Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999

A Correctness Proof for a Practical
Byzantine-Fault-Tolerant Replication Algorithm

Miguel Castro and Barbara Liskov

Laboratory for Computer Science,
M assachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139

{castro, liskov}i@cs.mt.edu

1 Introduction

We have devel oped apractical algorithm for state-machinereplication[7, 11] that tolerates Byzan-
tine faults. The algorithm is described in [4]. It offers a strong safety property — it implements
alinearizable [5] object such that all operations invoked on the object execute atomically despite
Byzantine failures and concurrency. Unlike previous algorithms[11, 10, 6], ours works correctly
in asynchronous systems like the Internet, and it incorporates important optimizations that enable
it to outperform previous systems by more than an order of magnitude [4].

Since Byzantine-fault-tolerant algorithmsarerather subtle, it isimportant to reason about them
formally. This paper presents aformal specification for the unoptimized version of our algorithm
presented in Section 4 of [4] and provesits safety (but not its liveness.) The specification usesthe
1/0 automaton formalism of Tuttle an Lynch [8] and the proof is based on invariant assertions and
simulation relations. *

The specification and proof presented in this paper have some interesting, novel properties
that are independent of our algorithm. First, we use an |/O automaton to formalize the correct
behavior of our Byzantine-fault-tolerant object implementation. This technique has been used for
benign failures [8] but we believe we are the first to use it for Byzantine faults. The advantage of
using an 1/O automaton to formalize the correct behavior is that it enables the use of state-based
proof techniques like simulation relations. These techniques are more stylized than trace-based
proof techniques — they are more convincing and they are amenable to machine verification.
Second, our formalization accountsfor Byzantinefaults of both replicasand clients. A trace-based
formalization of linearizability in the presence of Byzantine-faulty clients [9] has been proposed
recently. Our formalization has the advantage that it enables the use of simulation relations. And
it differs from the one in [9] because it makes authentication and access control explicit in the
formalization. Revocable access control is a powerful defense against Byzantine faulty clients.

Thisresearch was supported in part by DARPA under contract F30602-98-1-0237 monitored by the Air Force Research
Laboratory, and in part by NEC.

1The paper assumes the reader is familiar with 1/0 automata, invariant assertions, and simulation relations. Lynch’s
book [8] provides agood description of the formalism and the two proof techniques.

Third, we structure our proof such that our assumptions about authenticated communication are
isolated in a small number of invariants and in the proofs of a small number of simulation steps.
Thisleadsto a simpler proof.

The paper is organized as follows. Section 2 presents the high-level model for the system
and our assumptions. Section 3 formalizes the correctness condition for our algorithm using a
simple 1/O automaton S' as a specification of correct behavior. Section 4 defines the automata that
compose our replicated system implementation. But it does not attempt to explain the algorithm.
Thereader isreferred to [4] for anatural language description of the algorithm that should be easier
to understand. Thissection also provesthe safety of the algorithm by using invariant assertionsand
simulation relations to show that it implements .S. The automata defined in Section 4 implement
asimplified version of the algorithm that does not garbage collect information. Section 5 defines
a version of the algorithm with garbage collection and proves its safety by using a simulation
relation to show that it implements the simplified version of the algorithm in 4.

2 Modd

The goal of our algorithm is to provide a Byzantine-fault-tolerant implementation of an atomic
object [8] for agiven variable of sometype 7. Our atomic object implementation uses replication
to enable concurrent sharing of the variable by many clients in a distributed system. It ensures
linearizability [5] — all operations invoked on the variable execute atomically despite Byzantine
failuresand concurrency. We start by defining thevariabletype7 and then describe the architecture
of the atomic object implementation.

Variables of type 7 have avaluein aset V, which isinitialy equal to v,. Their behavior is
defined by the function:
g:CxOxV—=0xV

The arguments to the function are a client identifier in C, an operation in a set O (which encodes
an operation identifier and any arguments to that operation) and an initial value. These arguments
are mapped by g to the result of the operation in O’ and a new value for the variable. We require
g to betotal. This can be achieved in practice by having g map all pairs with an invalid operation
to apair with an error result and the argument value.

Theclientidentifier isincluded explicitly asan argument to g to makeit clear that g can return
different resultsfor different clients. In particular, g can perform access control; if the client is not
allowed to perform the argument operation, g can return a special no-access error and leave the
variable's value unmodified. Additionally, access control can depend on the state of the service
thereby allowing atomic access revocations. Access control with revocable accessis an important
defense against Byzantine-faulty clients.

We model the atomic object implementation and its clients as a set of 1/0 automata[8]. Each
client hasauniqueidentifier cinaset C and ismodeled by aclient automaton C... Thecomposition
of al clientsis denoted by C. The atomic object automaton A is the composition of three types
of automata: proxy, multicast channel, and replica. Figure 1 showsthe architecture of the system
and Figure 2 presents the external interface of A.

client-failure c

nodec / nodei

request(o) . {
Q replica-failure i
reply () ¢
request(o) 4
C‘d replic&failurej
reply(r) 4

noded \

client-failure

Figure 1. Implementation Architecture

Thereis aproxy automaton P, for each client C,.. P, provides an input action for client c to
invoke an operation o on the shared variable, REQUEST (o)., and an ouput action for ¢ to learn the
result » of an operation it requested, REPLY (7). The communication between C,. and P, does not
involve any network; they are assumed to execute in the same node in the distributed system. P.
communicates with a set of server replicas to implement the interface it offers to the client.

Each replica has a unique identifier 7 in aset R and is modeled by an automaton R;. We
assume |R| = 3f + 1 for some positive integer f. This threshold f is the maximum number of
replicafaultsthat can betolerated by the system. Theresiliency of our algorithmisoptimal: 3f +1
is the minimum number of replicas that allow an asynchronous replication system to implement
an atomic object when up to f replicas are faulty (see[3] for a proof.)

We assume replicas execute in different nodes in the distributed system. Communication
between aproxy and the set of replicas and among replicasis performed using amulticast channel
automaton M C'. Automata have no access to the state components of automata running on other
nodesin the distributed system.

The multicast channel automaton M C may fail to deliver messages, it may delay them,
duplicate them, or deliver them out of order. We do not assume synchrony. The nodes are part of
an asynchronous distributed system with no known bounds on message delays or on the time for
automata to take enabled actions.

We use a Byzantine failure model, i.e., faulty automata may behave arbitrarily (except for
the restrictions discussed next.) The CLIENT-FAILURE and REPLICA-FAILURE actions are used to

3

model client and replicafailures. Once such afailure action occurs the corresponding automaton
is replaced by an arbitrary automaton with the same external interface and it remains faulty for
the rest of the execution. We assume however that this arbitrary automaton has a state component
called faulty that is set to true. It isimportant to understand that the failure actions and the faulty
variables are used only to formally model failures for the correctness proof; our algorithm does
not know whether aclient or replicais faulty or not.

Input: REQUEST(0)¢,0 € O,c €C
CLIENT-FAILURE,, c € C
REPLICA-FAILURE;, i € R

Output: REPLY(r)e, 7 € O',c€C

Figure 2: External Signature of A

We allow for avery strong adversary that can coordinate faulty nodes, delay communication,
or delay correct nodes in order to cause the most damage to the replicated service. But we
assume two restrictions on the adversary and the faulty nodes it controls: automata can use
unforgeable digital signatures to authenticate communication; and they can use collision-resistant
hash functions. These assumptions are defined in more detail next.

Unforgeable signatures: Any non-faulty client proxy or replica automaton, x, can authenticate
messages it sends on the multicast channel by signing them. We denote a message m signed by =
as (m),, . And (with high probability) no automaton other than = can send (m),,, (either directly
or as part of another message) on the multicast channel for any value of m.

Callision-resistant hash functions Any automaton can compute a digest D (m) of a message m
such that (with high probability) it isimpossible to find two distinct messagesm and m' such that
D(m) # D(m’).

These assumptions are probabilistic but there exist signature schemes (e.g., [2]) and hash
functions (e.g, [1]) for which they are believed to hold with very high probability. Therefore, we
will assume that they hold with probability one in the rest of the paper.

3 Correctness Condition

We specify the correct behavior for A by using another I/0O automaton S with the same external
signature as A. We say that A is correct if it implements S. S is asimple abstract atomic object
for avariable of type 7 that is defined as follows:

Signature:

Input: REQUEST(0).
CLIENT-FAILURE,
REPLICA-FAILURE;

Internal: ExecuTE(o,t,c)
FAULTY-REQUEST (o, t, ¢)

Output: REPLY (1)

Heree0oc O,teN,ceC,i e R,andr € O’
State:

val € V, initidly v,

in C O xNx C,initidly {}

out C O x N x C,initidly {}

Ve € C, last-req, € N, initially last-req, = 0

Ve € C, last-rep-t, € N,initialy last-rep-t, = 0

Ve € C, faulty-client, € Bool, initialy faulty-client, = false
Vi € R, faulty-replica, € Bool, initialy faulty-replica, = false
nfaulty = |{ ¢ | faulty-replica; = true}|

Transitions (if n-faulty < f):

REQUEST(0). FAULTY-REQUEST (o, t, ¢)
Eff: last-req, := last-req, + 1 Pre: faulty-client, = true
in:=inU {(o, last-req,, c)} Eff: in:=inU {{o,t,¢)}
CLIENT-FAILURE, EXECUTE(o, t, c)
Eff: faulty-client, := true Pre: (o,t,c) €in
Eff: in:=ine{(o,t,c)}
REPLICA-FAILURE; if t > last-rep-t, then
Eff: faulty-replica, := true (r,val) == g(c,0,val)
out :=out U {(r,t,c)}
REPLY (7). last-rep-t, :=1¢

Pre: faulty-client, = truev 3¢ : ((r,t,c) € out
Eff: out := out &{(r,t,c)})

Most of the definition of S is self-explanatory but some issues deserve clarification. To
model the fact that A does not behave correctly when more than f replicas are Byzantine-faulty,
the behavior of S is left unspecified when n-faulty > f, i.e.,, S may behave arbitrarily with the
restriction that the faulty-client and faulty-replica variablesthat have val uetrue cannot be modified.
The FAULTY-REQUEST actionsmodel execution of requests by faulty clientsthat bypassthe external
signature of A, e.g., by injecting the appropriate messages into the multicast channel. Similarly,
the REPLY precondition is weaker for faulty clientsto alow arbitrary replies for such clients.

The last-req, component is used to distinguish requests by ¢ to execute the same operation
o. And, last-rep-t. remembers the value of last-reg, that was associated with the last operation
executed for c. This models awell-formedness condition on non-faulty clients: they are expected
to wait for the reply to the last requested operation before they issue the next request. Otherwise,
one of the requests may not even execute and the client may be unable to match the replies with
the requests.

4 The System

This section defines the multicast channel, proxy, and replica automata.

4.1 TheMulticast Channel Automaton

The multicast channel automaton models the communication network connecting the proxy and
replica automata. There is a single multicast automaton in the system with SEND and RECEIVE
actions for each proxy and replica. These actions allow automata to send messagesin a universal
message set M to any subset of automatawith identifiersin X = C U R. The channel automaton
does not provide authenticated communication; the RECEIVE actions do not identify the sender of
the message. It is defined asfollows.

Signature:

Input: SEND(m, X) 4
Internal: misBeHAVE(m, X, X')
Output: RECEIVE(m)

Hee me M, X, X' CX,andz € X
State:
wire C M x 2%, initialy {}

Transitions:
SEND(m, X), MISBEHAVE(m, X, X')
Eff: wire:=wireU {(m, X)} Pre: (m,X) € wire
Eff: wire:= wire<{(m, X)} U {(m,X")}
RECEIVE(m) 5

Pre: 3(m, X) e wire: (z € X
Eff: wire:=wire<{(m, X)} U {(m, X <{z})})

TheMISBEHAVE actionsallow the channel to loose messagesor duplicate them and the RECEIVE
actions are defined such that messages may be reordered. Additionally, the automaton is defined
such that every message that was ever sent on the channel is remembered and can be replayed
later.

4.2 TheProxy Automaton

Each client C,. Ointeracts with the atomic object through a proxy automaton P,, which is defined
asfollows.

Signature:

Input: REQUEST(0).
RECEIVE((REPLY, v,t,¢,%,T)s;)c
CLIENT-FAILURE,

Output: REPLY (1)
SEND(m, X).

Here,0 € O,v,t eN,ceC,ieR,re O, me M,and X C X
State:

view, € N, initidly O

inc C M, initidly {}

out: C M, initialy {}
last-req, € N, initidly O
retrans. € Bool, initidly false
faulty, € Bool, initialy false

Transitions:

REQUEST(0).
Eff: last-req, := last-reg, + 1
out, := {(REQUEST, o, last-req,, ¢)o. }
in. :={}
retrans, := false

RECEIVE((REPLY, v,t,¢,%,T)s;)c
Eff: if (out. # {} Alast-req, = ¢) then
in. :=in. U {(REPLY, v,t,¢,%,7)0s; }

CLIENT-FAILURE,
Eff: faulty, := true

REPLY ()¢
Pre: out. # {} AR : (|R| > fAVi€ R: (Jv: ((REPLY, v, last-req,, ¢, i,7)o; € iN)))
Eff: view, := maz({v|(REPLY, v, last-req,, ¢,,7)o; € iNc})
out. :={}

SEND(mn, {view, mod |R|}).
Pre: m € out. A —retrans.
Eff: retrans, := true

SEND(m, R).

Pre. m € out. A retrans,
Eff: none

4.3 The Replica Automaton

Each replica automaton R; is defined as follows.

Signature:

Input: RECEIVE((REQUEST, 0, ¢, €)o.)i

RECEIVE((PRE-PREPARE, v, 1, M))i

RECEIVE((PREPARE, v, 7, d, j)o;)i

RECEIVE((COMMIT, v,n,d, j)o;)i

RECEIVE((VIEW-CHANGE, v, P, j)o,)i
RECEIVE((NEW-VIEW, v, V, O, N)s,)i
REPLICA-FAILURE;

Internal: SEND-PRE-PREPARE(m, v, n);
SEND-COMMIT(m, v, n);
EXECUTE(m, v, n);
VIEW-CHANGE(v);
SEND-NEW-VIEW(v, V');

Output: SEND(m, X).

Here, t,v,n € N,c € C,4,7 € R, m € M,V,O,LN C M, X C X, and
deD={d|3Ime M:(d=D(m))}

State:

val; € V,initialy v,

view; € N, initially 0

in; € M, initialy {}

out; C M, initialy {}

last-rep, : C — O',initidlyVe € C: last-rep,(c) = null-rep
last-rep-t, : C — N, initidlyVe € C: lastrept,(c) = 0
segno; € N, initidly 0

last-exec; € N, initialy 0

faulty, € Bool, initialy false

Auxiliary functions:

tag(m,u) = m = (u,...)
primary(v) = v mod | R|
primary(i) = view; mod | R|
in-v(v,7) = view; = v
prepared(m,v,n, M) = (PRE-PREPARE,U,n,m)aprimry(v) € MA
AR : (|R| > 2f A primary(v) € R AVk € R : ((PREPARE,v,n, D(m),k)s, € M))

prepared(m, v, n,i) = prepared(m,v,n,in;)
last-prepared(m, v, n, M) = prepared(m,v,n, M) A

Am', v 1 ((prepared(m’, v’ ,n, M) A v > v) V (prepared(m’,v,n, M) A m # m'))
last-prepared(m, v, n,7) = last-prepared(m, v, n,in;)
committed(m, v,n,i) = (I : ((PRE-PREPARE,U',n,m)gprimy(v,) € in) V.m € in) A

AR : (|R| > 2f+1 AVEk € R : ({COMMIT,v,n,D(m),k)s, € in;))

correct-view-change(m,v,j) = 3P : (m = (VIEW-CHANGE, v, P, j)o,; A

V (PRE-PREPARE, v', 11, m'>vprimary(vr) € P : (last-prepared(m’,v',n, P) A v' < v)
merge-P(V) = { m| 3 (VIEW-CHANGE, v, P,k),, € V : m € P}
max-n(M) = max({ n | (PRE-PREPARE, v, n, m),, € M})
correct-new-view(m, v) =

AV,O,N,R: (m = (NEW—VIEW,v,V,O,N)(,primary(v) A|V| = |R| = 2f+1A

Vk € R: (Am' € V : (correct-view-change(m’, v, k))) A

O = { (PRE-PREPARE, v, n, m'>aprimary(v) | 3" last-prepared(m’, v’, n, merge-P(V))} A
N = { (PRE-PREPARE, v, 7, "Ml)vprimary(u) |n < max-n(O) A

8

Av',m',n : last-prepared(m’,v’, n, merge-P(V)))
has-new-view(v,i) = v = 0V dm : (m € in; A correct-new-view(m, v))

Input Transitions:

RECEIVE({REQUEST, 0, t, C}s.)i
Eff: let m = (REQUEST, o, t, ¢)o.
if ¢ = last-rep-t;(c) then
out; := out; U {(REPLY, View;, ¢, c, %, last-rep; (c))o, }
else
in; :=1in; U{m}
if primary(z) # 4 then
out; := out; U {m}

RECEIVE((PRE-PREPARE, v, 12, M),)i (j 7 %)
Eff: if j = primary(z) A in-v(v, %) A has-new-view(v, ¢)A

Ad : (d # D(m) A (PREPARE, v, n,d, i), € in;) then

let p = (PREPARE, v, 1, D(m), 1)s;
in; := in; U {(PRE-PREPARE, v, n, M), ;, P}
out; := out; U {p}

elseif Jo,t,c : (m = (REQUEST, 0,1, ¢)..) then
in; :==in; U {m}

RECEIVE((PREPARE, v, 1, d, j)o;)i (§ # %)
Eff: if j # primary(z) A in-v(v, %) then
in; :=in; U {(PREPARE, v, n,d,), }

RECEIVE({COMMIT, v, n, d, §)o,)i (§ # 1)
Eff: if view; > v then
in; ;= in; U {(COMMIT,v,n,d, j)s; }

RECEIVE((VIEW-CHANGE, v, P, j)o,)i (j # i)
Eff: let m = (VIEW-CHANGE, v, P, j)o;
if v > view; A correct-view-change(m, v, j) then
in :=in U{m}

RECEIVE((NEW-VIEW, v, X, 0, N),.)i (§ # 1)
Eff: let m = (NEW-VIEW,v, X, O, N),,,
P = {(PREPARE, v,n’, D(m'), i), |(PRE-PREPARE, v, ', m"),, € (OU N)}
if v > 0A v > view; A correct-new-view(m, v) A —has-new-view(v, 1) then

view; ‘== v
ing =i UOUNU{m}UP
out; .= P

REPLICA-FAILURE;
Eff: faulty, := true

Output Transitions:

SEND(m, R <{i})i
Pre: m € out; A —~tag(m, REQUEST) A —tag(m, REPLY)
Eff: out; := out; &{m}

SEND(m, {primary(i)}):
Pre: m € out; A tag(m, REQUEST)
Eff: out; := out; &{m}

SEND((REPLY, v, t, ¢, i, 7)o, {C})i
Pre: (REPLY,v,t,¢,%,T)s, € OUL;
Eff: out; := out; &{(REPLY, v,t,¢,%,)0, }

Internal Transitions:

SEND-PRE-PREPARE(mM, v, 11);
Pre: primary(i) =i A seqno, = n <1 A in-v(v, ¢) A has-new-view(v, t)A
Jo,t,c: (m = (REQUEST, 0,t,c)s, A m € iN;)A A(PRE-PREPARE, v, n', m},, € in;
Eff: segno; := segno; + 1
let p = (PRE-PREPARE, v, 1, M),
out; := out; U {p}
in; :==in; U {p}

SEND-COMMIT(m, v, n);
Pre: prepared(m,v,n, i) A (COMMIT, v, n, D(m),i)o; & iN;
Eff: letc = (coMmMIT,v,n, D(m),)s,
out; := out; U {c}
in; :=1in; U {c}

EXECUTE(m, v, n);
Pre: n = last-exec; + 1 A committed(m, v, n, 7)
Eff: last-exec; :=n
if (m # null) then
let (REQUEST, 0,t,¢)y. = m
if t > last-rep-t;(c) then
if t > last-rep-t;(c) then
last-rep-t; (c) :=¢
(laa_repi (C)a vall) = g(c, o, vall)
out; := out; U {(REPLY, View;, t, c, 1, last-rep; (c))., }
in; :=in; &{m}

SEND-VIEW-CHANGE(v);
Pre: v =view; +1
Eff: view; 1= v
let P' = {(m,v,n)|last-prepared(m, v,n, 1)},
= U<m’v’n>€P, ({p = (PREPARE, v, n, D(m), k)s, |p € i } U {(PRE-PREPARE, v, 1, m>vprimary(v) b,
m = (VIEW-CHANGE, v, P,),
out; := out; U {m}
in; :=in; U {m}

10

SEND-NEW-VIEW(v, V');
Pre: primary(v) =iAv > view; Av >0AV Cin A V| = 2f + 1 A —has-new-view(v, i) A
JR: (|R|=2f +1AVk € R: (3P : ((VIEW-CHANGE, v, P, k)., € V)))
Eff: view; :==v
let O = {(PRE-PREPARE, v, n, m)s, |3V : last-prepared(m, v’, n, merge-P(V))},
N = {(PRE-PREPARE, v, i, null, k), |n < max-n(O)A Zv',m,n : last-prepared(m,v’, n, merge-P(V))},
m = (NEW-VIEW, v, V, O, N),,
segno; = max-n(O)
inj ;=i UOUN U {m}
out; ;== {m}

4.4 Safety Proof

This section proves the safety of our algorithm, i.e., it provesthat A implements .S. We start by
proving some invariants.

Invariant 4.1 The following is true of any reachable state in an execution of A,
Vi,j € R, m € M : ((-fauty, A —faulty, A —tag(m,REPLY)) =
(((m)o; € in; V Im' = (VIEW-CHANGE, v, P,k)s, : (m' € inj A (m),, € P)V

Im’ = (NEW-VIEW,v,V,0,N),, : (m' € inj A ((m)o; € V V (m),, € merge-P(V))))
= (m)gi (S |n,))

The sameis also trueif one replacesin; by {m | 3X : (m, X) € wire} or by out;

Proof: For any reachable state z of A and messagevaluem that is not areply message, if replicas
isnot faulty in state z, (m),, € out; = (m),, € in;. Additionaly, if (m),, € in; istrue for some
state in an execution, it remains true in all subsequent states in that execution or until 7 becomes
faulty. By inspection of the code for automaton R;, these two conditions are true because every
action of R; that inserts amessage (m),, in out; also insertsit in in; and no action ever removesa
message signed by i from in;.

Our assumption on the strength of authentication guarantees that no automaton can imper-
sonate a non-faulty replica R; by sending (m),, (for al values of m) on the multicast channel.
Therefore, for a signed message (m),, to be in some state component of a non-faulty automaton
other than R;, it is necessary for SEND((m),,, X); to have executed for some value of X at some
earlier point in that execution. The precondition for the execution of such a send action requires
(m),, € out;. Thelatter and the two former conditions prove the invariant. 0

Invariant 4.2 Thefollowing is true of any reachable state in an execution of A, for any replica i
such that faulty; isfalse:

1. V(PREPARE, v,n,d, 1), € iN; : (Ad" # d : ((PREPARE, v,n,d’,%)s, € iN;))

2. Yv,n,m: ((« = primary(v) A (PRE-PREPARE, v, 1, m),; € iN;) =
Am' : (m' # m A (PRE-PREPARE, v,n, m'),; € in;))

3. V(PRE-PREPARE, v,n,m),; € iN; : (s = primary(v) = n < seqno;)
4. V(PRE-PREPARE, v, T, m>0primary(v> €in; :
(v>0=3Im' = (NEW—VIEW,U,X,O,N)Uprimary(v) : (m' € in; A correct-new-view(m', v)))

11

VYm' = (NEW-VlEW,v,X,O,N)(,primary(v) € in; : correct-new-view(m', v)
Vm' = (VIEW-CHANGE, v, P, j); € in; : correct-view-change(m’, v, j)
V(PREPARE, v, n, D(m), i)s; € iN; : ((PRE-PREPARE, v, 12, m>0primary(v> €in;)

V(PRE-PREPARE, v, 71, m>0primary(v> € in; : (2 # primary(v) = (PREPARE, v, n, D(m),1),; € in;)

© o N o u

V(PRE-PREPARE, v, 71, m>0primary(v> €in; ;v < view;

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, all conditions are vacuously true in the base case. For the inductive step,
assume that the invariant holds for every state of any execution « of length at most I. We will
show that the invariant also holds for any one step extension a; of a.

Condition (1) can beviolated in a1 only if an action that may insert a prepare message signed
by i inin; executes. These are actions of the form:

1. RECEIVE((PRE-PREPARE, v,n,m')s)i
2. RECEIVE((PREPARE, v,n,d, J)o;)i
3. RECEIVE((NEW-VIEW,v,V, 0, N)o,)i

The first type of action cannot violate condition (1) because the condition in the if
statement ensures that (PREPARE,v,n, D(m'),7),, is not inserted in in; when there exists a
(PREPARE, v, n,d, i), € in; suchthat D(m') # d. Similarly, the second type of action can-
not violate condition (1) becauseit only inserts the argument prepare messagein in; if it is signed
by areplica other than R;.

For the case v = 0, actions of type 3 never have effects on the state of R;. For thecasev > 0,
we can apply the inductive hypothesis of conditions (7) and (4) to conclude that if there existed a
(PREPARE, v, m, D(m), 1), € in; inthelast statein «, there would also exist a new-view message
for view v in in; in that state. Therefore, the precondition of actions of type 3 would prevent
them from executing in such a state. Since actions of type 3 may insert multiple prepare messages
signed by R; into in;, thereis still a chance they can violate condition (1). However, this cannot
happen because these actions are enabled only if the argument new-view message is correct and
the definition of correct-new-view ensures that there is at most one pre-prepare message with a
given sequence number in O U N.

Condition (2) can be violated in a3 only by the execution of an action of one of the following
types:

RECEIVE((PRE-PREPARE, v, 2, M),),
RECEIVE({NEW-VIEW, v, V, O, N),,)i,

SEND-PRE-PREPARE(m, v, 10);, OF

A w DR

SEND-NEW-VIEW(v, V');

Actions of thefirst two types cannot violate condition (2) becausethey only insert pre-prepare
messagesin in; that are not signed by R;. Actions of the third type cannot violate condition (2)
because the inductive hypothesis for condition (3) and the precondition for the send-pre-prepare
action ensurethat the pre-prepare messageinserted in in; has a sequence number that is one higher
than the sequence number of any pre-prepare message for the same view signed by R; in in;.

12

Finally, actions of the fourth type cannot violate condition (2). For v = 0, they are not enabled.
For v > 0, the inductive hypothesis of condition (4) and the precondition for the send-new-view
action ensure that no pre-prepare for view v can be in in; when the action executes, and the
definition of O and IV ensuresthat there is at most one pre-prepare message with a given sequence
numberin O U N.

Condition (3) can potentially be violated by actions that insert pre-preparesin in; or modify
seqno;. Theseare exactly the actions of the typeslisted for condition (2). Asbefore, actions of the
first two types cannot violate condition (3) because they only insert pre-prepare messagesin in;
that are not signed by R; and they do not modify seqno,. The send-pre-prepare action preserves
condition (3) because it increments segqno; such that it becomes equal to the sequence number of
the pre-prepare message it insertsin in;. The send-new-view actions also preserve condition (3):
(as shown before) actions of this type only executeif there is no pre-prepare for view v inin; and,
when they execute, they set seqno; := max-n(O), which is equal to the sequence number of the
pre-prepare for view v with the highest sequence number inin;.

To violate condition (4), an action must either insert a pre-prepare messagein in; or removea
new-view messagefromin;. No action ever removesnew-view messagesfromin;. Theactionsthat
may insert pre-prepare messagesin in; are exactly the actions of the types listed for condition (2).
Thefirst type of actionin thislist cannot violate condition (4) because the if statement in its body
ensures that the argument pre-prepare message is inserted in in; only when has-new-view(v,) is
true. The second type of action only inserts pre-prepare messagesfor view v inin; if the argument
new-view message is correct and in this case it aso inserts the argument new-view message
inin;. Therefore, the second type of action also preserves condition (4). The precondition of
send-pre-prepare actions ensures that send-pre-prepare actions preserve condition (4). Finally,
the send-new-view actions also preserve condition (4) because their effects and the inductive
hypothesis for condition (6) ensure that a correct new-view message for view v isinserted in in;
whenever apre-prepare for view v isinsertedinin;.

Conditions(5) and (6) are never violated. First, received new-view and view-change messages
are aways checked for correctness before being inserted in in;. Second, the effects of send-view-
change actions together with the inductive hypothesis of condition (9) and the precondition of
send-view-change actions ensure that only correct view-change messages are inserted in in;.
Third, the inductive hypothesis of condition (6) and the effects of send-new-view actions ensure
that only correct new-view messagesare inserted in in;.

Condition (7) is never violated because no action ever removes a pre-prepare from in;
and the actions that insert a (PREPARE,v,n, D(m),i),, in in; (namely actions of the form
RECEIVE((PRE-PREPARE, v,n,m'),,); and RECEIVE((NEW-VIEW,v,V,0, N)s,);) aso insert a

(PRE-PREPARE, v, 1, m>0primary(v) inin;.

Condition (8) can only be violated by actions that insert pre-prepare messagesin in; because
prepare messagesare never removed fromin;. Theseare exactly the actionslisted for condition (2).
The first two types of actions preserve condition (8) because whenever they insert a pre-prepare
message in in; they always insert a matching prepare message. The last two types of actions can
not violate condition (8) because they never insert pre-prepare messages for views v such that
primary(v) # @ inin;.

13

The only actionsthat can violate condition (9) are actions that insert pre-prepare messagesin
in; or make view; smaller. Since no actions ever make view; smaller, the actions that may violate
condition (9) are exactly those listed for condition (2). Theif statement in the first type of action
ensures that it only inserts pre-prepare messages in in; when their view number is equal to view;.
The if statement in the second type of action ensures thatv it only inserts pre-prepare messages
in in; when their view number is greater than or equal to view;. Therefore, both types of actions
preserve the invariant. The precondition for the third type of action and the effects of the fourth
type of action ensurethat only pre-prepare messageswith view number equal to view; are inserted
inin;. Thus, these two types of actions also preserve the invariant. 0

Definition 4.3 n-faulty = |{i € R|faulty; = true}|

Invariant 4.4 Thefollowing istrue of any reachable state in an execution of A,

Vi,j € R, n,v € N, m,m' € M: ((—-faulty; A —faulty; A nfaulty < f) =
(prepared(m, v,n, i) A prepared(m’,v,n,5) = D(m) = D(m')))

Proof: By contradiction, assume the invariant does not hold. Then prepared(m,v,n,i) = true
and prepared(m’, v, n, j) = true for some values of m,m’, v, n, 1, j such that D(m') # D(m).
Since there are 3f + 1 replicas, this condition and the definition of the prepared predicate imply:

@3R:(|R| > fAVEER:
((((PRE-PREPARE, v, n, m)s, € in; Ak = primary(v)) V (PREPARE, v, n, D(m), k)s, € iN;) A
(((PRE-PREPARE, v, 1, m'}5, € IN; Ak = primary(v)) V (PREPARE, v, n, D(m'), k),, € in;)))
Since there are at most f faulty replicasand R hassize at least f + 1, condition (a) implies:

(b) 3k € R : (faulty,, = falsen
((((PRE-PREPARE, v, m, m),, € in; Ak = primary(v)) V (PREPARE, v, n, D(m), k),, € in;) A
(((PRE-PREPARE, v,n, m')5, € iN; A k = primary(v)) V (PREPARE, v,n, D(m'), k),, € in;)))

Invariant 4.1 and (b) imply:

(c) 3k € R : (faulty, = falsen
((((PRE-PREPARE, v, 1, M)y, € iNi Ak = primary(v)) V (PREPARE, v, n, D(m), k)s, € iNg) A
(({(PRE-PREPARE, v, n,m'},, € ini Ak = primary(v)) V (PREPARE, v, n, D(m'), k)., € ing)))

Condition (c) contradicts Invariant 4.2 (conditions 1, 7 and 2.) 0

Invariant 4.5 The following is true of any reachable state in an execution of A,

Vi e R : ((-fauty, A nfaulty < f) =
(V (NEW-VIEW, v, V, 0, N),, € in;, n,v' € N :
(prepared(m, v', n, merge-P(V')) A prepared(m’,v’,n, merge-P(V)) = D(m) = D(m'))))

Proof: Since Invariant 4.2 (condition 6) ensuresany new-view messagein in; for anon-faulty ¢ sat-
isfies correct-new-view, the proof for Invariant 4.4 can al so be used here with minor modifications.
O

14

Invariant 4.6 The following is true of any reachable state in an execution of A,
Vi € R : (—faulty, = V(COMMIT,v,n,d,i)s; € iN; : (3m : (D(m) = d A prepared(m, v, n, i) = true))

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, the condition is vacuously true in the base case. For the inductive step,
the only actions that can violate the condition are those that insert commit messagesin in;, i.e.,
actions of the form RECEIVE({(COMMIT, v, n,d,)5,); OF SEND-COMMIT(m, v,n);. Actions of the
first type never violate the lemma because they only insert commit messages signed by replicas
other than R; in in;. The precondition for send-commit actions ensures that they only insert
(COMMIT, v, n, D(m),1),, inin; if prepared(m, v, n,7) istrue. 0

Invariant 4.7 The following is true of any reachable state in an execution of A,

Vi€ R,n,v € N,m € M: ((—faulty, A committed(m,v,n,:)) =
(3R : (|R| > 2f enfalty A VE € R : (faulty, = false A prepared(m,v,n, k)))))

Proof: From the definition of the committed predicate committed(m, v, n,i) = trueimplies
@3R: (|R| >2f +1AVEk € R: ((coMMIT,v,n, D(m), k)s, €in;)).

Invariant 4.1 implies

(b) AR : (|R| > 2f en-faulty A Vk € R : (faulty, = false A (COMMIT, v, n, D(m), k)y, € iNg)).
Invariant 4.6 and (b) prove the invariant. 0

Invariant 4.8 The following are true of any reachable state in an execution of A, for any replica
7 such that faulty; isfalse:

1. Ym,v,n, P ((VIEW-CHANGE, v, P,i),, € in; =
Vv’ < v : (last-prepared-b(m, v', n,i,v) < last-prepared(m, v, n, P)))

2. Vm = (NEW-VIEW,U,V,O,N)aprimary(v) ein;: ((OUN) Ciny)

Where last-prepared-b is defined as follows:
last-prepared-b(m, v, n,i,b) = v < b A prepared(m, v, n,in;)A
Am',v' : ((prepared(m’, v',n,in;) Av < v’ < b) V (prepared(m’, v, n,in;) Am #m')).

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, the condition is vacuously true in the base case.

For the inductive step, the only actions that can violate condition (1) are those that insert
view-change messagesin in; and those that insert pre-prepare or prepare messagesin in; (no pre-
prepare or prepare message is ever removed from in;.) These actions have one of the following
schemas:

RECEIVE({VIEW-CHANGE, v, P,),)i
VIEW-CHANGE(v);
RECEIVE((PRE-PREPARE, v, 2, M) ;)i,

A w DB

RECEIVE({PREPARE, v, n, d, j)o;)is

15

5. RECEIVE((NEW-VIEW,v,V, O, N)o,)i,
6. SEND-PRE-PREPARE(m,v,n);, Of
7. SEND-NEW-VIEW(v,V');

Actions of the first type never violate the lemma because they only insert view-change mes-
sages signed by replicas other than R; in in;. The effects of actions of the second type ensure that
when a view-change message (VIEW-CHANGE, v, P, i), isinserted in in; the following condition
istrue:

(@ V' < v : (last-prepared(m, v’, n, i) < last-prepared(m, v', n, P)). Condition (a) and Invari-
ant 4.2 (condition 9) imply condition 1 of the invariant.

For the other types of actions, assumethere exists at least a view change messagefor v signed
by R; in in; before one of the other types of actions executes (otherwise the lemma would be
vacuoudly true) and pick any m' = (VIEW-CHANGE, v, P,i),, € in;. The inductive hypothesis
ensures that the following condition holds before the actions execute:

Vm,n,v' < v : (last-prepared-b(m, v, n,i,v) < last-prepared(m, v, n, P))

Therefore, it is sufficient to prove that the actions preserve this condition. The logical value
of last-prepared(m,v’,n,P)) does not change (for al m’', m,n,v") because the view-change
messagesin in; are immutable.

To provethat the value of last-prepared-b(m, v', n, 1, v) isaso preserved (for al m’, m, n, v'),
we will first prove the following invariant (b): For any reachable state in an execution of A, any
non-faulty replica R;, and any view-change messagem' = (VIEW-CHANGE, v, P, i),,, m' € in; =
view; > v.

Theproof for (b) is by induction on thelength of the execution. It isvacuously truein the base
case. For theinductive step, the only actionsthat can violate (b) are actionsthat insert view-change
messages signed by R; in in; or actions that make view; smaller. Since there are no actions that
make view; smaller, these actions have the form VIEW-CHANGE(v);. The effects of actions of this
form ensure the invariant is preserved by setting view; to the view number in the view-change

message.

Given (b) it is easy to see that the other types of actions do not violate condition 1 of the
lemma. They only insert pre-prepare or prepare messages in in; whose view number is equal to
view; after the action executes. Invariant (b) guarantees that view; is greater than or equal to the
view number v of any view-change message in in;. Therefore, these actions cannot change the
value of last-prepared-b(m, v', n, 4, v) for any m', m,n,v’.

Condition (2) of the lemma can only be violated by actions that insert new-view messagesin
in; or remove pre-prepare messages from in;. Since no action ever removes pre-prepare messages
fromin;, the only actionsthat can violate condition (2) are: RECEIVE({(NEW-VIEW, v, V, O, N),)i
and SEND-NEW-VIEW(v, V');. Thefirst type of action preserves condition (2) becauseit inserts all
the pre-preparesin O U N in in; whenever it inserts the argument new-view messagein in;. The
second type of action preserves condition (2) in asimilar way. 0

Invariant 4.9 The following istrue of any reachable state in an execution of A,

16

Vi€ R,m € M,v,n € N: ((-fauty, A nfaulty < fA
IR : (Rl > f AV R : (—faulty, A prepared(m,v,n,k))) =
Vo' >veN m e M: ((PRE-PREPARE,U',n,m')aprimary(v,) €in; = m' = m))

Proof: Rather than proving the invariant directly, we will prove the following condition is true:

Vie R, mée M,v,n € N: ((-faulty, A nfaulty < fA
AR : (|R| > f ANVEk € R : (—faulty, A prepared(m,v,n,k))) =
’ li) F
Vv' > v € N, (NEW-VIEW, v >V>O>N>ffpr|mary(vr) € in; :
({PRE-PREPARE, v', 71, M)oprimaryery € O))

Condition (a) implies the invariant. Invariant 4.2 (condition 4) states that there is never a
pre-prepare message in in; for aview v’ > 0 without a correct new-view message in in; for the
sameview. But if thereisacorrect new-view m&esage(NEw—vnzw,v’,V,O,N),,primaryw,) ein;
then Invariant 4.8 (condition 2) impliesthat (OU N) C in;. Thisand condition (a) imply that there
iS a (PRE-PREPARE, ”’v”’m>vprirr1ary(ul) € in; and Invariant 4.2 (conditions 1,2 and 8) implies
that no different pre-prepare message for sequence number n and view v’ isever inin;.

The proof is by induction on the number of views between v and v'. For the base case,
v = o/, condition (a) is vacuously true. For the inductive step, assume condition (a) holds for v"
such that v < v"” < v'. We will show that it also holds for v’. Assume there exists a new-view
message m1 = (NEW-VIEW, v’, Vlaol’N1>0primary(vf) in in; (otherwise (a) is vacuously true.)
From Invariant 4.2 (condition 5), this message must verify correct-new-view(ms, v'). Thisimplies
that it must contain 2f + 1 correct view-change messages for view v' from replicas in some set
R;.

Assume that the following condition is true (b) 3R : (|R| > f AVk € R : (faulty, = false A
prepared(m, v, n, k) = true)) (otherwise (a) isvacuously true.) Sincethereareonly 3f + 1 replicas,
R and R intersect in at least one replica and this replicais not faulty; call thisreplicak. Let k's
view-change messagein mj be my = (VIEW-CHANGE, v', P2, k)4, -

Since k is non-faulty and prepared(m,v,n,k) = true, Invariant 4.4 implies that

last-prepared-b(m, v, n, k, v + 1) istrue. Therefore, one of the following conditionsis true:
1. last-prepared-b(m, v, n, k,v")
2. " m': (v <v" <v' Alast-prepared-b(m/, v", n, k,v'))

Since condition (a) implies the invariant, the inductive hypothesisimpliesthat m = m/ inthe
second case. Therefore, Invariants 4.1 and 4.8 imply that (c) Jv, > v : last-prepared(m, vz, n, Ps)

Condition (c), Invariant 4.5, and the fact that correct-new-view(m;, v") istrueimply that one
of the following conditionsis true:

1. last-prepared(m, v2, n, merge-P(11))
2. W', m': (v2 <v" < v Alast-prepared(m/, v, n, merge-P(V1)))

In case (1), (4) is obviously true. If case (2) holds, Invariant 4.1 and Invari-
ant 4.2 (condition 7) imply that there exists at least one non-faulty replica j such that
(PRE-PREPARE, ”’I’”’ml>0prirr1ary(uff) € in;. Since condition (a) implies the invariant, the in-
ductive hypothesisimplies that m = m/' in the second case. 0

17

Invariant 4.10 Thefollowing is true of any reachable state in an execution of A,

Vn,v,v" € N,mym' € M: (nfadlty < f =
(3R C R : (Rl > f AVEk € R : (~faulty, A prepared(m,v,n,k))) A
IR CR: (R| > f AVk € R : (—falty, A prepared(m’,v’,n,k)))) = D(m) = D(m’))

Proof: Assume without loss of generality that v < +’. For the case v = ¢/, the negation
of this invariant implies that there exist two requests m and m’ (D(m') # D(m)), a se-
quence number n, and two non-faulty replicas R;, R;, such that prepared(m,v,n,i) = true
and prepared(m/, v, n, j) = true; this contradicts Invariant 4.4.

For v > ¢/, assume thisinvariant is false. The negation of the invariant and the definition of
the prepared predicate imply:
In,v,v" € N,mym' € M: (v > v A nfadty < fA

(3R C R : (Rl > f AVEk € R : (~faullty, A prepared(m,v,n,k))) A
37 € R : (~faulty, A (PRE-PREPARE,v',n,m')gprimary(u,) € in;) A D(m) # D(m'))

But thiscontradictsInvariant 4.9 aslong asthe probability that m # m' while D(m) = D(m/)
isnegligible. 0

Invariant 4.11 Thefollowing istrue of any reachable state in an execution of A,

Vi,j € R, n,u,0" € N,m,m' € M: ((-faulty; A —faulty; A nfaulty < f) =
(committed(m, v, n,4) A committed(m',v',n,j) = D(m) = D(m')))

Invariant 4.12 Thefollowing is true of any reachable state in an execution of A,

Vi € R, n,v,v" € N, mym' € M: ((=faulty; A nfaulty < f) = (committed(m,v,n,i) A
AR CR:(|R| > f AVk € R : (-falty, A prepared(m’,v',n,k)))) = D(m) = D(m'))

Proof: Both Invariant 4.11 and 4.12 are implied by Invariants 4.10 and 4.7. 0

Rather than proving that A implements S directly, we will provethat A implements.S’, which
implements .S and is better suited for the proof. We start by defining a set of auxiliary functions
that will be useful for the proof.

Definition 4.13 We define the following functions inductively:
val : (Nx O xNx C)* - V

last-rep : (Nx O'xNx C)* —» (C— O

lagt-rept : (Nx O'xNx C)* - (€ = N)

val(\) = v,

Ve : (last-rep(A)(c) = null-rep)

Ve i (last-rep-t(A)(c) = 0)

val(u.(n,o0,t,c)) = s

18

last-rep(p-(n,0,t,c))(c) =
last-rep-t(u.(n, o,t,c))(c
V' # c: (last-rep(p.(
V' # c: (last-rep-t(p.(n,o,
where (r,s) = g(c,o0,val(u))

Z, L)) = last-rep(u) (<))

)
(n,0,t,0))(c') = last-rep-t(y)(c'))

Automaton S’ has the same signature as S except for the addition of an interna action
execuTe-NULL. It also has the same state components except that the val component is replaced by
asequence of operations:

hist € (N x O' x N x C)*, initialy X;
and there is a new seqno component:
segno € N, initialy 0.

Similarly to S, thetransitionsfor S’ are only defined when n-faulty < f. Also, thetransitions
for S’ areidentical to S’s except for those defined bellow.

EXECUTE(o, t,) EXECUTE-NULL
Pre: {o,t,c) €in Eff: segno := seqno + 1
Eff: segno :=segqno+ 1
in:=ins{{o,t,c)}
if t > last-rep-t(hist)(c) then
hist := hist.(segno, o, ¢, ¢)
out := out U {(last-rep(c), t,c)}

The EXECUTE-NULL actions allow the seqno component to be incremented without removing
any tuple fromin. Thisis useful to model execution of null requests.

Theorem 4.14 S’ implements S

Proof: The proof uses aforward simulation [8] F from S’ to S. F is defined as follows:

Definition 4.15 F isa subset of states(S’) x states(S); (z,y) isan element of F (also written as
y € F[z]) if and only if all the following conditions are satisfied:

1. All state componentswith the same name are equal in z and y.
2. z.val = val(y.hist)
3. z.last-rep-t, = last-rep(y.hist)(c),Vc € C

To provethat F isin fact aforward simulation from S’ to S one most prove that both of the
following are true [8].
1. Foral z € start(S"), Flz| N start(S) # {}

2. Foradl (z,m, z') € trans(S"), where z isareachable state of S’, and for al y € F|z], where
y isreachablein S, there exists an execution fragment « of S starting with y and ending
with some y' € F[z'] such that trace(«) = trace(w).

19

It isclear that F verifiesthefirst condition because all variables with the same namein S and
S’ areinitialized to the same valuesand, since hist isinitially equal to A, z.val = v, = val(\) and
z.last-rep-t. = 0 = last-rep(A)(c).

We use case analysis to show that the second condition holds for each = € acts(S’). For
all actions 7 except EXECUTE-NULL, let a consist of a single 7 step. For m = EXECUTE-NULL,
let « be A. It is clear that this satisfies the second condition for all actions but EXECUTE. For
T = EXECUTE(0, t, ¢), definition 4.13 and the inductive hypothesis (i.e., z.val = val(y.hist) and
z.last-rep-t, = last-rep(y.hist)(c)) ensurethat y' € F|z']. 0

Definition 4.16 Wedefinethefunction prefix: (NxO'xNxC)* — (Nx O’ xNx C)* asfollows:
prefix(u, n) is the subsequence obtained from p by removing all tuples whose first component is
greater than n.

Invariant 4.17 The following istrue of any reachable state in an execution of S’,

V{n,o,t,c) € hist : (t > last-rep-t(prefix(hist, n <1))(c))

Proof: The proof is by induction on the length of the execution. The initial states of S’ verify
the condition vacuously because hist isinitially . For the inductive step, the only actions that
can violate the invariant are those that modify hist, i.e., EXECUTE(o, ¢, ¢). But these actions only
modify histif ¢ > last-rep-t(hist)(c). 0

Invariant 4.18 The following are true of any reachable state in an execution of S’
1. ¥(n,o,t,c) € hist: (=faulty, = t < last-req,)
2. Y(o,t,c) € in: (—faulty, = ¢ < last-req,)

Proof: The proof is by induction on the length of the execution. The initial states of S’ verify
the condition vacuously because hist isinitially A and in is empty. For the inductive step, since
no action ever decrements last-reg, or changes faulty, from true to false, the only actions that
can violate the invariant are those that append tuples from a non-faulty client ¢ to higt, i.e.,
EXECUTE(o, t, c) Of to in, REQUEST(o, ¢). The EXECUTE actions only append atuple (n, o,t,c) to
histif (o, t,c) € in; therefore, the inductive hypothesis for condition 2 implies that they preserve
the invariant. The REQUEST actions also preserve the invariant because the tuple (o, ¢, ¢) inserted
inin hast egqual to the value of last-req, after the action executes. 0

Theorem 4.19 A implements S

Proof: We provethat A implements S’, which impliesthat A implements S (Theorem 4.14.) The
proof uses aforward simulation G from A’ to S’ (A’ isequal to A but with all output actions not
in the external signature of S hidden.) G is defined asfollows.

20

Definition 4.20 G isa subset of states(A’) x states(S’); (z,y) isan element of G if and only if the
following are satisfied:

1. Vi€ R: (z.faulty, = y.faulty-replica,)
2. Ve € C: (z.faulty, = y.faulty-client,)

and the following are satisfied when n-faulty < f

3. Ve e C: (—z.faulty, = z.last-req, = y.last-req,)

4. Vi e R : (—z.faulty, = z.last-exec; < y.seqno)

5. Vi € R: (—z.faulty, = z.val; = val(prefix(y.hist, z.last-exec;)))

6. Vi € R: (—z.faulty, = Ve € C : (z.last-rep;(c) = last-rep(prefix(y.hist, z.last-exec;))(c)))

7. Vi € R: (—z.faulty, = Ve € C : (z.last-rep-t, (c) = last-rep-t(prefix(z.hist, y.last-exec;)) (c)))
8. VO< n <y.segno: (In,o,t,c) € y.hist: (AR C R,v € N: (|R| > 2f <y.nfaulty A

Vk € R : (—z.faulty, A prepared((REQUEST, o,t,c¢)s.,v,n, A".k))))

VIR C R,v,t € Nyo€ O,ceC: (|R| > 2f ey.nfaulty At < last-rep-t(prefix(y.hist, n <1))(c)) A
Vk € R : (—z.faulty, A prepared((REQUEST, o, t,c)o.,v,n, A".k))))

VIRC R,veN:(|R| > 2f ey.nfaulty AVk € R : (—z.faulty, A prepared((null,v,n, A".k))))

9. V(REPLY,v,t,c,1,1)s; € (z.0ut; U{m|IX : (m,X) € z.wire} Uz.in.) :
(—e faulty; = I(n,o,t,c) € y.hist: (r = last-rep(prefix(y.hist, n))(c)))
10. V(n,o0,y.last-req,,c) € y.hist:
((—ez.faulty, A z.out. # {}) = I(last-rep(prefix(y.hist, n))(c), y.last-req,, c) € y.out)
11. Let M. = z.out. U {m|Fi € R : (—z.faulty, Am € z.in; U z.out;} U {m|3X : (m, X) € z.wire},
and M = merge-P({m = (VIEW-CHANGE, v, P, j),,|m € M. V
I(NEW-VIEW, v, V,0, N),; € M. : (m € V)}),
Ve € C: (—nz.faulty, = Yo € O,t € N : ((m = (REQUEST, 0, t,¢)os. € M.V
J(PRE-PREPARE, v, 11, M), € M U M2 = ((o,t,¢) € y.inVIn: ((n,0,t,c) € y.high))))

Note that most of the conditionsin the definition of G only need to hold when n-faulty < f,
for n-faulty > f any relation will do because the behavior of S’ is unspecified. To provethat G is
in fact a forward simulation from A’ to S’ one most prove that both of the following are true.

1. Forall z € start(4'), G[z] N start(S") # {}

2. Forall (z,m,z') € trans(A’), where z isareachable state of A’, and for al y € G[z], where
y isreachablein S’, there exists an execution fragment « of S’ starting with y and ending
with some y' € G[z'] such that trace(a) = trace(r).

It is easy to see that the first condition holds. We use case analysis to show that the second
condition 2 holds for each = € acts(A’)

Non-faulty proxy actions. If 7 = REQUEST(0)., m = CLIENT-FAILURE,, Of ™ = REPLY(r),
let o consist of asingle 7 step. G is preserved in atrivial way if = is a CLIENT-FAILURE action.
If = is a REQUEST action, neither = nor o maodify the variables involved in al conditionsin the
definition of G except 3, and 10 and 11. Condition 3 is preserved because both 7 and o increment
y.last-reg,. Condition 10 is also preserved because Invariant 4.18 implies that there are no tuples
in y.hist with timestamp y'.last-reg, and « does not add any tupleto y.hist. Even though = inserts
anew request in z.out,., condition 11 is preserved because « inserts (o, t, ¢) in y.in.

21

If misaREPLY(r). actionthat isenabled in z, the REPLY (7). actionin « isalso enabled. Since
there are less than f faulty replicas, the precondition of 7 ensures that there is at least one non-
faulty replicai and aview v suchthat (REPLY, v, z.last-req,, ¢, , 7)., € x.in, andthat z.out, # {}.
Therefore, the inductive hypothesis (conditions 9 and 10) implies that (r, ¢, c) € y.out and thus
REPLY (7). isenabled. G is preserved because = ensures that z'.out, = {}.

If = = RECEIVE(m),, Or m = SEND(m, X)., let o be A. This preserves G because y € G[z]
and the preconditions require that the reply message being received isin sometuplein z.wire and
the request message being sentisin z.out,.

Internal channel actions. If 7 isaMISBEHAVE(m, X, X') action, let « be \. G is preserved
because = does not add new messagesto z.wire and retains a tuple with m on z’.wire.

Non-faulty replica actions. For al actions = except @ = REPLICA-FAILURE; and &7 =
EXECUTE(m,v,n);, let o be A. It is clear that this could only violate conditions 8, 9 and 11
because these actions do not modify the state componentsinvolved in the other conditions. They
can not violate condition 8; since no messagesare ever removed froming, (where k isany non-faulty
replica), if prepared(m, v, n, k) = true, it remains true for the entire execution or until replica k
becomesfaulty. And these actions do not violate conditions 9 and 11 because any request or reply
messages they add to z.in;, x.out;, or z.wire (either directly or as part of other messages) was
already in z.wire, z.in;, or z.out;.

For m = REPLICA-FAILURE;, let o consist of a single = step. This does not violate the
conditions in the definition of G. For conditions other than 1 and 8, it either does not change
variables involved in these conditions (2 and 3), or makes them vacuously true. Condition 1 is
satisfied in a trivial way because o also sets y.faulty-replica; to true. And condition 8 is not
violated because the size of the sets R in the condition is allowed to decrease when additional
replicas become faulty.

Non-faulty replica execute (non-null request.)

For m = EXECUTE({REQUEST, o, t, ¢),., v, n);, there are two cases: if z.last-exec; < y.segno,
let o be \; otherwise, let o consist of the execution of a single EXECUTE(o, t, ¢) action preceeded
by FAULTY-REQUEST (o, t, ¢) in the case where z.faulty, = true. In any of these cases, it is clear
that only conditions 4 to 11 can be violated.

For the case where o = A, conditions 4, 8, 10 and 11 are also preserved in a trivial way.
For the other conditions we consider two cases (a) ¢ > last-rep-t;(c) and (b) otherwise. The
precondition of 7 ensures that z.committed((REQUEST, o, ¢, ¢),., v, n,%) iStrue. In case (), this
precondition, Invariant 4.12, and the definition of G (condition 8) imply that there is a tuple in
y.hist with sequence number » and that it is equal to (n, o, t, ¢). Therefore, conditions 5 to 7 and
9 are preserved. In case (b), the precondition of =, Invariant 4.12, the definition of G (condition
8), and Invariant 4.17 imply that there is no tuple with sequence number n in y.hist. Therefore,
conditions5to 9 are preserved in this case.

For the case where a # A\, when = is enabled in z the actions in o are also enabled in
y. In the case where ¢ is faulty, FAULTY-REQUEST(o, t, ¢) is enabled and its execution enables
EXECUTE(o, ¢, c). Otherwise, sincey € G|z], condition 11 in Definition 4.20 and the precondition
of = imply that EXECUTE(o, ¢, c) isenabled in y.

22

It is easy to seethat conditions4 to 7 and 9 to 11 are preserved. For condition 8, we consider
two cases (a) t > last-rep-t;(c) and (b) otherwise. In both cases, the precondition of = ensures
that 2z.committed((REQUEST, o, t, ¢),., v, n, ©) iStrue. Thisprecondition, Invariant 4.7 and the fact
that o appendsatuple (y'.seqno, o, ¢, ¢) to y.hist, ensure that condition 8 is preserved in this case.
In case (b), the precondition Invariant 4.7 and the assumption that ¢ < last-rep-t;(c), ensure that
condition 8 is preserved also in this case.

Non-faulty replica execute (null request.)

For m = EXECUTE(null, v, n);, if z.last-exec; < y.seqno, let o be A; otherwise, let o consist
of the execution of a single EXECUTE-NULL action. Execution of a null request only increments
z.last-exec; and o canat most increment y.seqno. Therefore, only conditions4to 8 canbeviolated.
Condition 4 isnot violated because« incrementsy.segnoin the casewhere z.last-exec; = y.segno.

For the case where, a =), conditions 5 to 7 are also not violated because o does not append
any new tupleto y.hist and all tuplesin y.hist have sequence number lessthan y'.seqno; therefore,
prefix(y.hist, z.last-exec;) = prefix(y’.hist, z'.last-exec;). Since the precondition of = implies
that z.committed(null, v,n,) istrue, Invariant 4.7 ensures condition 8 is also preserved in this
case.

For the case where o consists of a EXECUTE-NULL step, x.committed(null,v,n,1),
n-faulty < f, Invariant 4.12, and the definition of G (condition 8) imply that there is no
tuple in y'.hist with sequence number z'.last-exec;; therefore, prefix(y.hist, z.last-exec;) =
prefix(y’.hist, =’ |ast-exec;).

Faulty replica actions. If = is an action of afaulty replicas (i.e., z.faulty;, = true), let o be
A. Since = can not modify faulty; and a faulty replica cannot forge the signature of a non-faulty
automaton this preserves G in atrivial way.

Faulty proxy actions. If = isan action of afaulty proxy c (i.e., z.faulty, = true), let o consist
of asingle = step for REQUEST, REPLY and CLIENT-FAILURE actions and A for the other actions.
Since = can not modify faulty, and faulty clients cannot forge signatures of non-faulty automata
thispreserves G in atrivial way. Additionally, if = isaREPLY action enabledin z, = isalso enabled

iny. 0

5 Garbage Collection

This section describes a modified version of our algorithm that garbage collects messages from
replica’slogs. It alsoprovesthat themodified algorithm A, issafe, i.e., it provesthat itimplements
S.

5.1 TheModified Algorithm

Theclient proxy and multicast channel automataareidentical in A,4. and A. Thereplicaautomaton
R; ismodified as follows. The signature remains the same except for the actions listed below.

23

Input: RECEIVE((CHECKPOINT, v, n,d, j)o;)i
RECEIVE((VIEW-CHANGE, v, n, 5,C, P, j)s;)
Internal; COLLECT-GARBAGE;

Here,v,mn € N,i,j ER, s € V', C,P C M,d €D’
whereV' =V x (C— O)x (C—>N)andD' ={d|3s€ V' :(d = D(m))}

The state components also remain the same except for the addition of a new variable chkpts;
and anew initial valuefor in;:

in; C M, initially {(CHECKPOINT, 0, D((vo, null-rep, 0)), k), | Yk € R}
chkpts, € N x V', initiadly {(0, (vo, null-rep, 0))}

stable-n; = min({n| (n,v) € chkpts;})

stable-chkpt, = v | (stable-n;,v) € chkpts;

The auxiliary functions used in the description of areplica's automaton also remain the same
except for those that are defined below:

inw(n,i) = 0 < n &stablen; < max-out, wheremax-out € N
irw(v,n,1) = in-w(n,i) A in-v(v,1)
correct-view-change(m, v,j) = 3n,s,C,P: (m = (VIEW-CHANGE,v,n,s,C, P, j),; A
AR : (|R| > f AVk € R: (3v" < v : ({(CHECKPOINT,v",n, D(s), k), € C)) A
V(PRE-PREPARE,U',n',m')Uprin]ary(v,) € P :
(last-prepared(m’,v',n',P) A v' < v A 0 < n’ &n < max-out)
merge-P(V) = { m |3 (VIEW-CHANGE, v,n,s,C, P,k)s,, € V : (m € P)}
max-n(M) = max({ n | (PRE-PREPARE, v,n, m),; € M V (VIEW-CHANGE,v,n,s,C, P,),
correct-new-view(m, v) =
iV,O,N,R: (m = (NEW-VIEW,U,V,O,N)Uprimy(v) AV] =|R| = 2f+1A
Vk € R: (3m' € V: (correct-view-change(m', v, k))) A
O = { (PRE-PREPARE, v, n, m'>aprimary(v) |n > max-n(V) A 3o : last-prepared(m’,v’, n, merge-P(V))} A
N = { (PRE-PREPARE, v, 7, null)gprimy(v) | max-n(V) < n < max-n(O) A
Av',m',n : last-prepared(m’,v’, n, merge-P(V)))
take-chkpt(n) = (n mod chkpt-int) = O, where chkpt-int € N A chkpt-int < max-out
update-state-nv(z, v, V,m) =
if max-n(V) > stable-n; then
in; 1= in; U (pick C' : 3 (VIEW-CHANGE, v, max-n(V'), s,C, P, k), € V)
if (CHECKPOINT, v, max-n(V'), D(s),4)s; & in; then
in; = in; U {(CHECKPOINT, v, max-n(V'), D(s),%}+; }
out; = out; U {(CHECKPOINT, v, max-n(V'), D(s),%)s; }
chkpts, 1= chkpts, < {p = (n',s') |p € chkpts; A n' < max-n(V)}
if max-n(V) > last-exec; then
chkpts;, := chkpts, U {(max-n(V), s) | 3 (VIEW-CHANGE, v, max-n(V'), s,C, P, k), € V}
(val;, last-rep;, last-rep-t;) := stable-chkpt,
last-exec; := max-n(V)

€ M})

Many of the actions for automaton R; are modified to use the new functions but otherwise
remain identical. The exceptions are listed below:

24

Input Transitions

RECEIVE(PRE-PREPARE, v, 1,)0,)i (J 7 1)
Eff: if 7 = primary(z) A in-wv(v, n, i) A has-new-view(v, 1) A

Ad : (d # D(m) A (PREPARE, v, n,d, i),; € in;)then

let p = (PREPARE, v, n, D(m), i)o;
in; := in; U {(PRE-PREPARE, v, 1, M), ;, D}
out; := out; U {p}

elseif Jo,t,c: (m = (REQUEST, o, t,c),.) then
in; :=in; U {m}

RECEIVE((PREPARE, v, 1, d, j)s;)i (j # 1)
Eff: if 7 # primary(z) A in-wv(v, n, ¢) then
in; = in; U {(PREPARE, v, n,d,), }

RECEIVE({COMMIT, v, n, d, §)o,)i (§ # i)
Eff: if view; > v Ain-w(n, 1) then
in; == in; U {(COMMIT,v,n,d, j)s; }

RECEIVE((CHECKPOINT, v, n, d, j)o,)i (§ # 1)
Eff: if view; > v A in-w(n, 1) then
in; ;= in; U {(CHECKPOINT, v, n,d,), }

RECEIVE((VIEW-CHANGE, v,7, 5, C, P, j);)i (j # 1)
Eff: let m = (VIEW-CHANGE, v, 7, 5,C, P, 5),
if v > view; A correct-view-change(m, v, j) then
in; :=in; U{m}

RECEIVE((NEW-VIEW, v, V,0, N)s,)i (j # 1)
Eff: let m = (NEW-VIEW,v,V, 0, N),,
if v > 0A v > view; A correct-new-view(m, v) A —has-new-view(v,) then

view; 1= v
out; .= {}
ing ;=i UOUN U {m}
for all (PRE-PREPARE, v,n’,m'),; € (O U N) do

out; := out; U {(PREPARE, v, n’, D(m'), %), }

if n’ > stable-n; then

in; :=in; U {(PREPARE, v,n, D(m'),)., }

update-state-nv(z, v, V, m)
in; == in; &{(REQUEST, o, ¢, c)s. € in;|t < last-rep-t,(c)}

Internal Transitions

SEND-PRE-PREPARE(m, v, 1);
Pre: primary(z) =i A seqno, = n <1 A inlwv(v, n,) A has-new-view(v, i) A
Jo,t,c: (m = (REQUEST, 0,t,c)s, Am € iN;)A A(PRE-PREPARE, v, n/, m},; € iN;
Eff: segno, := segno; + 1
let p = (PRE-PREPARE, v, 1, M),
out; := out; U {p}
in; :=in; U {p}

25

EXECUTE(m, v, n);
Pre: n = last-exec; + 1 A committed(m, v, n, 7)
Eff: last-exec; :==n
if (m # null) then
let (REQUEST, 0,t,¢)s. = m
if t > last-rep-t; (c) then
if t > last-rep-t;(c) then
last-rep-t; (c) :=t
(Ias_repi (C)7 Vajl) = g(c, 0, Vajl)
out; := out; U {(REPLY, View,, t, c, 3, last-rep; (c))., }
in; :=in; &{m}
if take-chkpt(n) then
let m' = (CHECKPOINT, View;, n, D({val;, last-rep,, last-rep-t,}), i),
out; := out; U {m'}
in; :==in; U{m'}
chkpts, := chkpts; U {(n, (val;, last-rep;, last-rep-t,)) }

SEND-VIEW-CHANGE(v);
Pre. v =view; +1
Eff: view; :==v
let P' = {(m, v, n)|last-prepared(m, v, n, 1)},
P = U(m,v,n)GP’ ({p = (PREPARE, v, n, D(m), k)5, |p € in; } U {(PRE-PREPARE, v, 1, m><fprimary(u) b,
C = {m' = (CHECKPOINT, v", stable-n;, D(stable-chkpt;), k)., |m' € in;},
m = (VIEW-CHANGE, v, Stable-n;, stable-chkpt,, C, P, 7).,
out; := out; U {m}
in; :=in; U {m}

SEND-NEW-VIEW(v, V');
Pre: primary(v) =i Av > view; Av >0AV Cin; A V| = 2f + 1 A —has-new-view(v, i) A
JR: (|R|=2f+1AVk € R: (3n,s,C, P : ((VIEW-CHANGE, v, n, s,C, P, k),, € V)))
Eff: view; == v
let O = {(PRE-PREPARE, v, n, m)o, |7 > max-n(V') A 3v’ : last-prepared(m, v', n, merge-P(V))},
N = {(PRE-PREPARE, v, n, null, k), |max-n(V) < n < max-n(O)A
', m,n : last-prepared(m, v', n, merge-P(V))},
m = (NEW-VIEW, v, V, O, N),,
segno; = max-n(O)
inj ;=i UOUN U {m}
out; ;= {m}
update-state-nv(z, v, V, m)
in; := in; < {(REQUEST, 0,t,¢)o. € in;|t < last-rep-t,(c)}

COLLECT-GARBAGE;
Pre 3R,n,d: (|R| > fAi € R AVk € R: (Jv: ((CHECKPOINT, v, n,d, k), iN;)
Eff: in; ;= in; &{m = (PRE-PREPARE, v', n’, m/),,|m € in; An' < n}

in; ;= in; &{m = (PREPARE, v, n/,d’, j),;|m € in; An' <n}

in; ;= in; &{m = (coMmIT,v',n’,d', j),;|m € in; An' < n}

in; == in; &{m = (CHECKPOINT,v', 7', d’, j)o;|m € in; An' < n}
chkpts, := chkpts; <{p = (n', s)|p € chkpts, A n' < n})

5.2 Safety Proof

This section provesthat A, implements S. We start by introducing some definitions and proving
an invariant.

26

Definition 5.1 We define the following functions inductively:

Let RM = {(REQUEST,o0,t,c)o. |0 € O At € N A c € C} U {null},
rval : RM* —» V

r-last-rep : RM* — (C— O)

r-last-rept : RM* — (C— N)

r-va(l) = v,
Ve e C: (r-last-rep(A)(c) = null-rep)
Ve e C: (r-last-rep-t(A\)(c) = 0)

Yu € RM™,

r-val (p.null) = r-val(u)
r-last-rep(p.null) = r-last-rep(u)
r-last-rep-t(p.null) = r-last-rep-t(u)

V (REQUEST, 0,t,¢)o, € RM, p € RMT,
V' # ¢ (r-last-rep(u.{REQUEST, 0, t,c)s.) (c') = r-last-rep(p)(c’))
V' # ¢ (r-last-rep-t(u.(REQUEST, 0, t,c)y.)(c') = r-last-rep-t(u)(c'))
ift > r-last-rep-t(u)(c) then
let (r,s) = g(c,o,r-val(n))
r-val (u.(REQUEST, 0, t,¢C)s.) = s
r-last-rep(p. (REQUEST, 0, t,¢)o.)(c) = T
r-last-rep-t(u.(REQUEST, 0, t,c)o.) (c) = t
else
r-val (u.(REQUEST, 0,t,¢)»,) = I-
r-last-rep(u.(REQUEST, 0, t, ¢}y)(c) = I-
r-last-rep-t(pu.(REQUEST, 0, t, ¢)o.) (c) = r-last-rep-t(u)(c)

Definition 5.2 We define the following subsets of M and predicate:

Wre={m | 3X : ((m,X) € wire) }
Wreto = Wre U {m|3j € R : (-falty; A m € out;) }
Wretio = Wireto U {m |3 j € R : (=falty; A m € in;) }
committed-Wire(s, [, t,n, v, u) =
p € RM* (s = rva(p) ANl = r-last-rep(p) At = rlast-rep-t(p) A

n: (3 <wv,R: (Rl > 2fA

Vg € R : ((coMMmIT,v', k, D(my),q)s, € Wireto))

AV < v ((PRE-PREPARE,U',k,mk>0primary(v,) € Wire+o)
vV my € Wireto)))

Invariant 5.3 The following istrue of any reachable state in an execution of A,

1LVie R : ((-faulty, A nfaulty < f) =
Jp € RM™ . committed-Wire(val;, last-rep;, last-rep-t,, last-exec;, view;, 1))

2.¥Vi € R : (—faulty; A nfaulty < f) =
V (CHECKPOINT, v,n, D((s,1,t)),i)s; € N : (Ip € RM*: committed-Wire(s,!,¢,n,v, 1))
where:
N = {m | m € Wre+tio V 3 (VIEW-CHANGE,v,n,s,C, P,j),; € Wre+tio: (m € C)V
J(NEW-VIEW, v, V, O, N),, € Wiretio : (I (VIEW-CHANGE,v,n,s,C,P,q),, € V : (m € C))},

J

27

Proof: Theproof isby induction onthelength of the execution. For thebasecase, theinitializations
ensurethat val; = r-val(\), last-rep;, = r-last-rep(\), and last-rep-t; = r-last-rep-t(A). Therefore,
1 is obviously true in the base case and 2 is also true because al the checkpoint messages
(CHECKPOINT, v, n, D((s,l,t)),i)s;, € N haves = val;,l = last-rep;, t = last-rep-t;.

For the inductive step, assume that the invariant holds for every state of any execution « of
length at most I. We will show that the lemma also holds for any one step extension a of a.
The only actions that can violate 1 are actions that change val;, last-rep;, last-rep-t;, last-exec;,
decrement view;, or remove messages from Wire+o. But no actions ever decrement view;.
Similarly, no actions ever remove messages from Wire+o because wire remembers all messages
that were ever sent over the multicast channel and messages are only removed from out; (for any
non-faulty replica j) when they are sent over the multicast channel. Therefore, the onI]y actions
that can violate 1 are:

1. RECEIVE((NEW-VIEW,v,V, 0, N)s;)i
2. EXECUTE(m,v,n);
3. SEND-NEW-VIEW(v, V');

The inductive hypothesis of condition 2 ensures that actions of the first and third type do not
violate condition 1 because they set val;, last-rep;, last-rep-t; and last-exec; to the corresponding
values in a checkpoint message from a non-faulty replica.

Actions of the second type also do not violate 1 because of the inductive hypothesis,
and because the executed request, m,,, verifies committed(m,,,v,n,7) for v < view; and
n = last-exec; + 1. Since committed(m,,,v,n,) is true, the 2f + 1 commits and the pre-
prepare (or m,,) necessary for committed-Wire to hold are in in;. These messages were either
received by ¢ over the multicast channel or they are messages from 4, in which case they are in
out; or have already been sent over the multicast channel.

The only actions that can violate condition 2 are those that insert checkpoint messagesin V:

RECEIVE((CHECKPOINT, v, n, d, %),);
RECEIVE({VIEW-CHANGE, v, n, 5, C, P, q).,);
RECEIVE((NEW-VIEW, v, V, O, N),,);
SEND(m, R);

EXECUTE(m, v, n);

SEND-VIEW-CHANGE(v)

N o gk~ w DB

SEND-NEW-VIEW(v, V);

where j is any non-faulty replica. Actions of types 1, 2, 4, and 6 preserve 2 because the
checkpoints they insert into N are already in NV before the action executes and because of the
inductive hypothesis. Actions of types 3 and 7 may insert a new checkpoint message from j
into V; but they also preserve condition 2 because this message has the same sequence number
and checkpoint digest as some checkpoint message from a non-faulty replicathat isaready in N
before the action executes and because of the inductive hypothesis. Finally, the argument to show
that actions of the fifth type preserve 1 also showsthat they preserve condition 2. 0

Invariant 5.4 Thefollowing istrue of any reachable state in an execution of A:

28

nfaulty < f = Vu, p € RM* : (3s,1,t,v,8,U,¢,v" : (committed-Wre(s,l,¢,n,v,u) A
committed-Wire(s’, I, ¢/, n',v", ")) A plength < p'length) = Fp" € RM* : (i = ppu"))

Proof: (By contradiction) Supposethat theinvariant isfalse. Then, there may exist some sequence
number £ (0 < k£ < p.length) and two different requests mg, and my, such that:

Juvi, Ry @ (|R1] > 2f A Vg € Ry : ((COMMIT, vy, k, D(my,),q)s, € Wret+o)) and
Jwvz, Ry : (|R2| > 2f AVq € Ry : ((COMMIT, vz, k, D(myt,),q)s, € Wret+o))

This, Invariant 4.1 and Invariant 4.6 contradict Invariant 4.10. 0

Theorem 55 A, implements S

Proof: We prove that A,. implements A, which implies that it implements S (Theorems 4.19
and 4.14.) The proof usesaforward smulation # from A} to A’ (A}, isequal to Ay, but with all
output actions not in the external signature of .S hidden.)

Definition 5.6 # is a subset of states(A;) x states(A’); (z,y) isan element of # if and only if
all the following conditions are satisfied for any replica ¢ such that z.faulty, = false, and for any
replica j:

1. The vaues of the state variables in y are equal to the corresponding values in z except for y.wire, y.in; and
y.OUti.

2. yin; & {m = (PRE-PREPARE,v,n,m),; V m = (PREPARE,v,n,d,j)s; V
m = (COMMIT,v,n,d,j)s; | m € y.in; A n < z.stablen;}
<{m|m € y.in; A (tag(m,VIEW-CHANGE) V tag(m, NEW-VIEW))}
= z.in; & {m = (PRE-PREPARE,v,n,m),; V m = (PREPARE,v,n,d,j)s; V
m = (COMMIT,v,n,d, j)s; | m € z.in; A n < z.dablen;}
&{m|m € z.in; A (tag(m,CHECKPOINT) V tag(m,VIEW-CHANGE) V tag(m,NEW-VIEW))}

3. Let consistent-ve(m?, m?) =
Jv,n,s,0,t,C,P,P',j 1 (m' = (VIEW-CHANGE, v, n, (s,1,t),C, P, j)o; A
m? = (VIEW-CHANGE, v, P, j)s; A
Al,...correct-view-change(m', v, j) < (A'.correct-view-change(m?, v, j) A
P = P'&{m = (PRE-PREPARE,v',n/,m')s, Vm = (PREPARE,v',n’,d',k)s, |m € P'An' < n})))
consistent-ve-set(M, M?) =
vm' € M*: (Im? € M? : consgtent-vc(m?, m?)) A
vm? € M? : (3m' € M* : consistent-vc(mt, m?)),
andlety.vc; = {{VIEW-CHANGE,v, P, j),, € y.in; },
z.VC; = {(VIEW-CHANGE, v, n,(s,l,t),C, P,j)s; € x.in;}
then consistent-ve-set(z.vc;, y.vc;) istrue

4. Let consistent-nv-set(My, M) =
M, = {m® = (NEW-VIEW, v, V', 0', N'), |
Im' = (NEW-VIEW,v,V,0,N),, € My : (consistent-ve-set(V, V') A
Al,..correct-new-view(m',v) < (A’.correct-new-view(m? v) A
O = 0" & {m = (PRE-PREPARE,v,n,m)s; [m € O' A n < max-n(V)} A
N = N' & {m = (PRE-PREPARE,v,n,m'),; |[m € N' A n < max-n(V)}))},
andlety.nv; = {(NEW-VIEW,v,V,0, N),, € y.in; },
z.v; = {(NEW-VIEW,v,V,0,N),, € z.in; }
then consistent-nv-set(z.nv;, y.nv;) istrue.

29

5. Let consistent-all(M*, M?) =
Vm € M': (3m' € M? : (tag(m,VIEW-CHANGE) A consistent-vc(m,m’)) V
(tag(m, NEW-VIEW) A consistent-nv-set({m}, {m'})) Vv
(—tag(m, VIEW-CHANGE) A —tag(m,NEW-VIEW) A m = m')),
X; = z.out; U {(m)s; | (m)s; € z.Wre} <{m |tag(m, CHECKPOINT)},
andY; = y.out; U {(m),,; | (m)s; € y.Wre},
then consistent-all (X;;. Y;)

6. Let Xrayity = {{(m)o; |z fadlty; A (m),; € z.Wire},

Yiaulty = { (m)o; |y-faulty; A (m),; € y.Wre},
consistent-all (Xfaulty’ Yfaulty)

7. V(r)e., € zWMre : (3(r)o. € y.WMre)

Additionally, we assume faulty automata in z are also faulty and identical in H[z] (i.e., they
have the same actions and the same state.) Note that the conditions in the definition of # only
need to hold when n-faulty < f, for n-faulty > f the behavior of S is unspecified.

To prove that #H isin fact aforward simulation from A to A’ one most prove that both of
the following are true:

1. Foradl z € start(Ag,), H[z] Nstart(A") # {}

2. Fordl (z,m,2') € trans(Ay,), where z is areachable state of A}, and for al y € H[z],
where y is reachablein A’, there exists an execution fragment o of A’ starting with y and
ending with somey’ € H[z'] such that trace(a) = trace().

Condition 1 holds because (z,y) € # for any initial state z of A}, andy of A'. Itisclear
that x and y satisfy thefirst clausein the definition of ‘H becausetheinitial value of the variables
mentioned in this clauseisthe samein Aj, and A'. Clauses 2 to 7 are satisfied because z.in; only
contains checkpoint messages, and y.in;, z.out;, y.out;, z.wire, and y.wire are empty.

We prove condition 2 by showing it holds for every action of Aj.. We start by defining

an auxiliary function 3(y, m, a) to compute a sequence of actions of A’ starting from state y to
simulate areceive of message m by an automaton a (where a iseither aclient or replicaidentifier):

B(y,m,a) =

if3X :((m,X) € y.wire) then

if3X :((m,X) € ywire A a € X)then
RECEIVE(M)q

else
MISBEHAVE(m, X, X U {a}). RECEIVE(m), | (m, X) € y.wire

else

if 3¢ : (yfaulty, = false A m € y.out;) then
SEND(m, {a});. RECEIVE(m)q

else
4L

If RECEIVE(m), isenabled in astate z, thereisan m' such that 8(y, m’, a) is defined and the
actionsin 3(y, m', a) areenabled for al y € H|[z|, and:

30

e m = m/, if m isnot acheckpoint, view-change, or new-view message
e consistent-vc(m, m'), if m is aview-change message

e consistent-nv-set({m}, {m'}), if m is anew-view message

Thisis guaranteed by clauses 5, 6, and 7 in the definition of H.
Now, we proceed by cases proving condition 2 holds for each = € acts(A;,.)

Non-faulty proxy actions. If 7 is an action of a non-faulty proxy automaton P, other than
RECEIVE(m = (REPLY, v,t,¢,4,T)q,), |6t o CONSist of asingle w step. For the receive actions, let
a = B(y, m,c). Inether case, when isenabled in z all the actionsin « are also enabled starting
from y and an inspection of the code shows that the state relation defined by # is preservedin all
these cases.

Internal channel actions. If = isaMISBEHAVE(m, X, X') action, there are two cases: if 7 is
not enabledin y, let o be A; otherwise, let o contain asingle = step. In either case, # is preserved.
because 7 does not add new messagesto z.\Wre.

Receive of request, pre-prepare, prepare, or commit. For actionsm = RECEIVE(m); where
m isasyntactically valid request, pre-prepare, prepare, or commit message, let « = 5(y, m,1); «
transformsy into y' € H[z']:

e 7 and o modify wirein away that preserves clauses5, 6, and 7.

e For receives of request messages, o and 7 add the same messages to out; and in; thereby
preserving the state correspondence defined by H.

e For the other messagetypes, the definition of # and the definition of in-wv ensurethat when
thefirstif conditionistrueinz, itisalsotrueiny (becausethe condition is more restrictive
in A’gc, and z.in; and y.in; have the same prepare and commit messages with sequence
numbers higher than z.stable-n;.) Thus, in this case, the state correspondence defined by
‘H is preserved. But it is possible for the i f condition to be true in y and false in z; this
will cause a message to be added to y.in; and (possibly) y.out; that is not added to z.in; or
x.out;. Since this happens only if the sequence number of the message received is lower

than or equal to z.stable-n;, the state correspondenceis also preserved in this case.

Garbage collection. If 7 = RECEIVE((CHECKPOINT,v,n,d, j),;)i, Of ™ = COLLECT-
GARBAGE;, the condition holds when « is A. It is clear that the condition holds for the first
type of action. For the second type, the condition is satisfied because all the messages removed
from z.in; have sequence number lower than or equal to n and the action sets z.stable-n; to n.
The action sets z.stable-n; to n becauseit removes all triples with sequence number lower than n
from z.chkpts; and there is a triple with sequence number n in z.chkpts;. The existence of this
triple is guaranteed because the precondition for the collect-garbage; action requires that there
is a checkpoint message from ¢ with sequence number n in z.in; and ¢ only inserts checkpoint
messagesin in; when it inserts a corresponding checkpoint in chkpts;.

Receive view-change. If m = RECEIVE(m = (VIEW-CHANGE, v, n,s,C, P, j)s,)i, &t a =
B(y,m’,) such that consistent-vc(m, m'). The definition of consistent-vc ensuresthat either both

31

messages are incorrect or both are correct. In thefirst case, 7 and o only modify the destination
set of the messages in wire; otherwise, they both insert the view change messagein in;. In either
case, the state correspondence defined by # is preserved.

Receive new-view. When 7 = RECEIVE(m = (NEW-VIEW,v,V, 0, N),.);, we consider
two cases. Firstly, if the condition in the outer i f is not satisfied, let a = ,H(y,m ,1), where

consistent-nv-set 1 {h It is clear that this ensures y' € H[z'] under the assumption that
y € H[z]. Secondly, if t e condition in the outer 1f issatisfied when 7 executesin z, let o bethe

execution of the following sequence of actionsof A’:

1. Theactionsin 8(y, m' = (NEW-VIEW, v, V', 0", N'),, i), where consistent-nv-set ({m}, {m'})

2. Let C be asequence of tuples (vn,, R.., m,) fromN x 2 x RM such that the following conditions are true;
i) Vn ! (zlast-exec; < n < max-n(V))

i)V (Un, Rnymn) @ (vn < v A |Ru| > 2f ANVEk € R, : ((COMMIT, vy, n, D(my,), k), € z.Wreto)
AEF0 ((PRE-PREPARE,U',n,mn)aprimary(v,) € z.Wreto) V m, € z.Wret+o)
for each (vn., Rn,mn) € C inorder of increasing n execute:

a) B(y, cn, = (COMMIT, vn, m, D(mn), kYo, , 1), foreachk € R,
b) if enabled B(y, pn = (PRE-PREPARE, v', n, M)oprimary.)»©) 8% B(Y; mn, 1)

C) EXECUTE(mp, Un,n);

The definition of # (clauses 1, 4, 5 and 6) ensures that, when the receive of the new-view
message executesin y, the conditionintheouter i f istrueexactly whenitissatisfiedinz. Lety; be
the state after 5(y, m', 7) executes; we show that when C' isempty (i.e., max-n(V') < last-exec;),
y' = y1 € H[z']. Thisistrue because:

e Both 7 and 8(y, m', %) set view; to v, add all the pre-preparesin O U N to in;, and add
consistent new-view messagesto in;.

e B(y,m', 1) alsoaddsthe pre-preparesin (O’ UN') (O U N) toin; but thisdoesnot violate
‘H because w ensures that z’.stable-n; is greater than or equal to the sequence numbersin
these pre-prepares.

e Both 7 and 3(y, m’,) add preparesto in; and out;; 8(y, m',) adds all the prepares added
by 7 and some extra prepares whose sequence numbersare less than or equal to z’.stable-n;.

When C is not empty (i.e., max-n(V') > last-exec;), it is possible that y; ¢ #[z'] because
some of the requestswhose executionisreflected in thelast checkpointin 2’ may not have executed
iny1. Theextraactionsin o ensurethat y' € H[z'].

We will first show that C' is well-defined, i.e., there exists a sequence with one tu-
ple for each n between z.last-exec; and max-n(V') that satisfies conditions i) and ii). Let
m' = (VIEW-CHANGE, v, max-n(V), (s, 1, t),C", P, k)4, betheview-change messagein V whose
checkpoint value, (s,l,t), is assigned to (val;,last-rep;, last-rep-t;). Since m" is correct, C’
contains at least f + 1 checkpoint messages with sequence number max-n(V') and the digest of

32

(s,1,t). Therefore, the bound on the number of faulty replicas, and Invariant 5.3 (condition 2)
imply thereis a sequence of requests p1 such that committed-Wire(s, [, ¢, max-n(V'), v, p1).

Since by the inductive hypothesis y € #|z], al the the commit, pre-prepare and request
messages corresponding to w1 are also in y.Wreto. Therefore, all the actions in @) and at least
one of the actions in b) are enabled starting from vy, for eachn and each k € R,,. Sincev,, < v
for al the tuples in C, each receive in 3(y, ¢y, ,) Will insert ¢, inin;. Similarly, the receive
of the pre-prepare or request will insert a matching pre-prepare or request in in;. This enables
execute(my, v, n);.

Invariant 5.3 (condition 1) also asserts that there exists a sequence of requests u, such
that committed-Wire(z.val;, z.last-rep;, z.last-rep-t,, z.last-exec;, z.view;, u2). Since by the inductive
hypothesisy € H[z], all the the commit, pre-prepare and request messages corresponding to p1
and pp are aso in y.Wire+o. This and Invariant 5.4 imply that u; is a prefix of ui. Therefore,
after the execution of «, val;, last-rep;, last-rep-t;, last-exec; have the same value in z’ and y' as
required by .

Send. If 7 = SEND(m, X);, let o be:

e Asinglesend(m, X); step, if m doesnot havethe CHECKPOINT, VIEW-CHANGE, OF NEW-VIEW
tag and this actionisenabled in y.

e)\, if m hasthe CHECKPOINT tag or the action is not enabled in y (because the message is
already in the channel.)

e A single send(m’, X); step, if m has the VIEW-CHANGE tag and this action is enabled in y
(where consistent-vc(m, m').)

e Asinglesend(m’, X); step, if m hasthe NEw-VIEW tag and thisactionisenablediny (where
consistent-nv-set({m}, {m’}).)

Send-pre-prepare and send-commit. If 7 = SEND-PRE-PREPARE(m, v,n); OF m = SEND-
COMMIT(m, v, n);, let o contain asingle step. This ensuresy’ € H[z'] because these actions
are only enabled in z when they are enabled in y, and they insert and remove the same messages
fromin; and out;.

Execute. When m = EXECUTE(m, v, n);, let « contain asingle « step. The action is enabled
iny whenitisenabledin x becauseit isonly enabled in z for n > z.stable-n; and z.in; and y.in;
have the same pre-prepare and commit messages with sequence numbers greater than z.stable-n;
and the same requests. It is easy to see that the state correspondence defined by # is preserved by
inspecting the code.

View-change. If 7 = VIEW-CHANGE(v);, let o contain asingle 7 step. The action is enabled
iny whenitisenabledin z becauseview; hasthe samevaluein z and y. Both 7 and « insert view-
change messages m and m/' (respectively) in in; and out;; it is clear that this ensuresy’ € H[z']
provided consistent-vc(m’, m') is true. Clause 2 in the definition of # ensures that m and m’
contain the same messages in the P component for sequence numbers greater than z.stable-n;;
therefore, consistent-vc(m’, m') istrue.

Send-new-view. If @ = SEND-NEW-VIEW(v,V);, let a be the execution of the following
sequence of actionsof A’

33

1. send-new-view(v, V'); step, where consistent-vc-set(V, V).

2. Let C be asequence of tuples (vn,, R.., m,) fromN x 2™ x RM such that the following conditions are true;
i) Vn : (zlast-exec; < n < max-n(V))

i)Y (vn,Rn,mn) @ (vn < v A |Ra| > 2f ANVE € Ry : ((COMMIT, v, n, D(my), kYo, € z.Wre+o)
A@EY ((PRE'PREPAREW',Mmn)vprimary(v') € z.Wreto) V m, € z.Wret+o)
for each (v, R, my) € C inorder of increasing n execute:

a) B(y, cn;, = (COMMIT, v, n, D(my), kYo, , 1), foreachk € R,
b) if enabled ,B(y,pn = <PRE_PREPARE, U’a n, mn)vprimary(u')) Z) else /B(ya Mn, 'L)

C) EXECUTE(mp, Un,)i

This simulation and the argument why it preserves # is very similar to the one presented for
receives of new-view messages.

Failure. If 7 = REPLICA-FAILURE; Or m = CLIENT-FAILURE;, let o contain asingle 7 step. It
iseasy to seethat y' € H[§'].

Actionshby faulty nodes. If 7 isan action of afaulty automaton, let o contain asingle « step.
The definition of H ensuresthat « is enabled in y whenever = is enabled in z. Modifications to
theinternal state of the faulty automaton cannot violate 4. The only actionsthat could potentially
violate H are sends. But thisis not possible because a faulty automaton cannot forge the signature
of anon-faulty one. 0

References

[1] FIPS180-1. Secure hash standard. NIST US Dept. of Commerce. 1995.

[2] M. Bédllare and P. Rogaway. The exact security of digital signatures- How to sign with RSA and
Rabin. In Advancein Cryptology - EUROCRYPT ’ 96, Lecture Notes in Computer Science, Vol. 1070,
U. Maurer, ed., Springer-Verlag, 1996.

[3] G. Brachaand S. Toueg. Asynchronous Consensus and Broadcast Protocols. Journal of the ACM,
32(4), 1995.

[4] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and I mplementation, New Orleans, LA, February 1999.

[5] M. Herlihy and J. Wing. Axioms for Concurrent Objects. In ACM Symposium on Principles of
Programming Languages, 1987.

[6] K.Kihlstrom, L. Moser, and P. Médlliar-Smith. The SecureRing Protocols for Securing Group Com-
munication. In Hawaii International Conference on System Sciences, 1998.

[7] L. Lamport. Time, Clocks, and the Ordering of Eventsin a Distributed System. Communications of
the ACM, 21(7), 1978.

[8] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[9] D. Makhi, M. Reiter, and N. Lynch. A Correctness Condition for Memory Shared by Byzantine
Processes. Submitted for publication, September 1998.

34

[10] M. Reiter. The Rampart Toolkit for Building High-Integrity Services. Theory and Practice in
Distributed Systems (LNCS 938), 1995.

[11] F Schneider. Implementing Fault-Tolerant Services Using The State Machine Approach: A Tutorial.
ACM Computing Surveys, 22(4), 1990.

35

