpti � � j hstable-ni; �i 2 chkptsi

The auxiliary functions used in the description of a replica’s automaton also remain the same
except for those that are defined below:

in-w(n; i) � 0 < n� stable-ni � max-out, where max-out 2 N
in-wv(v; n; i) � in-w(n; i) ^ in-v(v; i)
correct-view-change(m; v; j) � 9 n; s; C; P : (m = hVIEW-CHANGE; v; n; s; C; P; ji�j ^
9 R : (jRj > f ^ 8 k 2 R : (9 v00 < v : (hCHECKPOINT; v00; n; D(s); ki�k 2 C)) ^
8 hPRE-PREPARE; v0; n0;m0i�primary(v0)

2 P :

(last-prepared(m0; v0; n0; P ) ^ v0 < v ^ 0 < n0 � n � max-out)
merge-P(V ) � fm j 9 hVIEW-CHANGE; v; n; s; C; P; ki�k 2 V : (m 2 P ) g
max-n(M) � max(f n j hPRE-PREPARE; v; n;mi�i 2 M _ hVIEW-CHANGE; v; n; s; C; P; ii�i 2 Mg)
correct-new-view(m;v) �
9 V; O;N; R : (m = hNEW-VIEW; v; V; O; Ni�primary(v)

^ jV j = jRj = 2f + 1 ^

8 k 2 R : (9m0 2 V : (correct-view-change(m0; v; k))) ^
O = f hPRE-PREPARE; v; n;m0i�primary(v)

j n > max-n(V ) ^ 9 v0 : last-prepared(m0; v0; n;merge-P(V ))g ^

N = f hPRE-PREPARE; v; n; nulli�primary(v)
j max-n(V ) < n < max-n(O) ^

69 v0;m0; n : last-prepared(m0; v0; n;merge-P(V )))
take-chkpt(n) � (n mod chkpt-int) = 0, where chkpt-int 2 N ^ chkpt-int < max-out
update-state-nv(i; v; V;m) �
if max-n(V ) > stable-ni then

ini := ini [ (pick C : 9 hVIEW-CHANGE; v;max-n(V ); s; C; P; ki�k 2 V )
if hCHECKPOINT; v;max-n(V ); D(s); ii�i 62 ini then

ini = ini [ fhCHECKPOINT; v;max-n(V ); D(s); ii�ig
outi = outi [ fhCHECKPOINT; v;max-n(V ); D(s); ii�ig

chkptsi := chkptsi � fp = hn0; s0i j p 2 chkptsi ^ n0 < max-n(V )g
if max-n(V ) > last-execi then

chkptsi := chkptsi [ fhmax-n(V ); si j 9 hVIEW-CHANGE; v;max-n(V ); s; C; P; ki�k 2 V g
(vali; last-repi; last-rep-ti) := stable-chkpti
last-execi := max-n(V )

Many of the actions for automaton Ri are modified to use the new functions but otherwise
remain identical. The exceptions are listed below:
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Input Transitions

RECEIVEhPRE-PREPARE; v; n;mi�j )i (j 6= i)
Eff: if j = primary(i) ^ in-wv(v; n; i) ^ has-new-view(v; i)^

69d : (d 6= D(m) ^ hPREPARE; v; n; d; ii�i 2 ini) then
let p = hPREPARE; v; n; D(m); ii�i

ini := ini [ fhPRE-PREPARE; v; n;mi�j ; pg
outi := outi [ fpg

else if 9o; t; c : (m = hREQUEST; o; t; ci�c) then
ini := ini [ fmg

RECEIVE(hPREPARE; v; n; d; ji�j )i (j 6= i)
Eff: if j 6= primary(i) ^ in-wv(v; n; i) then

ini := ini [ fhPREPARE; v; n; d; ji�j g

RECEIVE(hCOMMIT; v; n; d; ji�j )i (j 6= i)
Eff: if viewi � v ^ in-w(n; i) then

ini := ini [ fhCOMMIT; v; n; d; ji�j g

RECEIVE(hCHECKPOINT; v; n; d; ji�j )i (j 6= i)
Eff: if viewi � v ^ in-w(n; i) then

ini := ini [ fhCHECKPOINT; v; n; d; ji�jg

RECEIVE(hVIEW-CHANGE; v; n; s; C; P; ji�j )i (j 6= i)
Eff: let m = hVIEW-CHANGE; v; n; s; C; P; ji�j

if v � viewi ^ correct-view-change(m;v; j) then
ini := ini [ fmg

RECEIVE(hNEW-VIEW; v; V; O; Ni�j )i (j 6= i)
Eff: let m = hNEW-VIEW; v; V; O; Ni�j

if v > 0 ^ v � viewi ^ correct-new-view(m; v) ^ :has-new-view(v; i) then
viewi := v

outi := fg
ini := ini [O [N [ fmg
for all hPRE-PREPARE; v; n0; m0i�j 2 (O [N) do

outi := outi [ fhPREPARE; v; n0; D(m0); ii�ig
if n0 > stable-ni then

ini := ini [ fhPREPARE; v; n0; D(m0); ii�ig
update-state-nv(i; v; V;m)
ini := ini � fhREQUEST; o; t; ci�c 2 inijt � last-rep-ti(c)g

Internal Transitions

SEND-PRE-PREPARE(m;v; n)i
Pre: primary(i) = i ^ seqnoi = n� 1 ^ in-wv(v; n; i) ^ has-new-view(v; i)^

9o; t; c : (m = hREQUEST; o; t; ci�c ^m 2 ini)^ 69hPRE-PREPARE; v; n0;mi�i 2 ini
Eff: seqnoi := seqnoi + 1

let p = hPRE-PREPARE; v; n;mi�i
outi := outi [ fpg
ini := ini [ fpg
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EXECUTE(m;v; n)i
Pre: n = last-execi + 1 ^ committed(m; v; n; i)
Eff: last-execi := n

if (m 6= null) then
let hREQUEST; o; t; ci�c = m

if t � last-rep-ti(c) then
if t > last-rep-ti(c) then

last-rep-ti(c) := t

(last-repi(c); vali) := g(c; o; vali)
outi := outi [ fhREPLY; viewi; t; c; i; last-repi(c)i�ig

ini := ini � fmg
if take-chkpt(n) then

let m0 = hCHECKPOINT; viewi; n;D(hvali; last-repi; last-rep-tii); ii�i
outi := outi [ fm0g
ini := ini [ fm0g

chkptsi := chkptsi [ fhn; hvali; last-repi; last-rep-tiiig

SEND-VIEW-CHANGE(v)i
Pre: v = viewi + 1
Eff: viewi := v

let P 0 = fhm; v; nijlast-prepared(m; v; n; i)g,
P =

S
hm;v;ni2P 0

(fp = hPREPARE; v; n;D(m); ki�k jp 2 inig [ fhPRE-PREPARE; v; n;mi�primary(v)
g),

C = fm0 = hCHECKPOINT; v00; stable-ni; D(stable-chkpti); ki�k jm
0 2 inig,

m = hVIEW-CHANGE; v; stable-ni; stable-chkpti; C; P; ii�i
outi := outi [ fmg
ini := ini [ fmg

SEND-NEW-VIEW(v; V )i
Pre: primary(v) = i ^ v � viewi ^ v > 0 ^ V � ini ^ jV j = 2f + 1 ^ :has-new-view(v; i)^

9R : (jRj = 2f + 1 ^ 8k 2 R : (9n; s; C; P : (hVIEW-CHANGE; v; n; s; C; P; ki�k 2 V )))
Eff: viewi := v

let O = fhPRE-PREPARE; v; n;mi�i jn > max-n(V ) ^ 9v0 : last-prepared(m; v0; n;merge-P(V ))g,
N = fhPRE-PREPARE; v; n; null; ki�i jmax-n(V ) < n < max-n(O)^
69v0;m; n : last-prepared(m; v0; n;merge-P(V ))g,

m = hNEW-VIEW; v; V; O;Ni�i
seqnoi := max-n(O)
ini := ini [O [N [ fmg
outi := fmg
update-state-nv(i; v; V;m)
ini := ini � fhREQUEST; o; t; ci�c 2 inijt � last-rep-ti(c)g

COLLECT-GARBAGEi
Pre: 9R; n; d : (jRj > f ^ i 2 R ^ 8k 2 R : (9v : (hCHECKPOINT; v; n; d; ki�k ini)
Eff: ini := ini � fm = hPRE-PREPARE; v0; n0;m0i�j jm 2 ini ^ n0 � ng

ini := ini � fm = hPREPARE; v0; n0; d0; ji�j jm 2 ini ^ n0 � ng
ini := ini � fm = hCOMMIT; v0; n0; d0; ji�j jm 2 ini ^ n0 � ng
ini := ini � fm = hCHECKPOINT; v0; n0; d0; ji�j jm 2 ini ^ n0 < ng
chkptsi := chkptsi � fp = hn0; sijp 2 chkptsi ^ n

0 < ng)

5.2 Safety Proof

This section proves that Agc implements S. We start by introducing some definitions and proving
an invariant.

26



Definition 5.1 We define the following functions inductively:

Let RM = fhREQUEST; o; t; ci�c j o 2 O ^ t 2 N ^ c 2 Cg [ fnullg,
r-val : RM� ! V
r-last-rep : RM� ! ( C ! O0)
r-last-rep-t : RM� ! ( C ! N)

r-val(�) = vo
8 c 2 C : (r-last-rep(�)(c) = null-rep)
8 c 2 C : (r-last-rep-t(�)(c) = 0)

8 � 2 RM+,
r-val(�:null) = r-val(�)
r-last-rep(�:null) = r-last-rep(�)
r-last-rep-t(�:null) = r-last-rep-t(�)

8 hREQUEST; o; t; ci�c 2 RM; � 2 RM+,
8 c0 6= c : (r-last-rep(�:hREQUEST; o; t; ci�c)(c

0) = r-last-rep(�)(c0))
8 c0 6= c : (r-last-rep-t(�:hREQUEST; o; t; ci�c)(c

0) = r-last-rep-t(�)(c0))
if t > r-last-rep-t(�)(c) then

let (r; s) = g(c; o; r-val(�))
r-val(�:hREQUEST; o; t; ci�c) = s

r-last-rep(�:hREQUEST; o; t; ci�c)(c) = r

r-last-rep-t(�:hREQUEST; o; t; ci�c)(c) = t

else
r-val(�:hREQUEST; o; t; ci�c) = r-val(�)
r-last-rep(�:hREQUEST; o; t; ci�c)(c) = r-last-rep(�)(c)

r-last-rep-t(�:hREQUEST; o; t; ci�c)(c) = r-last-rep-t(�)(c)

Definition 5.2 We define the following subsets of M and predicate:

Wire � fm j 9 X : ((m;X) 2 wire) g
Wire+o � Wire [ fm j 9 j 2 R : (:faultyj ^ m 2 outj) g

Wire+io � Wire+o [ fm j 9 j 2 R : (:faultyj ^ m 2 inj) g

committed-Wire(s; l; t; n; v; �) �
9m1:::mn = � 2 RM� : (s = r-val(�) ^ l = r-last-rep(�) ^ t = r-last-rep-t(�) ^
8 0 < k � n : (9 v0 � v; R : (jRj > 2f ^

8 q 2 R : (hCOMMIT; v0; k;D(mk); qi�q 2 Wire+o))
^ (9 v0 � v : (hPRE-PREPARE; v0; k;mki�primary(v0)

2 Wire+o)

_mk 2 Wire+o)))

Invariant 5.3 The following is true of any reachable state in an execution of Agc:

1. 8 i 2 R : ((:faultyi ^ n-faulty � f) )
9 � 2 RM� : committed-Wire(vali; last-repi; last-rep-ti; last-execi; viewi; �))

2. 8 i 2 R : (:faultyi ^ n-faulty � f) )
8 hCHECKPOINT; v; n;D(hs; l; ti); ii�i 2 N : (9 � 2 RM� : committed-Wire(s; l; t; n; v; �))

where:
N = fm j m 2 Wire+io _ 9 hVIEW-CHANGE; v; n; s; C; P; ji�j 2 Wire+io : (m 2 C) _

9hNEW-VIEW; v; V; O;Ni�j 2 Wire+io : (9 hVIEW-CHANGE; v; n; s; C; P; qi�q 2 V : (m 2 C))g,
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Proof: The proof is by induction on the length of the execution. For the base case, the initializations
ensure that vali = r-val(�), last-repi = r-last-rep(�), and last-rep-ti = r-last-rep-t(�). Therefore,
1 is obviously true in the base case and 2 is also true because all the checkpoint messages
hCHECKPOINT; v; n;D(hs; l; ti); ii�i 2 N have s = vali; l = last-repi; t = last-rep-ti.

For the inductive step, assume that the invariant holds for every state of any execution � of
length at most l. We will show that the lemma also holds for any one step extension �1 of �.
The only actions that can violate 1 are actions that change vali; last-repi; last-rep-ti; last-execi,
decrement viewi, or remove messages from Wire+o. But no actions ever decrement viewi.
Similarly, no actions ever remove messages from Wire+o because wire remembers all messages
that were ever sent over the multicast channel and messages are only removed from outj (for any
non-faulty replica j) when they are sent over the multicast channel. Therefore, the only actions
that can violate 1 are:

1. RECEIVE(hNEW-VIEW; v; V; O;Ni�j )i

2. EXECUTE(m;v; n)i

3. SEND-NEW-VIEW(v; V )i

The inductive hypothesis of condition 2 ensures that actions of the first and third type do not
violate condition 1 because they set vali; last-repi; last-rep-ti and last-execi to the corresponding
values in a checkpoint message from a non-faulty replica.

Actions of the second type also do not violate 1 because of the inductive hypothesis,
and because the executed request, mn, verifies committed(mn; v; n; i) for v � viewi and
n = last-execi + 1. Since committed(mn; v; n; i) is true, the 2f + 1 commits and the pre-
prepare (or mn) necessary for committed-Wire to hold are in ini. These messages were either
received by i over the multicast channel or they are messages from i, in which case they are in
outi or have already been sent over the multicast channel.

The only actions that can violate condition 2 are those that insert checkpoint messages in N :

1. RECEIVE(hCHECKPOINT; v; n; d; ii�i)j

2. RECEIVE(hVIEW-CHANGE; v; n; s; C; P; qi�q )j

3. RECEIVE(hNEW-VIEW; v; V; O;Ni�q )j

4. SEND(m;R)i

5. EXECUTE(m;v; n)j

6. SEND-VIEW-CHANGE(v)j

7. SEND-NEW-VIEW(v; V )j

where j is any non-faulty replica. Actions of types 1, 2, 4, and 6 preserve 2 because the
checkpoints they insert into N are already in N before the action executes and because of the
inductive hypothesis. Actions of types 3 and 7 may insert a new checkpoint message from j

into N ; but they also preserve condition 2 because this message has the same sequence number
and checkpoint digest as some checkpoint message from a non-faulty replica that is already in N
before the action executes and because of the inductive hypothesis. Finally, the argument to show
that actions of the fifth type preserve 1 also shows that they preserve condition 2.

Invariant 5.4 The following is true of any reachable state in an execution of A:
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n-faulty � f ) 8 �; �0 2 RM� : ((9 s; l; t; v; s0; l0; t0; v0 : (committed-Wire(s; l; t; n; v; �) ^
committed-Wire(s0; l0; t0; n0; v0; �0)) ^ �:length � �0:length) ) 9 �00 2 RM� : (�0 = �:�00))

Proof: (By contradiction) Suppose that the invariant is false. Then, there may exist some sequence
number k (0 < k � �:length) and two different requests mk1 and mk2 such that:

9 v1; R1 : (jR1j > 2f ^ 8 q 2 R1 : (hCOMMIT; v1; k;D(mk1); qi�q 2 Wire+o)) and
9 v2; R2 : (jR2j > 2f ^ 8 q 2 R2 : (hCOMMIT; v2; k;D(mk2); qi�q 2 Wire+o))

This, Invariant 4.1 and Invariant 4.6 contradict Invariant 4.10.

Theorem 5.5 Agc implements S

Proof: We prove that Agc implements A, which implies that it implements S (Theorems 4.19
and 4.14.) The proof uses a forward simulation H from A0

gc to A0 (A0

gc is equal to Agc but with all
output actions not in the external signature of S hidden.)

Definition 5.6 H is a subset of states(A0

gc) � states(A0); (x; y) is an element of H if and only if
all the following conditions are satisfied for any replica i such that x:faultyi = false, and for any
replica j:

1. The values of the state variables in y are equal to the corresponding values in x except for y:wire, y:ini and
y:outi.

2. y:ini � fm = hPRE-PREPARE; v; n;mi�j _ m = hPREPARE; v; n; d; ji�j _
m = hCOMMIT; v; n; d; ji�j jm 2 y:ini ^ n � x:stable-nig

� fm jm 2 y:ini ^ (tag(m; VIEW-CHANGE) _ tag(m; NEW-VIEW))g
= x:ini � fm = hPRE-PREPARE; v; n;mi�j _ m = hPREPARE; v; n; d; ji�j _

m = hCOMMIT; v; n; d; ji�j jm 2 x:ini ^ n � x:stable-nig
� fm jm 2 x:ini ^ (tag(m; CHECKPOINT) _ tag(m;VIEW-CHANGE) _ tag(m;NEW-VIEW))g

3. Let consistent-vc(m1;m2) �
9 v; n; s; l; t; C; P; P 0; j : (m1 = hVIEW-CHANGE; v; n; hs; l; ti; C; P; ji�j ^

m2 = hVIEW-CHANGE; v; P 0; ji�j ^

A0
gc:correct-view-change(m1; v; j) , (A0:correct-view-change(m2; v; j) ^
P = P 0�fm = hPRE-PREPARE; v0; n0;m0i�k _m = hPREPARE; v0; n0; d0; ki�k jm 2 P 0^n0 � ng)))

consistent-vc-set(M 1;M 2) �
8m1 2 M 1 : (9m2 2 M 2 : consistent-vc(m1;m2)) ^
8m2 2 M 2 : (9m1 2 M 1 : consistent-vc(m1;m2)),

and let y:vci = fhVIEW-CHANGE; v; P; ji�j 2 y:ini g,
x:vci = fhVIEW-CHANGE; v; n; hs; l; ti; C; P; ji�j 2 x:inig

then consistent-vc-set(x:vci; y:vci) is true

4. Let consistent-nv-set(M1;M2) �
M2 = fm2 = hNEW-VIEW; v; V 0; O0; N 0i�j j

9m1 = hNEW-VIEW; v; V; O; Ni�j 2 M1 : (consistent-vc-set(V; V 0) ^

A0
gc:correct-new-view(m1; v) , (A0:correct-new-view(m2; v) ^
O = O0 � fm = hPRE-PREPARE; v; n;m0i�j jm 2 O0 ^ n � max-n(V )g ^
N = N 0 � fm = hPRE-PREPARE; v; n;m0i�j jm 2 N 0 ^ n � max-n(V )g))g,

and let y:nvi = fhNEW-VIEW; v; V; O; Ni�j 2 y:ini g,
x:nvi = fhNEW-VIEW; v; V; O; Ni�j 2 x:ini g

then consistent-nv-set(x:nvi; y:nvi) is true.
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5. Let consistent-all(M 1;M 2) �
8m 2 M 1 : (9m0 2 M 2 : (tag(m; VIEW-CHANGE) ^ consistent-vc(m;m0)) _
(tag(m; NEW-VIEW) ^ consistent-nv-set(fmg; fm0g)) _
(:tag(m; VIEW-CHANGE) ^ :tag(m; NEW-VIEW) ^ m = m0)),
Xi = x:outi [ fhmi�i j hmi�i 2 x:Wireg � fm j tag(m; CHECKPOINT)g,
and Yi = y:outi [ fhmi�i j hmi�i 2 y:Wireg,

then consistent-all(Xi: Yi)

6. Let Xfaulty = f hmi�j j x:faultyj ^ hmi�j 2 x:Wireg,
Yfaulty = f hmi�j j y:faultyj ^ hmi�j 2 y:Wireg,

consistent-all(Xfaulty; Yfaulty)

7. 8 hri�c 2 x:Wire : (9 hri�c 2 y:Wire)

Additionally, we assume faulty automata in x are also faulty and identical in H[x] (i.e., they
have the same actions and the same state.) Note that the conditions in the definition of H only
need to hold when n-faulty � f , for n-faulty > f the behavior of S is unspecified.

To prove that H is in fact a forward simulation from A0

gc to A0 one most prove that both of
the following are true:

1. For all x 2 start(A0

gc), H[x] \ start(A0) 6= fg

2. For all (x; �; x0) 2 trans(A0

gc), where x is a reachable state of A0

gc, and for all y 2 H[x],
where y is reachable in A0, there exists an execution fragment � of A0 starting with y and
ending with some y0 2 H[x0] such that trace(�) = trace(�).

Condition 1 holds because (x; y) 2 H for any initial state x of A0

gc and y of A0. It is clear
that x and y satisfy the first clause in the definition of H because the initial value of the variables
mentioned in this clause is the same in A0

gc and A0. Clauses 2 to 7 are satisfied because x:ini only
contains checkpoint messages, and y:ini, x:outi, y:outi, x:wire, and y:wire are empty.

We prove condition 2 by showing it holds for every action of A0

gc. We start by defining
an auxiliary function �(y;m; a) to compute a sequence of actions of A0 starting from state y to
simulate a receive of messagem by an automaton a (where a is either a client or replica identifier):

�(y;m; a) =
if 9X : ((m;X) 2 y:wire) then
if 9 X : ((m;X) 2 y:wire ^ a 2 X) then

RECEIVE(m)a
else

MISBEHAVE(m;X;X [ fag). RECEIVE(m)a j (m;X) 2 y:wire
else
if 9 i : (y:faultyi = false ^ m 2 y:outi) then

SEND(m; fag)i. RECEIVE(m)a
else
?

If RECEIVE(m)a is enabled in a state x, there is an m0 such that �(y;m0; a) is defined and the
actions in �(y;m0; a) are enabled for all y 2 H[x], and:
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� m = m0, if m is not a checkpoint, view-change, or new-view message

� consistent-vc(m;m0), if m is a view-change message

� consistent-nv-set(fmg; fm0g), if m is a new-view message

This is guaranteed by clauses 5, 6, and 7 in the definition of H.

Now, we proceed by cases proving condition 2 holds for each � 2 acts(A0

gc)

Non-faulty proxy actions. If � is an action of a non-faulty proxy automaton Pc other than
RECEIVE(m = hREPLY; v; t; c; i; ri�i )c, let � consist of a single � step. For the receive actions, let
� = �(y;m; c). In either case, when � is enabled in x all the actions in � are also enabled starting
from y and an inspection of the code shows that the state relation defined byH is preserved in all
these cases.

Internal channel actions. If � is a MISBEHAVE(m;X;X 0) action, there are two cases: if � is
not enabled in y, let � be �; otherwise, let � contain a single � step. In either case,H is preserved.
because � does not add new messages to x:Wire.

Receive of request, pre-prepare, prepare, or commit. For actions � = RECEIVE(m)i where
m is a syntactically valid request, pre-prepare, prepare, or commit message, let � = �(y;m; i); �
transforms y into y0 2 H[x0]:

� � and � modify wire in a way that preserves clauses 5, 6, and 7.

� For receives of request messages, � and � add the same messages to outi and ini thereby
preserving the state correspondence defined byH.

� For the other message types, the definition ofH and the definition of in-wv ensure that when
the first if condition is true in x, it is also true in y (because the condition is more restrictive
in A0

gc, and x:ini and y:ini have the same prepare and commit messages with sequence
numbers higher than x:stable-ni.) Thus, in this case, the state correspondence defined by
H is preserved. But it is possible for the if condition to be true in y and false in x; this
will cause a message to be added to y:ini and (possibly) y:outi that is not added to x:ini or
x:outi. Since this happens only if the sequence number of the message received is lower
than or equal to x:stable-ni, the state correspondence is also preserved in this case.

Garbage collection. If � = RECEIVE(hCHECKPOINT; v; n; d; ji�j )i, or � = COLLECT-
GARBAGEi, the condition holds when � is �. It is clear that the condition holds for the first
type of action. For the second type, the condition is satisfied because all the messages removed
from x:ini have sequence number lower than or equal to n and the action sets x:stable-ni to n.
The action sets x:stable-ni to n because it removes all triples with sequence number lower than n
from x:chkptsi and there is a triple with sequence number n in x:chkptsi. The existence of this
triple is guaranteed because the precondition for the collect-garbagei action requires that there
is a checkpoint message from i with sequence number n in x:ini and i only inserts checkpoint
messages in ini when it inserts a corresponding checkpoint in chkptsi.

Receive view-change. If � = RECEIVE(m = hVIEW-CHANGE; v; n; s; C; P; ji�j )i, let � =
�(y;m0; i) such that consistent-vc(m;m0). The definition of consistent-vc ensures that either both
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messages are incorrect or both are correct. In the first case, � and � only modify the destination
set of the messages in wire; otherwise, they both insert the view change message in ini. In either
case, the state correspondence defined by H is preserved.

Receive new-view. When � = RECEIVE(m = hNEW-VIEW; v; V;O;Ni�j )i, we consider
two cases. Firstly, if the condition in the outer if is not satisfied, let � = �(y;m0; i), where
consistent-nv-set(fmg; fm0g). It is clear that this ensures y0 2 H[x0] under the assumption that
y 2 H[x]. Secondly, if the condition in the outer if is satisfied when � executes in x, let � be the
execution of the following sequence of actions of A0:

1. The actions in �(y;m0 = hNEW-VIEW; v; V 0; O0; N 0i�j ; i), where consistent-nv-set(fmg; fm0g)

2. Let C be a sequence of tuples (vn; Rn;mn) from N� 2R � RM such that the following conditions are true:
i) 8 n : (x:last-execi < n � max-n(V ))

ii) 8 (vn; Rn;mn) : (vn < v ^ jRnj > 2f ^ 8 k 2 Rn : (hCOMMIT; vn; n;D(mn); ki�k 2 x:Wire+o)
^ (9 v0 : (hPRE-PREPARE; v0; n;mni�primary(v0)

2 x:Wire+o) _ mn 2 x:Wire+o)

for each (vn; Rn;mn) 2 C in order of increasing n execute:

a) �(y; cnk = hCOMMIT; vn; n; D(mn); ki�k ; i), for each k 2 Rn

b) if enabled �(y; pn = hPRE-PREPARE; v0; n;mni�primary(v0)
; i) else �(y;mn; i)

c) EXECUTE(mn; vn; n)i

The definition of H (clauses 1, 4, 5 and 6) ensures that, when the receive of the new-view
message executes in y, the condition in the outer if is true exactly when it is satisfied in x. Let y1 be
the state after �(y;m0; i) executes; we show that when C is empty (i.e., max-n(V ) � last-execi),
y0 = y1 2 H[x0]. This is true because:

� Both � and �(y;m0; i) set viewi to v, add all the pre-prepares in O [ N to ini, and add
consistent new-view messages to ini.

� �(y;m0; i) also adds the pre-prepares in (O0[N 0)� (O[N) to ini but this does not violate
H because � ensures that x0:stable-ni is greater than or equal to the sequence numbers in
these pre-prepares.

� Both � and �(y;m0; i) add prepares to ini and outi; �(y;m0; i) adds all the prepares added
by � and some extra prepares whose sequence numbers are less than or equal to x0:stable-ni.

When C is not empty (i.e., max-n(V ) > last-execi), it is possible that y1 62 H[x0] because
some of the requests whose execution is reflected in the last checkpoint in x0 may not have executed
in y1. The extra actions in � ensure that y0 2 H[x0].

We will first show that C is well-defined, i.e., there exists a sequence with one tu-
ple for each n between x:last-execi and max-n(V ) that satisfies conditions i) and ii). Let
m00 = hVIEW-CHANGE; v;max-n(V ); hs; l; ti; C 0; P; ki�k be the view-change message in V whose
checkpoint value, hs; l; ti, is assigned to (vali; last-repi; last-rep-ti). Since m00 is correct, C 0

contains at least f + 1 checkpoint messages with sequence number max-n(V ) and the digest of
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hs; l; ti. Therefore, the bound on the number of faulty replicas, and Invariant 5.3 (condition 2)
imply there is a sequence of requests �1 such that committed-Wire(s; l; t;max-n(V ); v; �1).

Since by the inductive hypothesis y 2 H[x], all the the commit, pre-prepare and request
messages corresponding to �1 are also in y:Wire+o. Therefore, all the actions in a) and at least
one of the actions in b) are enabled starting from y1 for each n and each k 2 Rn. Since vn < v

for all the tuples in C , each receive in �(y; cnk ; i) will insert cnk in ini. Similarly, the receive
of the pre-prepare or request will insert a matching pre-prepare or request in ini. This enables
execute(mn; vn; n)i.

Invariant 5.3 (condition 1) also asserts that there exists a sequence of requests �2 such
that committed-Wire(x:vali; x:last-repi; x:last-rep-ti; x:last-execi; x:viewi; �2). Since by the inductive
hypothesis y 2 H[x], all the the commit, pre-prepare and request messages corresponding to �1

and �2 are also in y:Wire+o. This and Invariant 5.4 imply that �2 is a prefix of �1. Therefore,
after the execution of �, vali; last-repi; last-rep-ti; last-execi have the same value in x0 and y0 as
required by H.

Send. If � = SEND(m;X)i, let � be:

� A single send(m;X)i step, ifm does not have the CHECKPOINT, VIEW-CHANGE, or NEW-VIEW

tag and this action is enabled in y.

� �, if m has the CHECKPOINT tag or the action is not enabled in y (because the message is
already in the channel.)

� A single send(m0;X)i step, if m has the VIEW-CHANGE tag and this action is enabled in y

(where consistent-vc(m;m0).)

� A single send(m0;X)i step, ifm has the NEW-VIEW tag and this action is enabled in y (where
consistent-nv-set(fmg; fm0g).)

Send-pre-prepare and send-commit. If � = SEND-PRE-PREPARE(m; v; n)i or � = SEND-
COMMIT(m; v; n)i, let � contain a single � step. This ensures y0 2 H[x0] because these actions
are only enabled in x when they are enabled in y, and they insert and remove the same messages
from ini and outi.

Execute. When � = EXECUTE(m; v; n)i, let � contain a single � step. The action is enabled
in y when it is enabled in x because it is only enabled in x for n > x:stable-ni and x:ini and y:ini
have the same pre-prepare and commit messages with sequence numbers greater than x:stable-ni
and the same requests. It is easy to see that the state correspondence defined byH is preserved by
inspecting the code.

View-change. If � = VIEW-CHANGE(v)i, let � contain a single � step. The action is enabled
in y when it is enabled in x because viewi has the same value in x and y. Both � and � insert view-
change messages m and m0 (respectively) in ini and outi; it is clear that this ensures y0 2 H[x0]
provided consistent-vc(m0;m0) is true. Clause 2 in the definition of H ensures that m and m0

contain the same messages in the P component for sequence numbers greater than x:stable-ni;
therefore, consistent-vc(m0;m0) is true.

Send-new-view. If � = SEND-NEW-VIEW(v; V )i, let � be the execution of the following
sequence of actions of A0:
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1. send-new-view(v; V 0)i step, where consistent-vc-set(V; V 0).

2. Let C be a sequence of tuples (vn; Rn;mn) from N� 2R � RM such that the following conditions are true:
i) 8 n : (x:last-execi < n � max-n(V ))

ii) 8 (vn; Rn;mn) : (vn < v ^ jRnj > 2f ^ 8 k 2 Rn : (hCOMMIT; vn; n;D(mn); ki�k 2 x:Wire+o)
^ (9 v0 : (hPRE-PREPARE; v0; n;mni�primary(v0)

2 x:Wire+o) _ mn 2 x:Wire+o)

for each (vn; Rn;mn) 2 C in order of increasing n execute:

a) �(y; cnk = hCOMMIT; vn; n; D(mn); ki�k ; i), for each k 2 Rn

b) if enabled �(y; pn = hPRE-PREPARE; v0; n;mni�primary(v0)
; i) else �(y;mn; i)

c) EXECUTE(mn; vn; n)i

This simulation and the argument why it preservesH is very similar to the one presented for
receives of new-view messages.

Failure. If � = REPLICA-FAILUREi or � = CLIENT-FAILUREi, let � contain a single � step. It
is easy to see that y0 2 H[x0].

Actions by faulty nodes. If � is an action of a faulty automaton, let � contain a single � step.
The definition of H ensures that � is enabled in y whenever � is enabled in x. Modifications to
the internal state of the faulty automaton cannot violateH. The only actions that could potentially
violateH are sends. But this is not possible because a faulty automaton cannot forge the signature
of a non-faulty one.
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