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Abstract

This paper introduces Bitwise, a compiler that minimizes
the bitwidth — the number of bits used to represent each
operand — for both integers and pointers in a program. By
propagating static information both forward and backward
in the program dataflow graph, Bitwise frees the program-
mer from declaring bitwidth invariants in cases where the
compiler can determine bitwidths automatically. We find a
rich opportunity for bitwidth reduction in modern multime-
dia and streaming application workloads. For new architec-
tures that support sub-word quantities, we expect that our
bitwidth reductions will save power and increase processor
performance.

This paper also applies our analysis to silicon compila-
tion — the translation of programs into custom hardware —
to realize the full benefits of bitwidth reduction. We describe
our integration of Bitwise with the DeepC Silicon Compiler.
By taking advantage of bitwidth information during archi-
tectural synthesis, we reduce silicon real estate by 15% -
86%, improve clock speed by 3% - 249%, and reduce power
by 46% - 73%. The next era of general purpose and recon-
figurable architectures should strive to capture a portion of
these gains.

1 Introduction

The pioneers of the computing revolution described in
Steven Levy’s book Hackers, competed to make the best use
of every precious architectural resource. They hand-tuned
each program statement and operand. In contrast, today’s
programmers pay little attention to small details such as
the bitwidth (e.g., 8, 16, 32) of data types used in their pro-
grams. For instance, in the C programming language, it is
common to use a 32-bit integer data type to represent a sin-
gle Boolean variable! We could dismiss this shift in empha-
sis as a consequence of abundant computing resources and
expensive programmer time. However, there is another his-
torical reason — as processor architectures have evolved, the
use of smaller operands eventually has provided no perfor-
mance gains. Datapaths became wider, but the processor’s

entire data path was exercised regardless of operand size.
The additional overhead of packing and unpacking words —
now only to save space in memory — even reduced perfor-
mance.

1.1 A New Era: Software-Exposed Bits

There are three new compilation targets for high-level lan-
guages that are re-invigorating the need to conserve bits.
Each of these architectures exposes subword control. The
first is the renovation of SIMD architectures for multimedia
workloads. These architecture include Intel’s MultiMedia
eXtension (MMX), and Motorola’s Altivec. For example, in
Altivec, data paths are used to operate on 8, 16, 32, or 64
bit quantities.

The second class of compilation targets comprises fine-
grain substrates such as reconfigurable architectures — in-
cluding Field Programmable Gate Arrays (FPGAs) — and
custom hardware, such as ASIC and standard cell designs.
In both cases, architectural synthesis is required to support
high-level languages. There has been a recent surge of both
industrial and academic interest in developing new reconfig-
urable architectures. And for custom silicon, the emphasis
on high-level compilation has been accelerated by a consor-
tium of over 50 companies who have recently formed the
Open System C Initiative [13] to focus on the standardiza-
tion of high-level compilation.

The third class of compilation targets consists of embed-
ded systems which can effectively turn off bit slices [5]. The
static information determined at compile time can be used
to control which portions of a datapath are on or off dur-
ing program execution. Alternatively, for more traditional
architectures this same information can be used to optimize
power consumption (without actually running the program)
by predicting which bits on a datapath will change over time.

But there are no available commercial compilers that
can effectively target any of these new architectures. So
programmers have been forced to revert back to writing
low-level code. MMX libraries are written in assembly in
order to expose the most sub-word parallelism. In Ver-
ilog and VHDL hardware description languages, the burden
of bitwidth specification is on the programmer. To com-
pete in the marketplace, designers must choose the mini-
mum operand bitwidth for smaller and faster and more en-
ergy efficient circuits. Unfortunately, explicitly choosing the
smallest data size for each operand is not only tedious, but
also error prone. These programs are less malleable since
a simple change may require hand propagation of bitwidth
information across a large segment of the program. Further-



more, some of the bitwidth information may be dependent
on a particular architecture or implementation technology,
making the programs less portable.

1.2 Automating Bitwidth Specification

Automatic bitwidth analysis relieves the programmer of the
burden of identifying and specifying derivable bitwidth in-
formation. The programmer can work at a higher level
of abstraction. Even if the programmer explicitly specifies
operand sizes in languages which allow it, bitwidth analysis
can still be very valuable. For example, bitwidth analysis
can be used to verify that specified operand sizes do not vi-
olate program invariants — e.g., array bounds. Or bitwidth
analysis can be used to change a single variable’s bitwidth
throughout the life of the variable.

1.3 The Bitwise Compiler

Bitwise minimizes the bitwidth required for each static op-
eration and each static assignment of the program. The
scope of Bitwise includes fixed-point arithmetic, bit manip-
ulation and boolean operations. It uses additional sources
of information such as type casts, array bounds, and loop
iteration counts to refine the bitwidth information gathered.
We have implemented Bitwise using the SUIF compiler in-
frastructure [17].

In many cases, Bitwise is able to analyze the bitwidth
information as accurately as the bitwidth information gath-
ered from run-time profiles. On average we reduce the size
of program scalars by 12% - 80% and program arrays by up
to 93%.

1.4 Application to Silicon Compilation

In the paper we will focus on the application of bitwidth
analysis to silicon compilation. We have integrated Bitwise
with the DeepC Silicon Compiler. The compiler produces
hardware netlists from input programs written in C and
FORTRAN. We report end-to-end performance results for
this system both with and without the Bitwise optimiza-
tions. The results show how well the analysis works in the
context of a real system. Our experiments show Bitwise
favorably impacts area, speed, and power of the resulting
circuits.

1.5 Contributions
We summarize this paper’s contributions as follows.

e We formulate bitwidth analysis as a value range prop-
agation problem.

e We introduce a suite of bitwidth extraction techniques
that seamlessly perform bi-directional propagation.

e We formulate an algorithm to accurately find bitwidth
information in the presence of loops by calculating
closed-form solutions.

e We implement the analysis and demonstrate that the
compile-time analysis can approach the accuracy of
run-time profiling.

e We incorporate the analysis in a silicon compiler
and demonstrate that bitwidth analysis impacts area,
speed, and power consumption of a synthesized circuit.

1.6 Organization

The rest of the paper is organized as follows. Section 2
defines the bitwidth analysis problem. Bitwise’s implemen-
tation and our algorithms are described in Section 3. Sec-
tion 4 provides empirical evidence of the success of Bitwise.
Next, Section 5 describes the DeepC Silicon Compiler and
Section 6 discusses the impact of bitwidth analysis to silicon
compilation. Finally, we present related work in Section 7
and conclude in Section 8.

2 Bitwidth Analysis

Bitwidth analysis attempts to discover the smallest types for
each static variable assignment in a program while retaining
program correctness. A static variable assignment is defined
as an assignment in SSA form.

Library calls, I/O routines, and loops make static
bitwidth analysis challenging. In the presence of these con-
structs, we may have to make conservative assumptions
about an operand’s bitwidth. Nevertheless, with careful
static analysis, it is possible to infer bitwidth information.

Structures such as arrays and conditional statements
provide us with valuable bitwidth information. For in-
stance, we can use the bounds of an array to set an index
variable’s maximum bitwidth. Other program constructs
such as AND-masks, divides, right shifts, type promotions,
and Boolean operations are also invaluable for reducing
bitwidths.

The C code fragment in Figure 2 exhibits several such
constructs. This code — which is an excerpt of one of the
benchmarks presented in this paper (adpcm) — is typical of
tomorrow’s important multimedia applications. Each line
of code in the figure is annotated with a line number to
facilitate the discussion that follows.

Assume that we don’t know the precise value of delta.
Because it is used as an index variable in line (1), if we
assume that this is a legal program, we know that its value
is confined by the base and bounds of indexTable. Though
we still don’t know delta’s precise value, by restricting the
range of values that it can assume, we effectively reduce the
number of bits needed to represent it. In a similar fashion,
the code on lines (2) and (3) ensure that index’s value is
restricted to be between 0 and 88.

The and-mask in line (7) ensures that outputbuffer’s
value is no greater than 0xf0. We can propagate this infor-
mation to infer that the assignment to *outp in line (9) is
no greater than Oxff (0x0f | 0xf0).

Finally, we know that bufferstep’s value is either true
or false after the assignment in line (11) because it is the
result of the Boolean not (!) operation.

3 Bitwise Implementation

We next introduce the Bitwise compiler, a new set of com-
piler passes that perform bitwidth analysis. We begin by
describing the compiler’s infrastructure. A description of
the algorithms follows in Section 3.2.

3.1 Infrastructure

The Bitwise compiler uses SSA as its intermediate form.
The compiler performs a numerical data flow analysis. For-
tunately, we do not need the more complex symbolic analy-
sis because we are solving for absolute numerical bitwidths.



sl Cge Cge gL

1 o<>1 0 1...0 1
0 Ced Cpd Cgd
.

Figure 1: Three alternatives data structures for bitwidth analysis. The lattice in (a) represents the number of bits needed to represent
a variable. The lattice in (b) represents a vector of bits that can be assigned to a variable, and the lattice in (c) represents the range of

values that can be assigned to a variable.

(1) index += indexTable[deltal;

(2) if ( index < 0 ) index = 0;

(3) if ( index > 88 ) index = 88;

(4) step = stepsizeTable[index];

(5)

(6) if ( bufferstep ) {

(7 outputbuffer = (delta << 4) & 0xf0;
(8) 1} else {

9 *xoutp++ = (delta & 0x0f) | outputbuffer;
(10) *

(11) bufferstep = !bufferstep;

Figure 2: Sample C code used to illustrate the fundamentals
of the analysis. This code fragment was taken from the loop of
adpcm_coder in the adpcm multimedia benchmark.

This section describes the choice of data-structures for prop-
agating numerical information in our analysis. We consider
three candidate data-structures. Figure 1 visually depicts
each lattice, a formal ordering of their internal structure.

Propagating the bitwidth of each variable: Figure 1(a) is
the most straightforward implementation, and has been de-
scribed by Scott Ananian [1]. While this representation per-
mits an easy implementation, it does not yield accurate re-
sults on arithmetic operations. When applying the lattice’s
transfer function, incrementing an 8-bit number always pro-
duces a 9-bit resultant, even though it may likely only need
8-bits. In addition, only the most significant bits of a vari-
able are candidates for bit-elimination.

Maintaining a bit vector for each variable: Figure 1(b) is
a more complex representation, requiring the composition
of several smaller bit-lattices. Although this lattice allows
elimination of arbitrary bits from a variable’s representa-
tion, it does not support precise arithmetic analysis. As
an example of eliminating arbitrary bits, consider a par-
ticular variable that is assigned the values from the set,
{0102, 1002,1102}. After analysis, the variable’s bit-vector
will be [TT0], indicating that we can eliminate the least
significant bit. Like the first data structure, the arithmetic
is imprecise because the analysis must still conservative as-
sume that every addition results in a carry.
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Propagating data-ranges:

agation, procedure cloning, and program verification [14].

For the Bitwise compiler we choose to propagate data-
ranges, not only because of their generality, but also because
most important applications use arithmetic and will bene-
fit from their exact precision. The lattice in Figure 1(c) is
a lifted lattice in that it includes a bottom element. The
value Lpr, represents a value that have not yet been ini-
tialized. Additionally, note that the value Tpr,, a part
of the lattice, represents a values that cannot be statically
determined. Finally, unlike a regular set union, we define
data range union (L) to be the union over the single con-
nected subrange of the integers where (a;,ap) U (b;,br) =
We define data range intersec-
tion (M) to be the set of all integers in both subranges where

(min(ar, b)), mazx(ar,br)).

(ar,arn) N {bi,br) = (max(ai,b;), min(an,bn)).

3.2 Data-Range Propagation

Data-ranges can be propagated both forward and backward
over the control flow graph. Figure 4 shows a subset of the
transfer functions for propagation. The forward propagated
values in the figure are subscripted with a down arrow (),
and the backward propagated values with an up arrow (1).
In general the transfer functions take as input either one or

two data-ranges and return a single data-range.

We begin with a discussion of forward propagation. An
SSA graph is the control flow graph in SSA form. Initially,
all of the variables in the SSA graph are initialized to Tpr, .
Informally, forward propagation traverses the SSA graph in
breadth-first order, applying the transfer functions for for-
ward propagation. Because forward propagation is so well

known, the details are omitted here.

Figure 1(c) is the final lattice we
considered. This lattice is also the implementation chosen
in the compiler. A data-range is a single connected subrange
of the integers from a lower bound to an upper bound (e.g.,
[1..100] or [-50..50]). Thus a data-range keeps track of a vari-
able’s lower and upper bounds. Because only a single range
is used to represent all possible values for a variable, this
representation does not permit the elimination of low-order
bits. However, it does allows us to operate on arithmetic
expressions precisely. Technically, this representation maps
bitwidth analysis to the more general value range propa-
gation problem. Value range propagation is known to be
useful in value prediction, branch prediction, constant prop-

0
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Forward propagation allows us to identify a significant
number of unused bits, sometime achieving the optimal re-
sult. However, additional minimization can be achieved by
integrating backward propagation. For example, when we
find a data-range that has stepped outside of known bound-
aries, we can back propagate this new reduced data-range
to instructions that have already used its deprecated value
to compute their results. Beginning at the node where the
boundary violation is found, we propagate the reduced data-
range in a reverse breadth-first order. Backward propaga-
tion halts when either the graph’s entry node is reached, or
when a fixed point is reached.

To further elaborate, consider the pedagogical SSA graph
shown in Figure 3. Forward and backward propagation steps
have been annotated on the graph. The numbers to the right
of the figure list each step. The step numbers in black rep-
resent the backward propagation of data-ranges. Without
this backward propagation we would arrive at the following
data-ranges:

a0 = (INTmin, INTmaz)

al = (INTwin, INT oz )

a2 = (INTmin + 1,0)

a3 = (INTwin + 1, INTaz)

c0 =(0,INTraz)
Let us assume we know that the length of the array, array, is
10 from its program declaration. We can now substantially
reduce the data-ranges of these variables with backward
propagation. We use array’s bound information to clamp
a3’s data-range to (0,10). We then propagate this value
backward in reverse breadth-first order using the transfer
functions for backward propagation. In our example, prop-
agating a3’s new value backward yields the following new
data-ranges:

a0 = (—2,9)
al = (—1,10)
a2 = (0,0)

Reverse propagation can halt after a0’s range is determined
(step 14). Because cO uses the results of a variable that has
changed, we have to traverse the graph in the forward di-
rection again. After we confine c0’s data-range to (0, 10) we
will have reached a fixed point and the analysis is complete.

In this example we see that data-range propagation sub-
sumes constant propagation; we can replace all occurrences
of a2 with the constant value 0.

Before considering loops, we can informally reason about
termination. After the application of each transfer function,
a variable’s data-range will shrink by some amount. In the-
ory, if we repeatly apply the rules, we will eventually reach
a fixed point.

However, the height of the lattice may not make this a
practical solution®.

Non-termination was not a problem for our benchmarks.
However, when it is a problem, there is an easy solution.
Because successive iterations reduce the range of numbers
a variable can represent— and thus the bitwidth of the
variable— we can stop iterating after a user-defined number
of iterations. At that point the analyzer will have computed

L1f we assume that data-ranges are composed of 32-bit integers, we can derive
the height of the data-range lattice as follows:
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Figure 3: Forward and Backward Data-Range Propagation. Ap-
plication of forward propagation rules are shown to the right of
the figure in white, while backward propagation rules are shown in
black. We use array’s bounds information to tighten the bounds
on some of the variables.

a reduced but potentially sub-optimal bound for the vari-
able’s bitwidth.

3.3 Loops

Optimization of loop instructions is crucial — they usually
comprise the bulk of dynamic instructions. Traditionally,
data flow analysis techniques iterate over back edges in the
graph until a fixed point is reached. But in the presence
of even simple loop-carried expressions, this technique will
saturate bitwidths. That is, because the method does not
take into account any static knowledge of loop bounds, re-
lated variables will end up being 32-bits for a typical 32-bit
integer declarations.

But many important applications use loop-carried arith-
metic expressions. A new approach is required; in our case,
we attempt to find closed-form solutions. When we can find
a closed-form solution, the height of the lattice becomes ir-
relevant!

3.3.1 Loop Extension to SSA Form

In order to search for closed-form solutions, we must first
identify loops. We ease loop identification in SSA form by
converting all ¢-functions that occur in loop headers to p-
functions [7]. This extension is assumed for the remainder
of the paper.

3.3.2 Loop Analysis

To find the closed form solution to loop-carried expressions,
we use the techniques introduced by Gerlek et. al.[7]. These
techniques allow us to identify and classify sequences in
loops. A sequence is a group of instructions that are mutu-
ally dependent on all of the other instructions in the same
group. In other words, a sequence is a strongly connected
component (SCC) of the program’s dependence graph. We
can examine the instructions of the sequence to try and find
a closed form solution to the sequence. The algorithm for
detecting and classifying sequences is shown in Figure 5.
We next define the function sequence_type of the
classify_sequence procedure. We can create a partial or-
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Figure 4: A selected subset of transfer functions for bi-directional data-range propagation. Equations on the left are inputs to the
transfer functions on the right. The variables in the figure are subscripted with the direction in which they were computed. The transfer
function in (a) adds two data-ranges, and (b) subtracts two data-ranges. The AND-masking operation in (c) returns a data-range
corresponding to the smallest of its two inputs. It makes use of the bitwidth function which returns the number of bits needed to
represent the data-range. The type-casting operation shown in (d) constricts the propagated data-range to be at most, the maximum
range that can be represented by its input type. The function in (e) is applied when we know a value must be within a specified range.
For instance, this rule is applied to limit the data-range of a variable that is indexing into a static array. Rules (f) and (g) are applied

at confluence points.



Purpose:
; This procedure detects sequences in the graph
; of ssa nodes passed in. If a commonly occuring
; sequence is found, its closed form solution is
; computed.
Gliven:
; graph_nodes : A graph of ssa nodes that comprise a loop.
procedure find_closed_form_solutions (graph_nodes)
entry : ssa_node
tripcount : integer
components : graphof listof instruction
seql, seq2, sequence : listof instruction

;i The algorithm assumes that the head of the loop is
;; annotated with the loop’s tripcount. If the loop is
;i a while-type loop, the tripcount will be infinity.
entry < entry node of graph_nodes

tripcount < entry.tripcount

foreach instr € entry do
if instr is of type p-funtion then
instr.tripcount < tripcount

;3 Use Tarjan’s algorithm to find connected components
components < find_-SCCs (graph_-nodes)
foreach seql € components do
foreach seq2 € components do
if seql is dependent on seq2 then
add vertex in components from seql to seq2

foreach sequence € components do
if sequence has no outgoing vertices then
classify_sequence (sequence)
components <— components —gnapn S€QUEnce
end procedure

Purpose:
; This procedure classifies the sequence that is passed in
; according to its composition of instructions.
Gliven:
; Inputs : A list of instructions.
procedure classify_sequence (sequence)
seqtype : oneof {boolean, linear, polynomial, geometric, top}
tripcount : integer
initial : datarange
final : datarange
value : datarange

if sizeof sequence = 1 then
instr < instruction in sequence
instr.destination <+ evaluate_instruction (instr)
else
;; Determine the type of sequence that we dealing with.
seqtype < sequence_type (sequence)

if seqtype = boolean then
foreach instr € sequence do
instr.destination « (0, 1)
elseif seqtype = linear
instr < p-function in sequence
tripcount < instr.tripcount
initial - evaluate_instruction (instr)
foreach instr € sequence do
final « evaluate_instruction (instr)
instr.detination < final
growth < (final —ppg initial) *pgr tripcount
foreach instr € sequence do
instr.destination <— instr.detination +pgr growth
elseif . ..

elseif seqtype = top_sequence
foreach instr € sequence do
instr.destination < Tpgr
end procedure

Figure 5: Pseudocode for the algorithms that detect, classify, and
compute closed form solutions of commonly occuring sequences.
The function find_closed_form solutions detects sequences in
code and calls classify_sequence to classify the sequences and
compute the closed form solutions.

der on the types of expressions we wish to identify. The
Expression lattice (Figure 6) orders various expressions ac-
cording to set containment. The top of the lattice represents
an undetermined expression, while the bottom of the lattice
represents all possible expressions. Linear sequences repre-
sent induction variables in loop bodies. Polynomial induc-
tion sequences represent a composition of linear sequences.
Likewise geometric sequences are composed of polynomial
sequences and linear sequences.

Tsequenoe
invariant
linear
boolean

polynomial

geometric

Lsechence

Figure 6: A lattice that orders sequences according to set con-
tainment.

For each instruction type in the source language, we cre-
ate transfer functions that operate on the lattice. A trans-
fer function is implemented as a table that is indexed by
the expression types of its source operands. The destination
operand is then tagged with the expression type dictated by
the transfer function. See [7] for a more detailed explana-
tion.

We extend the work done by Gerlek et. al. [7] by identi-
fying boolean sequences. These sequences are not only easy
to find, but they also allow us to represent each boolean
static assignment with only one bit.

After we have determined the type of each expression
in a sequence, we can classify it based on the types of its
expressions and its composition of ¢- and p—functions. For
instance, boolean sequences can contain any number of ¢-
or p-functions, but can only contain boolean sequences.

Once we have determined the type of sequence the com-
ponent represents, we use a solver to compute the sequence’s
closed form solution. Each type of sequence has its own
solver that takes as input the sequence and the initial val-
ues of the variables. As an example, consider the simple
code fragment below:

a = 0;
for (i = 0; i < 10; i++) {
a=a+b;

}

The analyzer first converts the code to SSA form, then
it ascertains the symbolic tripcount of the loop, where trip-
count is defined as the number of times the loop is iterated.
In this case, the loop’s tripcount is determined to be 10.
Next the analyzer, finds all of the strongly connected com-
ponents in the loop’s body; these components represent the
sequences. For this example, the only component is shown
in Figure 7.
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al = pu(a0,a2) (0,0) (0, 50)
a2 =al+>5 (5,5) (5,50)

Figure 7: An example that shows the detection and computation
of a linear sequence. The sequence is shown on the left, and the
computation of the sequence is shown on the right.

Because the sequence contains only a single p-function
and a linear-type expression, we use the solver for linear
components. The solving process is traced to the right of the
sequence in the figure. In the first iteration, we compute the
growth factor of the sequence. The resulting data-ranges are
shown in the column labeled, Iterationl. Note that when
a solver evaluates a p-function, during the first iteration it
only uses the operand that is defined outside the loop body.
Subsequent iterations use both operands.

We can then multiply the growth factor by the tripcount
to determine the final result of the sequence. The second
iteration over the loop simply adds the final value of the
sequence to the value computed in the first iteration.

In many cases, using this technique obviates the need for
finding a fixed point. However, when we are unable to iden-
tify a sequence, we can set all of the static assignments in
the sequence to the maximum data-range available (TDRJ_).
Alternatively we can iterate over the sequence until a fixed
point is reached or until we reach a user-defined maximum
number of iterations. After the maximum number of iter-
ations is reached, the destination operands in the sequence
are set to Tpr, .

3.4 Arrays

In traditional SSA form, pointers and arrays are not re-
named. Special extensions to SSA form have been proposed
which provide element-level data flow information for ar-
rays [11]. While such extensions to SSA form can potentially
provide more accurate data-range information, for bitwidth
analysis it is actually more convenient to treat arrays as
scalars; this analysis is inexpensive from a complexity stand-
point, and when compiling to silicon this analysis accurately
determines the data bus size for embedded RAMs.

Wherever an array is modified we have to insert a new
¢-function to merge the array’s old data-range with the
new data-range. One drawback of this method is that a
¢-function is required for every array assignment, increas-
ing the size of the code. However, def-use chains are still
inherent in the intermediate representation which simplifies
the analysis.

3.5 Pointers

Using pointer analysis such as Radu Rugina’s SPAN pack-
age [15], we can determine the sets of variables — commonly
referred to as location sets — a pointer may or must refer-
ence. Such an analysis package tags all memory references
with location set information.

3.5.1 Example and Discussion

To simplify this discussion, we will distinguish between ref-
erence location sets, and modify location sets: a reference
location set is a location set annotation that occurs on the
right hand side of an expression, whereas a modify location
set occurs on the left hand side of an expression.

Benchmark | Type Source Lines | Description
adpcm Multimedia | UTdsp 195 | Audio Compress
bubblesort Scientific Raw 62 | Bubble Sort
convolve Multimedia | MIT 74 | Convolution
histogram Multimedia | UTdsp 115 | Histogram

intfir Multimedia | UTdsp 64 | Integer FIR
intmatmul Scientific Raw 78 | Int. Matrix Mult.
jacobi Scientific Raw 84 | Jacobi Relation
life Automata Raw 150 | Game of Life
median Multimedia | UTdsp 86 | Median Filter
mpegcorr Multimedia | Berkeley 144 | MPEG-3 Kernel
newlife Automata MIT 119 | New Game of Life
parity Multimedia | MIT 54 | Parity Function
pmatch Multimedia | MIT 63 | Pattern Matching
sor Scientific MIT 60 | 5-point Stencil
sha Encryption | MIT 638 | Secure Hash
softfloat Emulation Berkeley 1815 | Floating Point

Table 1: Benchmark characteristics

As an example, consider the following C memory instruc-
tion, assuming that p0 is a pointer that can point to variable
a0 or b0, and that q0 is a pointer that can only point to vari-
able bO:

*p0 = *q0 + 1

The location set that the instruction may modify is
{a0, b0}, and the location set that the instruction must ref-
erence is {b0}. Since there is only one variable in the in-
struction’s reference location set, it must reference b0. Since
there are two variables in the modify location set, either a0
or b0 may be modified.

Keeping the SSA guarantee that there is one unique as-
signment associated with each variable, we have to rename
a0 and b0 in the instruction’s modify location set. Fur-
thermore, since it is not certain that either variable will be
modified, a ¢-function has to be inserted for each variable
in the modify location set to merge the previous version of
the variable with the renamed version:

{a1,b1} = {p0} +1
a2 = ¢(a0, al)
b2 = ¢(b0, b1)

If the modify location set has only one element then the
element must be modified, so a ¢-function does not need
to be inserted. This extension to SSA form allows us to
treat de-referenced pointers in exactly the same manner as
scalars.

3.5.2 Pointer Bitwidths

With a pointer analysis package we can also determine the
bitwidth of a pointer. This is useful if we are compiling to a
non-conventional device such as an FPGA where memories
are segmented into many small chunks [3]. For instance,
if we know that a pointer always points to an array of a
statically known size, we can set the bitwidth of the pointer
accordingly.

4 Bitwise Results

We have implemented the compiler infrastructure, forward
propagation, and sequence detection algorithms described
in this paper. We are in the process of implementing the
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back propagation algorithm. In this section we report gen-
eral results from a standalone Bitwise Compiler composed
of the first five SUIF passes shown in Figure 8. Further re-
sults, after processing with the Silicon Compiler backend,
are presented in Section 5 and Section 6.

The frontend of the compiler takes as input a pro-
gram written in C or FORTRAN and produces a bitwidth-
annotated SUIF file. After parsing the input program into
SUIF, the compiler performs traditional optimizations and
then pointer analysis. We use Radu Rugina’s SPAN [15].
Next come the three passes labeled “Bitwidth Analysis”.
These three passes are the realization of the algorithms dis-
cussed in this paper, with the exception of backward propa-
gation. In total, they comprise roughly 12,000 lines of C++
code. We first discuss the bitwidth reports that are gener-
ated after these passes, without further backend processing.

To continue, the pointer analysis information is supplied
to the following alias information pass, which performs sim-
ple interprocedural analysis. From here the SUIF intermedi-
ate representation is converted to SSA form. This SSA con-
version also implements the SSA extensions of Section 3.5
and Section 3.4. Finally, the data range propagation pass
is invoked to produce bitwidth-annotated SUIF along with
the appropriate bitwidth reports.

4.1 Experiments

Because the compiler is new, we do not yet compile programs
with recursive procedure calls. In the short term, this re-
striction limits the complexity of the our benchmarks set for
general purpose computing. However, it provides adequate
support of programs for high-level silicon synthesis.

Table 3.5.2 lists the benchmarks presented in this section.
Because multimedia applications are becoming so prevalent,
we chose several. We also chose standard applications that
exhibit bit and byte-level granularity: softfloat and life.

4.2 Register Bit Elimination

Figure 9 shows the percentage of the original register bits re-
maining in the program after Bitwise has been run. Register
bits are used to store static program variables. The lower
bound — which was obtained by profiling the code — is in-
cluded for reference. For the particular data sets supplied to
the benchmark, this lower bound represents the fewest pos-
sible number of bits needed to retain program correctness,
and thus the best any static analysis could possibly achieve.
The graph assumes that each variable is assigned to its own
register. This is not always the case because a register allo-
cator may lose some of the gains of the analysis by allocating
the same register to different sized operands. Nonetheless,
this is a useful metric because register bitwidths may still af-
fect functional unit size, data path bitwidths, and switching
activity.

Our analysis dramatically reduces the total number of
register bits needed. In most cases, the analysis is near op-
timal, which is especially exciting for applications that per-
form abundant multi-granular computations. For instance,
Bitwise almost matches the lower bound for life and mpeg-
corr, both of which are bit and byte-level applications.

The only application in the figure with substantially sub-
optimal performance is median. In this case, the analyzer
was unable to determine the bitwidth of the input data, thus
variables that were dependent on the input data assumed the
maximum possible bitwidths (Law).
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Figure 9: Percentage of total register bits remaining: Origi-
nal versus post-bitwidth analysis and dynamic profile-based lower
bound.

4.3 Memory Bit Elimination

Figure 10 shows the percentage of the original memory bits
remaining in the program. Here memory bits are defined as
data allocated for static arrays and dynamically allocated
variables. This is an especially useful metric when compil-
ing to non-conventional devices such as an FPGA, where
memories may be segmented into many small chunks. In
addition, because memory systems are one of the primary
consumers of power in modern processors, this is a useful
metric for estimating power consumptionn [10].

In almost all cases, the analyzer is able to determine
near-optimal bitwidths for the memories. There are a cou-
ple of contributing factors for Bitwise’s success in reducing
array bitwidths. First, many multimedia applications ini-
tialize static constant tables which represent a large portion
of the memory savings shown in the figure. Second, Bitwise
capitalizes on arrays of Boolean variables.
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Figure 10: Percentage of total memory remaining: Original
versus post-bitwidth analysis and dynamic profile-based lower
bound.

4.4 Bitwidth Distribution

It is interesting to categorize variable bitwidths according
to grain size. The stacked bar chart in Figure 11 shows
the distribution of variable bitwidths both before and after
bitwidth analysis. We call this distribution a Bitspectrum.
To make the graph more coherent, bitwidths are rounded
up to the nearest typical machine data-type size. In most
cases, the number of 32-bit variables is substantially reduced
to 16, 8, and 1-bit values.

For silicon compilation, this figure estimates the overall
register bits that can be saved. As we will see in the next
sections, reducing register bits will results in smaller data-
paths and subsequently smaller, faster, and more efficient
circuits. For multimedia applications, the spectrum shows
which applications will have the best prospect for packing
values into sub-word instructions.
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Figure 11: Bitspectrum. This graph is a stacked bar chart that
shows the distribution of bitwidths for each benchmark. Without
bitwidth analysis, almost all bitwidths are 32-bits. With Bitwise,
many widths are reduced to the 16, 8, 1 bit machine types, as
denoted by the narrower 16, 8, and 1 bit bars.

5 DeepC Silicon Compiler

So far we have shown that bitwidth analysis is a generally
effective optimization and that our Bitwise Compileris capa-
ble of performing this task well. We now turn to a concrete

application. We have applied bitwidth analysis to the very
difficult problem of silicon compilation. For lack of space,
we must give the problem of silicon compilation a very brief
treatment (in the remainder of this section) and then focus
our attention (Section 6) on the impact of bitwidth analysis
in this context.

5.1 Overview

We have integrated Bitwise with the DeepC Silicon Com-
piler [3], a research compiler under development that is ca-
pable of translating sequential applications, written in either
C or FORTRAN, directly into a hardware netlist. The com-
piler automatically generates a specialized parallel architec-
ture for every application. To make this translation feasible,
the compilation system incorporates both the latest code op-
timization and parallelization techniques as well as modern
hardware synthesis technology. Figure 8 shows the details of
integrating Bitwise into DeepC’s overall compiler flow. De-
tailed steps of the compiler that are unimportant to our dis-
cussion are compressed into a few black boxes. After reading
in the program and performing traditional compiler opti-
mizations and pointer analysis, the bitwidth analysis steps
are then invoked. These steps were described in detail in
Section 4. The silicon compiler backend follows these steps.
First, additional parallelization transformations are applied,
followed by a high-level architectural partition, place, and
route which forms parallel communication threads. Then
an architectural synthesis step translates these threads into
custom hardware. Following these transformation, tradi-
tional computer-aided-design (CAD) optimizations are ap-
plied to generate the final hardware netlist. In the flowchart,
the raised steps are new Bitwise or Deep(C passes, and the
remaining steps are re-used from previous SUIF compiler
passes.

5.2 Implementation Details

The DeepC Compiler is implemented as a set of over 50
SUIF passes followed by commercial RTL synthesis. The
current implementation uses the latest version of Synopsys
Design Compiler and FPGA compiler for synthesis. A large
set of the SUIF passes are taken directly from MIT’s Raw
compiler [12], whose backend is in turn built on Harvard’s
MachSUIF compiler [16]. The backend verilog generator is
implemented on top of Stanford’s VeriSUIF [6] data struc-
tures. Despite the large number of SUIF passes, the major-
ity of the compiler’s run-time is consumed by CAD synthesis
tools.

5.3 Usage

There has been a limited released of the compiler and it
is in use by researchers at MIT and Princeton for recon-
figurable computing research, and the University of Mas-
sachusetts for system-on-a-chip research. When used for
reconfigurable computing, the compiler is coupled with fur-
ther silicon compilation tools, such as the VirtuaLogic [9]
emulation system from IKOS, or software and drivers for
Annapolis System’s WildCard PCMCTA card. For use in
custom chip design, downstream tools must be capable of
accepting a logic netlist and placing and routing that design
into a specific silicon substrate.
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Figure 12: Register Bits After Bitwise Optimization. In every
case Bitwise saves substantial register resources in the final silicon
implementation.

6 Impact on Silicon Compilation

In this section we characterize the impact of bitwidth anal-
ysis on silicon compilation. As described in the previous
section, the DeepC Silicon Compiler has the opportunity to
specialize memory, register, and datapath widths to match
application characteristics — we expect bitwidth analysis to
have a large impact in this domain. However, because back-
end CAD tools already implicitly perform some bitwidth cal-
culation during optimizations such as dead logic elimination,
accurate measurements require end-to-end compilation. We
need to compare final silicon both with and without Bitwise.

We introduce our benchmarks in the next section, and
then describe the dramatic area, latency, and power savings
that bitwidth analysis enables?.

6.1 Experiments

We present experimental results for an initial set of appli-
cations that we have compiled to hardware. For each ap-
plication, our compilation system produces an architecture
description in RTL Verilog. We further synthesize this archi-
tecture to logic gates with a commercial CAD tool (Synop-
sys). In this paper we report area and speed results for Xil-
inx 4000 series FPGAs, and power results for IBM’s SA27E
process — a 0.12 micron, 6-layer copper, standard-cell pro-
cess.

The benchmarks used for silicon compilation are included
in Table 3.5.2. These applications are mostly short bench-
marks, but include many multimedia kernels. It is impor-
tant to note that the relative small size of the benchmarks
is dictated by the current synthesis time of our compilation
approach and not Bitwise.

6.2 Registers Saved in Final Silicon

We first compiled each benchmark into a netlist capable of
being accepted by either Xilinx or IBM CAD tools to pro-
duce “final silicon”. The memory savings reported in Sec-
tion 4 translate directly into silicon memory savings when
we allow a separate small memory for each program variable.
This small memory partitioning process is further described
in earlier work [3].

2Note that we also found considerable synthesis compile time sav-
ings which are not reported here.
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Figure 13: Register Bit Reduction, After High Level Analysis
versus Final Silicon. The fluctuations in bitwidths savings be-
tween final silicon and high-level analysis is do to factors such as
variable renaming and register allocation.

Register savings, on the other hand, vary as additional
compiler and CAD optimizations transform the program’s
variables. Variable renaming and register allocation also
distort the final result by placing some scalars in more than
one register and others in a shared register. Figure 12 shows
the total FPGA bits saved by bitwidth optimization. For
Xilinx FPGA compilation, the fixed allocation of registers
to combinational logic will distort the exact translation of
this savings to chip area, as some registers may go unused.

Our findings are very positive — the earlier bitwidth
savings translated into dramatic savings in final silicon, de-
spite the possibilities for loss of this information or potential
overlap with other optimizations. However, because there is
not a one-to-one mapping from program scalars to hard-
ware registers, the exact savings do not match. Examining
Figure 13, we see that the percentage of bits saved by high-
level analysis are sometimes greater and sometimes less than
those bits saved in final silicon. We explain these differences
as follows. First, there are many compiler and CAD passes
between high-level analysis and final silicon generation. If
in any of these passes the bitwidth information is “lost”,
for example when a new variable is cloned, then the full
complement of saved bits will not be realized. On the other
hand, the backend passes, especially the CAD tools, are also
attempting to save bits through logic optimizations. Thus
these passes may find saving that the current high-level pass
is not finding. Finally, variable renaming and register shar-
ing also change the percentages.

6.3 Area

Registers saved translate directly into area saved. Area sav-
ings also result from the reduction of associated datapaths.
Figure 14 shows the total area savings with Bitwise opti-
mizations versus without. We save from 15% to 86% in
overall silicon area, nearly an 8x savings in the best case.

Note that in the DeepC Compilation system pointers
do not require the full complement of 32-bits. Using the
MAPS [4] compiler developed for Raw, arrays have been as-
signed to a set of equivalence classes. By definition, a given
pointer can only point to one equivalence class, and thus
needs to be no wider than log Za Sa, where S, is the size of
each memory array specified in the equivalence class. This
technique is further described in [2].



CLB Count

Figure 14: FPGA Area After Bitwise Optimization. Register
savings translate directly into area savings for FPGAs. In the
figure, CLB count measures the number of internal combinational
logic blocks required to implement the benchmark when compiled
to FPGAs. Combinational logic blocks (CLBs) each include 2
four input lookup tables and 2 flip-flop registers. The number in
parenthesis by each benchmark is the resulting bitwidth of the
main datapath.

6.4 Clock Speed

We also expect bitwidth optimization to reduce the latency
along the critical paths of the circuit and increase maximum
system clock speed. If circuit structures are linear, such as
a ripple carry adder, then we would expect a linear increase.
However, common structures such as carry-save adders, mul-
tiplexors, and barrel shifters are typically implemented with
logarithmic latency, thus bitwidth reduction translates into
a less-than-linear but significant speedup. Figure 15 shows
the results for a few of our benchmarks. The largest speedup
is for convolve, in which the reduction of constant multipli-
cations increased clock speeds by nearly 3x. On the other
hand, the MPEG correlation kernel did not speed up be-
cause the original bitwidths were already close to optimal.

6.4.1 Power

As expected, the area saved by bitwidth reduction trans-
lated fairly directly into power savings. Our first hypothesis
was that these saving might be lessened by the fact that
inactive registers and datapaths would not consume power.
We were incorrect. The muxes and control logic leading to
these registers still consume power. Figure 16 shows the
reduction in power achieved. In order to make these power
measurements, we first ran a verilog simulation of the design
to gather switching activity. This switching activity records
when each register toggles in the design. This information
is then used by logic synthesis, along with an internal zero
delay simulation, to determine how often each wire changes
state. The synthesizer then reports average dynamic power
consumption, in milliWatts, which we report here. In the
current implementation we do not use bitwidth analysis to
reduce the total cycle count, and thus total energy is reduced
proportionately.

We measured power for bubblesort, histogram, jacobi,
pmatch, and newlife. Newlife had the largest power savings,
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Benchmarks are universally faster after bitwidth analysis when
compiled to Xilinx XC4000 FPGAs (-09 speed grade) with Syn-
opsys. The actual number of CLBs on the critical paths, ranging
from 15-38 before bitwidth optimization and 7-16 afterwards, is
the key factor in determining clock speed.
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Figure 16: ASIC Power After Bitwise Optimization. Here we
assume a 200MHZ clock for the .12 micron IBM SA27E process.
The total cycle count (number of clocks ticks to complete each
benchmark) is not affected by bitwidth, and thus total energy will
scale proportionally.

reduced from 14 mW to 4 mW, while the other four bench-
marks had more conservative (but still very high!) power
savings. We expect that at least a portion of these savings
can be translated to the processor regime — in which power
consumption is typically hundreds of times higher — if fu-
ture low power architectures can successfully take advantage
of a-priori bitwidth information.

6.5 Discussion

For reconfigurable computing applications, savings can eas-
ily be a “make or break” difference when comparing perfor-
mance per area to that of traditional processors. Because
FPGAs provide an additional layer of abstraction (emulated
logic), it is important to compile-through as many higher
levels of abstraction as possible. Statically taking advan-
tage of bitwidth optimization is a form of partial evaluation
which can help to make FPGAs competitive with more tra-
ditional, but less adaptive, computing solutions. Bitwidth
analysis is a key technology enabler for FPGA computing.




For ASIC implementations, bitwidth savings will directly
translate into reduced silicon costs. Of course, many of these
cost savings could be captured by manually specifying more
precise variable widths — but manual optimization comes at
the cost of manual labor. Additionally, reducing the proba-
bility of errors is invaluable in an ASIC environment, where
companies who miss with first silicon often miss entire mar-
ket windows. As we approach the billion transistor era,
raising the level of abstraction for ASIC designers will be
a requirement, not a luxury.

7 Related Work

Brooks et.al., dynamically recognize operands with narrow
bitwidths to exploit sub-word parallelism [5]. Their research
confirms our claim that a wide range of applications— par-
ticularly multimedia applications— exhibit narrow bitwidth
computations. Using their techniques, they are able to de-
tect and expoit bitwidth information that is not statically
known. However, because they are detecting bitwidths dy-
namically, their research cannot be applied to applications
that require a priori bitwidth information.

Scott Ananian also recognized the importance of static
bitwidth information [1]. He uses bitwidth analysis in the
context of a Java to silicon compiler. Because bitwidth anal-
ysis is not the main thrust of his research, he uses a simple
data flow technique that propagates bitwidth information.
Our method of propagating data-ranges is a more precise
method for discovering bitwidths.

The data-range propagation techniques presented by Ja-
son Patterson [14] and William Harrison [8] are similar to
those presented in this paper. While their work proved to be
effective, they did not consider backward propagation which
offers abundant data-range information. Furthermore, their
techniques for discovering loop-carried sequences do not in-
clude the general methods discussed in this paper.

8 Conclusion

In the paper we have formalized bitwidth analysis as
a value range propagation problem. With a new suite
of bitwidth extraction techniques, we demonstrate bi-
directional bitwidth propagation as well as a closed form
solution for finding bitwidth information in the presence
of loops. Our initial results are promising — compile-
time analysis approaches the accuracy of run-time profile-
based analysis. When incorporated into a silicon compiler,
bitwidth analysis dramatically reduces the logic area by
15%-86%, improves the clock speed by 3%-249%, and re-
duces the power by 46%-73% of the resulting circuits. We
anticipate many future uses of this technique, including com-
pilation for SIMD architectures and compilation for low
power.
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