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Abstract

This paper introduces Bitwise� a compiler that minimizes
the bitwidth � the number of bits used to represent each
operand � for both integers and pointers in a program� By
propagating static information both forward and backward
in the program data�ow graph� Bitwise frees the program�
mer from declaring bitwidth invariants in cases where the
compiler can determine bitwidths automatically� We �nd a
rich opportunity for bitwidth reduction in modern multime�
dia and streaming application workloads� For new architec�
tures that support sub�word quantities� we expect that our
bitwidth reductions will save power and increase processor
performance�

This paper also applies our analysis to silicon compila�
tion � the translation of programs into custom hardware �
to realize the full bene�ts of bitwidth reduction� We describe
our integration of Bitwise with the DeepC Silicon Compiler�
By taking advantage of bitwidth information during archi�
tectural synthesis� we reduce silicon real estate by ��	 �

�	� improve clock speed by �	 � 
��	� and reduce power
by ��	 � ��	� The next era of general purpose and recon�
�gurable architectures should strive to capture a portion of
these gains�

� Introduction

The pioneers of the computing revolution described in
Steven Levy�s book Hackers� competed to make the best use
of every precious architectural resource� They hand�tuned
each program statement and operand� In contrast� today�s
programmers pay little attention to small details such as
the bitwidth �e�g�� 
� ��� �
� of data types used in their pro�
grams� For instance� in the C programming language� it is
common to use a �
�bit integer data type to represent a sin�
gle Boolean variable� We could dismiss this shift in empha�
sis as a consequence of abundant computing resources and
expensive programmer time� However� there is another his�
torical reason � as processor architectures have evolved� the
use of smaller operands eventually has provided no perfor�
mance gains� Datapaths became wider� but the processor�s

entire data path was exercised regardless of operand size�
The additional overhead of packing and unpacking words �
now only to save space in memory � even reduced perfor�
mance�

��� A New Era� Software�Exposed Bits

There are three new compilation targets for high�level lan�
guages that are re�invigorating the need to conserve bits�
Each of these architectures exposes subword control� The
�rst is the renovation of SIMD architectures for multimedia
workloads� These architecture include Intel�s MultiMedia
eXtension �MMX�� and Motorola�s Altivec� For example� in
Altivec� data paths are used to operate on 
� ��� �
� or ��
bit quantities�

The second class of compilation targets comprises �ne�
grain substrates such as recon�gurable architectures � in�
cluding Field Programmable Gate Arrays �FPGAs� � and
custom hardware� such as ASIC and standard cell designs�
In both cases� architectural synthesis is required to support
high�level languages� There has been a recent surge of both
industrial and academic interest in developing new recon�g�
urable architectures� And for custom silicon� the emphasis
on high�level compilation has been accelerated by a consor�
tium of over �� companies who have recently formed the
Open System C Initiative ���� to focus on the standardiza�
tion of high�level compilation�

The third class of compilation targets consists of embed�
ded systems which can e�ectively turn o� bit slices ���� The
static information determined at compile time can be used
to control which portions of a datapath are on or o� dur�
ing program execution� Alternatively� for more traditional
architectures this same information can be used to optimize
power consumption �without actually running the program�
by predicting which bits on a datapath will change over time�

But there are no available commercial compilers that
can e�ectively target any of these new architectures� So
programmers have been forced to revert back to writing
low�level code� MMX libraries are written in assembly in
order to expose the most sub�word parallelism� In Ver�
ilog and VHDL hardware description languages� the burden
of bitwidth speci�cation is on the programmer� To com�
pete in the marketplace� designers must choose the mini�
mum operand bitwidth for smaller and faster and more en�
ergy e�cient circuits� Unfortunately� explicitly choosing the
smallest data size for each operand is not only tedious� but
also error prone� These programs are less malleable since
a simple change may require hand propagation of bitwidth
information across a large segment of the program� Further�



more� some of the bitwidth information may be dependent
on a particular architecture or implementation technology�
making the programs less portable�

��� Automating Bitwidth Speci�cation

Automatic bitwidth analysis relieves the programmer of the
burden of identifying and specifying derivable bitwidth in�
formation� The programmer can work at a higher level
of abstraction� Even if the programmer explicitly speci�es
operand sizes in languages which allow it� bitwidth analysis
can still be very valuable� For example� bitwidth analysis
can be used to verify that speci�ed operand sizes do not vi�
olate program invariants � e�g�� array bounds� Or bitwidth
analysis can be used to change a single variable�s bitwidth
throughout the life of the variable�

��� The Bitwise Compiler

Bitwise minimizes the bitwidth required for each static op�
eration and each static assignment of the program� The
scope of Bitwise includes �xed�point arithmetic� bit manip�
ulation and boolean operations� It uses additional sources
of information such as type casts� array bounds� and loop
iteration counts to re�ne the bitwidth information gathered�
We have implemented Bitwise using the SUIF compiler in�
frastructure �����

In many cases� Bitwise is able to analyze the bitwidth
information as accurately as the bitwidth information gath�
ered from run�time pro�les� On average we reduce the size
of program scalars by �
	 � 
�	 and program arrays by up
to ��	�

��� Application to Silicon Compilation

In the paper we will focus on the application of bitwidth
analysis to silicon compilation� We have integrated Bitwise
with the DeepC Silicon Compiler� The compiler produces
hardware netlists from input programs written in C and
FORTRAN� We report end�to�end performance results for
this system both with and without the Bitwise optimiza�
tions� The results show how well the analysis works in the
context of a real system� Our experiments show Bitwise
favorably impacts area� speed� and power of the resulting
circuits�

��	 Contributions

We summarize this paper�s contributions as follows�

� We formulate bitwidth analysis as a value range prop�
agation problem�

� We introduce a suite of bitwidth extraction techniques
that seamlessly perform bi�directional propagation�

� We formulate an algorithm to accurately �nd bitwidth
information in the presence of loops by calculating
closed�form solutions�

� We implement the analysis and demonstrate that the
compile�time analysis can approach the accuracy of
run�time pro�ling�

� We incorporate the analysis in a silicon compiler
and demonstrate that bitwidth analysis impacts area�
speed� and power consumption of a synthesized circuit�

��
 Organization

The rest of the paper is organized as follows� Section 

de�nes the bitwidth analysis problem� Bitwise�s implemen�
tation and our algorithms are described in Section �� Sec�
tion � provides empirical evidence of the success of Bitwise�
Next� Section � describes the DeepC Silicon Compiler and
Section � discusses the impact of bitwidth analysis to silicon
compilation� Finally� we present related work in Section �
and conclude in Section 
�

� Bitwidth Analysis

Bitwidth analysis attempts to discover the smallest types for
each static variable assignment in a program while retaining
program correctness� A static variable assignment is de�ned
as an assignment in SSA form�

Library calls� I�O routines� and loops make static
bitwidth analysis challenging� In the presence of these con�
structs� we may have to make conservative assumptions
about an operand�s bitwidth� Nevertheless� with careful
static analysis� it is possible to infer bitwidth information�

Structures such as arrays and conditional statements
provide us with valuable bitwidth information� For in�
stance� we can use the bounds of an array to set an index
variable�s maximum bitwidth� Other program constructs
such as AND�masks� divides� right shifts� type promotions�
and Boolean operations are also invaluable for reducing
bitwidths�

The C code fragment in Figure 
 exhibits several such
constructs� This code � which is an excerpt of one of the
benchmarks presented in this paper �adpcm� � is typical of
tomorrow�s important multimedia applications� Each line
of code in the �gure is annotated with a line number to
facilitate the discussion that follows�

Assume that we don�t know the precise value of delta�
Because it is used as an index variable in line ���� if we
assume that this is a legal program� we know that its value
is con�ned by the base and bounds of indexTable� Though
we still don�t know delta�s precise value� by restricting the
range of values that it can assume� we e�ectively reduce the
number of bits needed to represent it� In a similar fashion�
the code on lines �
� and ��� ensure that index�s value is
restricted to be between � and 

�

The and�mask in line ��� ensures that outputbuffer�s
value is no greater than �xf�� We can propagate this infor�
mation to infer that the assignment to �outp in line ��� is
no greater than �xff ��x�f � �xf���

Finally� we know that bufferstep�s value is either true
or false after the assignment in line ���� because it is the
result of the Boolean not ��� operation�

� Bitwise Implementation

We next introduce the Bitwise compiler� a new set of com�
piler passes that perform bitwidth analysis� We begin by
describing the compiler�s infrastructure� A description of
the algorithms follows in Section ��
�

��� Infrastructure

The Bitwise compiler uses SSA as its intermediate form�
The compiler performs a numerical data �ow analysis� For�
tunately� we do not need the more complex symbolic analy�
sis because we are solving for absolute numerical bitwidths�
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Figure �� Three alternatives data structures for bitwidth analysis� The lattice in �a� represents the number of bits needed to represent
a variable� The lattice in �b� represents a vector of bits that can be assigned to a variable� and the lattice in �c� represents the range of
values that can be assigned to a variable�

��� index �	 indexTable
delta��
�
� if � index � � � index 	 ��
��� if � index � �� � index 	 ���
��� step 	 stepsizeTable
index��
���
��� if � bufferstep � �
��� outputbuffer 	 �delta �� �� � �xf��
��� � else �
��� �outp�� 	 �delta � �x�f� � outputbuffer�
���� �
���� bufferstep 	 �bufferstep�

Figure 
� Sample C code used to illustrate the fundamentals
of the analysis� This code fragment was taken from the loop of
adpcm coder in the adpcm multimedia benchmark�

This section describes the choice of data�structures for prop�
agating numerical information in our analysis� We consider
three candidate data�structures� Figure � visually depicts
each lattice� a formal ordering of their internal structure�

Propagating the bitwidth of each variable� Figure ��a� is
the most straightforward implementation� and has been de�
scribed by Scott Ananian ���� While this representation per�
mits an easy implementation� it does not yield accurate re�
sults on arithmetic operations� When applying the lattice�s
transfer function� incrementing an 
�bit number always pro�
duces a ��bit resultant� even though it may likely only need

�bits� In addition� only the most signi�cant bits of a vari�
able are candidates for bit�elimination�

Maintaining a bit vector for each variable� Figure ��b� is
a more complex representation� requiring the composition
of several smaller bit�lattices� Although this lattice allows
elimination of arbitrary bits from a variable�s representa�
tion� it does not support precise arithmetic analysis� As
an example of eliminating arbitrary bits� consider a par�
ticular variable that is assigned the values from the set�
f���� � ����� ����g� After analysis� the variable�s bit�vector
will be ������ indicating that we can eliminate the least
signi�cant bit� Like the �rst data structure� the arithmetic
is imprecise because the analysis must still conservative as�
sume that every addition results in a carry�

Propagating data�ranges� Figure ��c� is the �nal lattice we
considered� This lattice is also the implementation chosen
in the compiler� A data�range is a single connected subrange
of the integers from a lower bound to an upper bound �e�g��
�������� or ����������� Thus a data�range keeps track of a vari�
able�s lower and upper bounds� Because only a single range
is used to represent all possible values for a variable� this
representation does not permit the elimination of low�order
bits� However� it does allows us to operate on arithmetic
expressions precisely� Technically� this representation maps
bitwidth analysis to the more general value range propa�
gation problem� Value range propagation is known to be
useful in value prediction� branch prediction� constant prop�
agation� procedure cloning� and program veri�cation �����

For the Bitwise compiler we choose to propagate data�
ranges� not only because of their generality� but also because
most important applications use arithmetic and will bene�
�t from their exact precision� The lattice in Figure ��c� is
a lifted lattice in that it includes a bottom element� The
value �DR� represents a value that have not yet been ini�
tialized� Additionally� note that the value �DR�� a part
of the lattice� represents a values that cannot be statically
determined� Finally� unlike a regular set union� we de�ne
data range union �t� to be the union over the single con�
nected subrange of the integers where hal� ahi t hbl� bhi �
hmin�al� bl��max�al� bh�i� We de�ne data range intersec�
tion �u� to be the set of all integers in both subranges where
hal� ahi u hbl� bhi � hmax�al� bl��min�ah� bh�i�

��� Data�Range Propagation

Data�ranges can be propagated both forward and backward
over the control �ow graph� Figure � shows a subset of the
transfer functions for propagation� The forward propagated
values in the �gure are subscripted with a down arrow ����
and the backward propagated values with an up arrow ����
In general the transfer functions take as input either one or
two data�ranges and return a single data�range�

We begin with a discussion of forward propagation� An
SSA graph is the control �ow graph in SSA form� Initially�
all of the variables in the SSA graph are initialized to �DR��
Informally� forward propagation traverses the SSA graph in
breadth��rst order� applying the transfer functions for for�
ward propagation� Because forward propagation is so well
known� the details are omitted here�



Forward propagation allows us to identify a signi�cant
number of unused bits� sometime achieving the optimal re�
sult� However� additional minimization can be achieved by
integrating backward propagation� For example� when we
�nd a data�range that has stepped outside of known bound�
aries� we can back propagate this new reduced data�range
to instructions that have already used its deprecated value
to compute their results� Beginning at the node where the
boundary violation is found� we propagate the reduced data�
range in a reverse breadth��rst order� Backward propaga�
tion halts when either the graph�s entry node is reached� or
when a �xed point is reached�

To further elaborate� consider the pedagogical SSA graph
shown in Figure �� Forward and backward propagation steps
have been annotated on the graph� The numbers to the right
of the �gure list each step� The step numbers in black rep�
resent the backward propagation of data�ranges� Without
this backward propagation we would arrive at the following
data�ranges�
a� � hINTmin� INTmaxi
a� � hINTmin� INTmaxi
a
 � hINTmin � �� �i
a� � hINTmin � �� INTmaxi
c� � h�� INTmaxi
Let us assume we know that the length of the array� array� is
�� from its program declaration� We can now substantially
reduce the data�ranges of these variables with backward
propagation� We use array�s bound information to clamp
a��s data�range to h�� ��i� We then propagate this value
backward in reverse breadth��rst order using the transfer
functions for backward propagation� In our example� prop�
agating a��s new value backward yields the following new
data�ranges�
a� � h�
� �i
a� � h��� ��i
a
 � h�� �i
Reverse propagation can halt after a��s range is determined
�step ���� Because c� uses the results of a variable that has
changed� we have to traverse the graph in the forward di�
rection again� After we con�ne c��s data�range to h�� ��i we
will have reached a �xed point and the analysis is complete�

In this example we see that data�range propagation sub�
sumes constant propagation� we can replace all occurrences
of a
 with the constant value ��

Before considering loops� we can informally reason about
termination� After the application of each transfer function�
a variable�s data�range will shrink by some amount� In the�
ory� if we repeatly apply the rules� we will eventually reach
a �xed point�

However� the height of the lattice may not make this a
practical solution��

Non�termination was not a problem for our benchmarks�
However� when it is a problem� there is an easy solution�
Because successive iterations reduce the range of numbers
a variable can represent� and thus the bitwidth of the
variable� we can stop iterating after a user�de�ned number
of iterations� At that point the analyzer will have computed

�
If we assume that data�ranges are composed of ���bit integers� we can derive

the height of the data�range lattice as follows�

DR � f� i� j � ji� j � INT� i � jg

jDRj �

jINT jX

i��

jINT j � i � � �
jINT j � 	jINT j � �


�

�
jDRj � �

�
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a0 = input ()

a1 = a0 + 1

a3 = φ(a1,a2)
b0 = array[a3]

a2 = a1+1 c0 = a1

a1 < 0

1

2

5

6

7

8

 a0 INTmin INTmax,〈 〉=

a1 a1 1– -1,〈 〉 0 10,〈 〉∪( ) 1– 10,〈 〉=∩=

a1 INTmin INTmax,〈 〉=

a1 0 INTmax,〈 〉=

c0 0 INTmax,〈 〉=

a2 INTmin 1+ 0,〈 〉=
c0 0 10,〈 〉=

a1 a1 a3 0 10,〈 〉=∩=

a3 INTmin 1+ INTmax,〈 〉=

a3 0 10,〈 〉=
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Figure �� Forward and Backward Data�Range Propagation� Ap�
plication of forward propagation rules are shown to the right of
the �gure in white� while backward propagation rules are shown in
black� We use array�s bounds information to tighten the bounds
on some of the variables�

a reduced but potentially sub�optimal bound for the vari�
able�s bitwidth�

��� Loops

Optimization of loop instructions is crucial � they usually
comprise the bulk of dynamic instructions� Traditionally�
data �ow analysis techniques iterate over back edges in the
graph until a �xed point is reached� But in the presence
of even simple loop�carried expressions� this technique will
saturate bitwidths� That is� because the method does not
take into account any static knowledge of loop bounds� re�
lated variables will end up being �
�bits for a typical �
�bit
integer declarations�

But many important applications use loop�carried arith�
metic expressions� A new approach is required� in our case�
we attempt to �nd closed�form solutions� When we can �nd
a closed�form solution� the height of the lattice becomes ir�
relevant�

����� Loop Extension to SSA Form

In order to search for closed�form solutions� we must �rst
identify loops� We ease loop identi�cation in SSA form by
converting all ��functions that occur in loop headers to ��
functions ���� This extension is assumed for the remainder
of the paper�

����� Loop Analysis

To �nd the closed form solution to loop�carried expressions�
we use the techniques introduced by Gerlek et� al����� These
techniques allow us to identify and classify sequences in
loops� A sequence is a group of instructions that are mutu�
ally dependent on all of the other instructions in the same
group� In other words� a sequence is a strongly connected
component �SCC� of the program�s dependence graph� We
can examine the instructions of the sequence to try and �nd
a closed form solution to the sequence� The algorithm for
detecting and classifying sequences is shown in Figure ��

We next de�ne the function sequence type of the
classify sequence procedure� We can create a partial or�



�a�
b� � hbl� bhi
c� � hcl� chi

b� � b� u hal � ch� ah � cli
c� � c� u hal � bh� ah � bli�

a � b � c
�a� � hal� ahi a� � a� u hbl � cl� bh � chi

�b�
b� � hbl� bhi
c� � hcl� chi

b� � b� u hal � cl� ah � chi
c� � c� u hal � bl� ah � bhi�

a � b � c

�a� � hal� ahi a� � a� u hbl � ch� bh � cli

�c�
b� � hbl� bhi
c� � hcl� chi

b� � b�
c� � c��

a � b � c

�
a� � hal� ahi

a� � a� u
�
��n��� �n�� � �

�
�

where n � min�bitwidth�b��� bitwidth�c���

�d� b� � hbl� bhi b� � b� u a� u hAL� AHiTypeA � hAL� AHi
TypeB � hBL� BHi

typeA a � typeB b

�
a � b
�a� � hal� ahi a� � a� u b� u hBL� BHi

�e� x� � hal� ahi x� � x� t hxl� xhi�
fxl � x � xhg

�

�f�
xb� � hbl� bhi
xc� � hcl� chi

xb� � xb� u xa�
xc� � xc� u xa�xb xc

� �

xa � ��xb� xc�
�xa� � hal� ahi xa� � xa� u �xb� t xc��

�g�
xa� � hal� ahi
y� � hyl� yhi

xa� � xa� u �xb� t xc��
xa

�
xa � y
� �

xb xcxb� � hbl� bhi
xc� � hcl� chi

xb� � xa� u xb� u hal� yh � �i
xc� � xa� u xc� u hyl� ahi

Figure �� A selected subset of transfer functions for bi�directional data�range propagation� Equations on the left are inputs to the
transfer functions on the right� The variables in the �gure are subscripted with the direction in which they were computed� The transfer
function in �a� adds two data�ranges� and �b� subtracts two data�ranges� The AND�masking operation in �c� returns a data�range
corresponding to the smallest of its two inputs� It makes use of the bitwidth function which returns the number of bits needed to
represent the data�range� The type�casting operation shown in �d� constricts the propagated data�range to be at most� the maximum
range that can be represented by its input type� The function in �e� is applied when we know a value must be within a speci�ed range�
For instance� this rule is applied to limit the data�range of a variable that is indexing into a static array� Rules �f� and �g� are applied
at con�uence points�



Purpose�

	 This procedure detects sequences in the graph
	 of ssa nodes passed in
 If a commonly occuring
	 sequence is found� its closed form solution is
	 computed


Given�

	 graph nodes � A graph of ssa nodes that comprise a loop

procedure �nd closed form solutions �graph nodes�

entry � ssa node
tripcount � integer
components � graphof listof instruction
seq�� seq�� sequence � listof instruction

�� The algorithm assumes that the head of the loop is
�� annotated with the loop�s tripcount� If the loop is
�� a while�type loop� the tripcount will be in�nity�

entry � entry node of graph nodes
tripcount � entry
tripcount

foreach instr � entry do

if instr is of type ��funtion then
instr
tripcount � tripcount

�� Use Tarjan�s algorithm to �nd connected components
components � �nd SCCs �graph nodes�
foreach seq� � components do

foreach seq� � components do
if seq� is dependent on seq� then

add vertex in components from seq� to seq�

foreach sequence � components do
if sequence has no outgoing vertices then

classify sequence �sequence�
components � components �graph sequence

end procedure

Purpose�

	 This procedure classi�es the sequence that is passed in
	 according to its composition of instructions


Given�

	 Inputs � A list of instructions

procedure classify sequence �sequence�

seqtype � oneof fboolean� linear� polynomial� geometric� topg
tripcount � integer
initial � datarange
�nal � datarange
value � datarange

if sizeof sequence � � then

instr � instruction in sequence
instr
destination � evaluate instruction �instr�

else

�� Determine the type of sequence that we dealing with�
seqtype � sequence type �sequence�

if seqtype � boolean then

foreach instr � sequence do
instr
destination � h
� �i

elseif seqtype � linear
instr � ��function in sequence
tripcount � instr
tripcount
initial � evaluate instruction �instr�
foreach instr � sequence do

�nal � evaluate instruction �instr�
instr
detination � �nal

growth � ��nal �DR initial� �DR tripcount
foreach instr � sequence do

instr
destination � instr
detination �DR growth
elseif � � �








elseif seqtype � top sequence
foreach instr � sequence do

instr
destination � 	DR
end procedure

Figure �� Pseudocode for the algorithms that detect� classify� and
compute closed form solutions of commonly occuring sequences�
The function find closed form solutions detects sequences in
code and calls classify sequence to classify the sequences and
compute the closed form solutions�

der on the types of expressions we wish to identify� The
Expression lattice �Figure �� orders various expressions ac�
cording to set containment� The top of the lattice represents
an undetermined expression� while the bottom of the lattice
represents all possible expressions� Linear sequences repre�
sent induction variables in loop bodies� Polynomial induc�
tion sequences represent a composition of linear sequences�
Likewise geometric sequences are composed of polynomial
sequences and linear sequences�

⊥sequence

geometric

polynomial

linear

invariant

boolean

sequence

Figure �� A lattice that orders sequences according to set con�
tainment�

For each instruction type in the source language� we cre�
ate transfer functions that operate on the lattice� A trans�
fer function is implemented as a table that is indexed by
the expression types of its source operands� The destination
operand is then tagged with the expression type dictated by
the transfer function� See ��� for a more detailed explana�
tion�

We extend the work done by Gerlek et� al� ��� by identi�
fying boolean sequences� These sequences are not only easy
to �nd� but they also allow us to represent each boolean
static assignment with only one bit�

After we have determined the type of each expression
in a sequence� we can classify it based on the types of its
expressions and its composition of �� and ��functions� For
instance� boolean sequences can contain any number of ��
or ��functions� but can only contain boolean sequences�

Once we have determined the type of sequence the com�
ponent represents� we use a solver to compute the sequence�s
closed form solution� Each type of sequence has its own
solver that takes as input the sequence and the initial val�
ues of the variables� As an example� consider the simple
code fragment below�

a 	 ��
for �i 	 �� i � ��� i��� �

a 	 a � ��
�

The analyzer �rst converts the code to SSA form� then
it ascertains the symbolic tripcount of the loop� where trip�
count is de�ned as the number of times the loop is iterated�
In this case� the loop�s tripcount is determined to be ���
Next the analyzer� �nds all of the strongly connected com�
ponents in the loop�s body� these components represent the
sequences� For this example� the only component is shown
in Figure ��



Sequence
a� � ��a�� a
�
a
 � a� � �

Iteration�
h�� �i
h�� �i

Iteration

h�� ��i
h�� ��i

Figure �� An example that shows the detection and computation
of a linear sequence� The sequence is shown on the left� and the
computation of the sequence is shown on the right�

Because the sequence contains only a single ��function
and a linear�type expression� we use the solver for linear
components� The solving process is traced to the right of the
sequence in the �gure� In the �rst iteration� we compute the
growth factor of the sequence� The resulting data�ranges are
shown in the column labeled� Iteration�� Note that when
a solver evaluates a ��function� during the �rst iteration it
only uses the operand that is de�ned outside the loop body�
Subsequent iterations use both operands�

We can then multiply the growth factor by the tripcount
to determine the �nal result of the sequence� The second
iteration over the loop simply adds the �nal value of the
sequence to the value computed in the �rst iteration�

In many cases� using this technique obviates the need for
�nding a �xed point� However� when we are unable to iden�
tify a sequence� we can set all of the static assignments in
the sequence to the maximum data�range available ��DR���
Alternatively we can iterate over the sequence until a �xed
point is reached or until we reach a user�de�ned maximum
number of iterations� After the maximum number of iter�
ations is reached� the destination operands in the sequence
are set to �DR� �

��� Arrays

In traditional SSA form� pointers and arrays are not re�
named� Special extensions to SSA form have been proposed
which provide element�level data �ow information for ar�
rays ����� While such extensions to SSA form can potentially
provide more accurate data�range information� for bitwidth
analysis it is actually more convenient to treat arrays as
scalars� this analysis is inexpensive from a complexity stand�
point� and when compiling to silicon this analysis accurately
determines the data bus size for embedded RAMs�

Wherever an array is modi�ed we have to insert a new
��function to merge the array�s old data�range with the
new data�range� One drawback of this method is that a
��function is required for every array assignment� increas�
ing the size of the code� However� def�use chains are still
inherent in the intermediate representation which simpli�es
the analysis�

��	 Pointers

Using pointer analysis such as Radu Rugina�s SPAN pack�
age ����� we can determine the sets of variables � commonly
referred to as location sets � a pointer may or must refer�
ence� Such an analysis package tags all memory references
with location set information�

��	�� Example and Discussion

To simplify this discussion� we will distinguish between ref�
erence location sets� and modify location sets� a reference
location set is a location set annotation that occurs on the
right hand side of an expression� whereas a modify location
set occurs on the left hand side of an expression�

Benchmark Type Source Lines Description
adpcm Multimedia UTdsp ��� Audio Compress
bubblesort Scienti�c Raw �� Bubble Sort
convolve Multimedia MIT �� Convolution
histogram Multimedia UTdsp ��� Histogram
int�r Multimedia UTdsp �� Integer FIR
intmatmul Scienti�c Raw �� Int
 Matrix Mult

jacobi Scienti�c Raw �� Jacobi Relation
life Automata Raw ��
 Game of Life
median Multimedia UTdsp �� Median Filter
mpegcorr Multimedia Berkeley ��� MPEG�� Kernel
newlife Automata MIT ��� New Game of Life
parity Multimedia MIT �� Parity Function
pmatch Multimedia MIT �� Pattern Matching
sor Scienti�c MIT �
 ��point Stencil
sha Encryption MIT ��� Secure Hash
soft�oat Emulation Berkeley ���� Floating Point

Table �� Benchmark characteristics

As an example� consider the following C memory instruc�
tion� assuming that p� is a pointer that can point to variable
a� or b�� and that q� is a pointer that can only point to vari�
able b��

�p� 	 �q� � �

The location set that the instruction may modify is
fa�� b�g� and the location set that the instruction must ref�
erence is fb�g� Since there is only one variable in the in�
struction�s reference location set� it must reference b�� Since
there are two variables in the modify location set� either a�
or b� may be modi�ed�

Keeping the SSA guarantee that there is one unique as�
signment associated with each variable� we have to rename
a� and b� in the instruction�s modify location set� Fur�
thermore� since it is not certain that either variable will be
modi�ed� a ��function has to be inserted for each variable
in the modify location set to merge the previous version of
the variable with the renamed version�

fa�� b�g � fb�g � �
a
 � ��a�� a��
b
 � ��b�� b��

If the modify location set has only one element then the
element must be modi�ed� so a ��function does not need
to be inserted� This extension to SSA form allows us to
treat de�referenced pointers in exactly the same manner as
scalars�

��	�� Pointer Bitwidths

With a pointer analysis package we can also determine the
bitwidth of a pointer� This is useful if we are compiling to a
non�conventional device such as an FPGA where memories
are segmented into many small chunks ���� For instance�
if we know that a pointer always points to an array of a
statically known size� we can set the bitwidth of the pointer
accordingly�

� Bitwise Results

We have implemented the compiler infrastructure� forward
propagation� and sequence detection algorithms described
in this paper� We are in the process of implementing the
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Figure 
� Compiler Flow	 Includes general SUIF� Bitwise� Sili�
con� and CAD processing steps�

back propagation algorithm� In this section we report gen�
eral results from a standalone Bitwise Compiler composed
of the �rst �ve SUIF passes shown in Figure 
� Further re�
sults� after processing with the Silicon Compiler backend�
are presented in Section � and Section ��

The frontend of the compiler takes as input a pro�
gram written in C or FORTRAN and produces a bitwidth�
annotated SUIF �le� After parsing the input program into
SUIF� the compiler performs traditional optimizations and
then pointer analysis� We use Radu Rugina�s SPAN �����
Next come the three passes labeled  Bitwidth Analysis!�
These three passes are the realization of the algorithms dis�
cussed in this paper� with the exception of backward propa�
gation� In total� they comprise roughly �
���� lines of C��
code� We �rst discuss the bitwidth reports that are gener�
ated after these passes� without further backend processing�

To continue� the pointer analysis information is supplied
to the following alias information pass� which performs sim�
ple interprocedural analysis� From here the SUIF intermedi�
ate representation is converted to SSA form� This SSA con�
version also implements the SSA extensions of Section ���
and Section ���� Finally� the data range propagation pass
is invoked to produce bitwidth�annotated SUIF along with
the appropriate bitwidth reports�

��� Experiments

Because the compiler is new� we do not yet compile programs
with recursive procedure calls� In the short term� this re�
striction limits the complexity of the our benchmarks set for
general purpose computing� However� it provides adequate
support of programs for high�level silicon synthesis�

Table ����
 lists the benchmarks presented in this section�
Because multimedia applications are becoming so prevalent�
we chose several� We also chose standard applications that
exhibit bit and byte�level granularity� soft�oat and life�

��� Register Bit Elimination

Figure � shows the percentage of the original register bits re�
maining in the program after Bitwise has been run� Register
bits are used to store static program variables� The lower
bound � which was obtained by pro�ling the code � is in�
cluded for reference� For the particular data sets supplied to
the benchmark� this lower bound represents the fewest pos�
sible number of bits needed to retain program correctness�
and thus the best any static analysis could possibly achieve�
The graph assumes that each variable is assigned to its own
register� This is not always the case because a register allo�
cator may lose some of the gains of the analysis by allocating
the same register to di�erent sized operands� Nonetheless�
this is a useful metric because register bitwidths may still af�
fect functional unit size� data path bitwidths� and switching
activity�

Our analysis dramatically reduces the total number of
register bits needed� In most cases� the analysis is near op�
timal� which is especially exciting for applications that per�
form abundant multi�granular computations� For instance�
Bitwise almost matches the lower bound for life and mpeg�
corr� both of which are bit and byte�level applications�

The only application in the �gure with substantially sub�
optimal performance is median� In this case� the analyzer
was unable to determine the bitwidth of the input data� thus
variables that were dependent on the input data assumed the
maximum possible bitwidths ��BW ��
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Figure �� Percentage of total register bits remaining	 Origi�
nal versus post�bitwidth analysis and dynamic pro�le�based lower
bound�

��� Memory Bit Elimination

Figure �� shows the percentage of the original memory bits
remaining in the program� Here memory bits are de�ned as
data allocated for static arrays and dynamically allocated
variables� This is an especially useful metric when compil�
ing to non�conventional devices such as an FPGA� where
memories may be segmented into many small chunks� In
addition� because memory systems are one of the primary
consumers of power in modern processors� this is a useful
metric for estimating power consumptionn �����

In almost all cases� the analyzer is able to determine
near�optimal bitwidths for the memories� There are a cou�
ple of contributing factors for Bitwise�s success in reducing
array bitwidths� First� many multimedia applications ini�
tialize static constant tables which represent a large portion
of the memory savings shown in the �gure� Second� Bitwise
capitalizes on arrays of Boolean variables�
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Figure ��� Percentage of total memory remaining	 Original
versus post�bitwidth analysis and dynamic pro�le�based lower
bound�

��� Bitwidth Distribution

It is interesting to categorize variable bitwidths according
to grain size� The stacked bar chart in Figure �� shows
the distribution of variable bitwidths both before and after
bitwidth analysis� We call this distribution a Bitspectrum�
To make the graph more coherent� bitwidths are rounded
up to the nearest typical machine data�type size� In most
cases� the number of �
�bit variables is substantially reduced
to ��� 
� and ��bit values�

For silicon compilation� this �gure estimates the overall
register bits that can be saved� As we will see in the next
sections� reducing register bits will results in smaller data�
paths and subsequently smaller� faster� and more e�cient
circuits� For multimedia applications� the spectrum shows
which applications will have the best prospect for packing
values into sub�word instructions�

0%

20%

40%

60%

80%

100%

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

w
ith

ou
t 

w
ith

softfloat adpcm bubblesort life intmatmul jacobi median mpegcorr sha

32 bits 16 bits 8 bits 1 bit

Figure ��� Bitspectrum� This graph is a stacked bar chart that
shows the distribution of bitwidths for each benchmark� Without
bitwidth analysis� almost all bitwidths are 
��bits� With Bitwise�
many widths are reduced to the �
� �� � bit machine types� as
denoted by the narrower �
� �� and � bit bars�

	 DeepC Silicon Compiler

So far we have shown that bitwidth analysis is a generally
e�ective optimization and that our Bitwise Compiler is capa�
ble of performing this task well� We now turn to a concrete

application� We have applied bitwidth analysis to the very
di�cult problem of silicon compilation� For lack of space�
we must give the problem of silicon compilation a very brief
treatment �in the remainder of this section� and then focus
our attention �Section �� on the impact of bitwidth analysis
in this context�

	�� Overview

We have integrated Bitwise with the DeepC Silicon Com�
piler ���� a research compiler under development that is ca�
pable of translating sequential applications� written in either
C or FORTRAN� directly into a hardware netlist� The com�
piler automatically generates a specialized parallel architec�
ture for every application� To make this translation feasible�
the compilation system incorporates both the latest code op�
timization and parallelization techniques as well as modern
hardware synthesis technology� Figure 
 shows the details of
integrating Bitwise into DeepC�s overall compiler �ow� De�
tailed steps of the compiler that are unimportant to our dis�
cussion are compressed into a few black boxes� After reading
in the program and performing traditional compiler opti�
mizations and pointer analysis� the bitwidth analysis steps
are then invoked� These steps were described in detail in
Section �� The silicon compiler backend follows these steps�
First� additional parallelization transformations are applied�
followed by a high�level architectural partition� place� and
route which forms parallel communication threads� Then
an architectural synthesis step translates these threads into
custom hardware� Following these transformation� tradi�
tional computer�aided�design �CAD� optimizations are ap�
plied to generate the �nal hardware netlist� In the �owchart�
the raised steps are new Bitwise or DeepC passes� and the
remaining steps are re�used from previous SUIF compiler
passes�

	�� Implementation Details

The DeepC Compiler is implemented as a set of over ��
SUIF passes followed by commercial RTL synthesis� The
current implementation uses the latest version of Synopsys
Design Compiler and FPGA compiler for synthesis� A large
set of the SUIF passes are taken directly from MIT�s Raw
compiler ��
�� whose backend is in turn built on Harvard�s
MachSUIF compiler ����� The backend verilog generator is
implemented on top of Stanford�s VeriSUIF ��� data struc�
tures� Despite the large number of SUIF passes� the major�
ity of the compiler�s run�time is consumed by CAD synthesis
tools�

	�� Usage

There has been a limited released of the compiler and it
is in use by researchers at MIT and Princeton for recon�
�gurable computing research� and the University of Mas�
sachusetts for system�on�a�chip research� When used for
recon�gurable computing� the compiler is coupled with fur�
ther silicon compilation tools� such as the VirtuaLogic ���
emulation system from IKOS� or software and drivers for
Annapolis System�s WildCard PCMCIA card� For use in
custom chip design� downstream tools must be capable of
accepting a logic netlist and placing and routing that design
into a speci�c silicon substrate�
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Figure �
� Register Bits After Bitwise Optimization� In every
case Bitwise saves substantial register resources in the �nal silicon
implementation�


 Impact on Silicon Compilation

In this section we characterize the impact of bitwidth anal�
ysis on silicon compilation� As described in the previous
section� the DeepC Silicon Compiler has the opportunity to
specialize memory� register� and datapath widths to match
application characteristics � we expect bitwidth analysis to
have a large impact in this domain� However� because back�
end CAD tools already implicitly perform some bitwidth cal�
culation during optimizations such as dead logic elimination�
accurate measurements require end�to�end compilation� We
need to compare �nal silicon both with and without Bitwise�

We introduce our benchmarks in the next section� and
then describe the dramatic area� latency� and power savings
that bitwidth analysis enables��


�� Experiments

We present experimental results for an initial set of appli�
cations that we have compiled to hardware� For each ap�
plication� our compilation system produces an architecture
description in RTL Verilog� We further synthesize this archi�
tecture to logic gates with a commercial CAD tool �Synop�
sys�� In this paper we report area and speed results for Xil�
inx ���� series FPGAs� and power results for IBM�s SA
�E
process � a ���
 micron� ��layer copper� standard�cell pro�
cess�

The benchmarks used for silicon compilation are included
in Table ����
� These applications are mostly short bench�
marks� but include many multimedia kernels� It is impor�
tant to note that the relative small size of the benchmarks
is dictated by the current synthesis time of our compilation
approach and not Bitwise�


�� Registers Saved in Final Silicon

We �rst compiled each benchmark into a netlist capable of
being accepted by either Xilinx or IBM CAD tools to pro�
duce  �nal silicon!� The memory savings reported in Sec�
tion � translate directly into silicon memory savings when
we allow a separate small memory for each program variable�
This small memory partitioning process is further described
in earlier work ����

�Note that we also found considerable synthesis compile time sav�
ings which are not reported here
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Figure ��� Register Bit Reduction� After High Level Analysis
versus Final Silicon� The �uctuations in bitwidths savings be�
tween �nal silicon and high�level analysis is do to factors such as
variable renaming and register allocation�

Register savings� on the other hand� vary as additional
compiler and CAD optimizations transform the program�s
variables� Variable renaming and register allocation also
distort the �nal result by placing some scalars in more than
one register and others in a shared register� Figure �
 shows
the total FPGA bits saved by bitwidth optimization� For
Xilinx FPGA compilation� the �xed allocation of registers
to combinational logic will distort the exact translation of
this savings to chip area� as some registers may go unused�

Our �ndings are very positive � the earlier bitwidth
savings translated into dramatic savings in �nal silicon� de�
spite the possibilities for loss of this information or potential
overlap with other optimizations� However� because there is
not a one�to�one mapping from program scalars to hard�
ware registers� the exact savings do not match� Examining
Figure ��� we see that the percentage of bits saved by high�
level analysis are sometimes greater and sometimes less than
those bits saved in �nal silicon� We explain these di�erences
as follows� First� there are many compiler and CAD passes
between high�level analysis and �nal silicon generation� If
in any of these passes the bitwidth information is  lost!�
for example when a new variable is cloned� then the full
complement of saved bits will not be realized� On the other
hand� the backend passes� especially the CAD tools� are also
attempting to save bits through logic optimizations� Thus
these passes may �nd saving that the current high�level pass
is not �nding� Finally� variable renaming and register shar�
ing also change the percentages�


�� Area

Registers saved translate directly into area saved� Area sav�
ings also result from the reduction of associated datapaths�
Figure �� shows the total area savings with Bitwise opti�
mizations versus without� We save from ��	 to 
�	 in
overall silicon area� nearly an 
� savings in the best case�

Note that in the DeepC Compilation system pointers
do not require the full complement of �
�bits� Using the
MAPS ��� compiler developed for Raw� arrays have been as�
signed to a set of equivalence classes� By de�nition� a given
pointer can only point to one equivalence class� and thus
needs to be no wider than log

P
a
Sa� where Sa is the size of

each memory array speci�ed in the equivalence class� This
technique is further described in �
��
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Figure ��� FPGA Area After Bitwise Optimization� Register
savings translate directly into area savings for FPGAs� In the
�gure� CLB count measures the number of internal combinational
logic blocks required to implement the benchmark when compiled
to FPGAs� Combinational logic blocks �CLBs� each include �
four input lookup tables and � �ip��op registers� The number in
parenthesis by each benchmark is the resulting bitwidth of the
main datapath�


�� Clock Speed

We also expect bitwidth optimization to reduce the latency
along the critical paths of the circuit and increase maximum
system clock speed� If circuit structures are linear� such as
a ripple carry adder� then we would expect a linear increase�
However� common structures such as carry�save adders� mul�
tiplexors� and barrel shifters are typically implemented with
logarithmic latency� thus bitwidth reduction translates into
a less�than�linear but signi�cant speedup� Figure �� shows
the results for a few of our benchmarks� The largest speedup
is for convolve� in which the reduction of constant multipli�
cations increased clock speeds by nearly ��� On the other
hand� the MPEG correlation kernel did not speed up be�
cause the original bitwidths were already close to optimal�


���� Power

As expected� the area saved by bitwidth reduction trans�
lated fairly directly into power savings� Our �rst hypothesis
was that these saving might be lessened by the fact that
inactive registers and datapaths would not consume power�
We were incorrect� The muxes and control logic leading to
these registers still consume power� Figure �� shows the
reduction in power achieved� In order to make these power
measurements� we �rst ran a verilog simulation of the design
to gather switching activity� This switching activity records
when each register toggles in the design� This information
is then used by logic synthesis� along with an internal zero
delay simulation� to determine how often each wire changes
state� The synthesizer then reports average dynamic power
consumption� in milliWatts� which we report here� In the
current implementation we do not use bitwidth analysis to
reduce the total cycle count� and thus total energy is reduced
proportionately�

We measured power for bubblesort� histogram� jacobi�
pmatch� and newlife� Newlife had the largest power savings�
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Figure ��� FPGA Clockspeed After Bitwise Optimization�
Benchmarks are universally faster after bitwidth analysis when
compiled to Xilinx XC���� FPGAs ���� speed grade� with Syn�
opsys� The actual number of CLBs on the critical paths� ranging
from ���
� before bitwidth optimization and ���
 afterwards� is
the key factor in determining clock speed�
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Figure ��� ASIC Power After Bitwise Optimization� Here we
assume a ���MHZ clock for the ��� micron IBM SA��E process�
The total cycle count �number of clocks ticks to complete each
benchmark� is not a�ected by bitwidth� and thus total energy will
scale proportionally�

reduced from �� mW to � mW� while the other four bench�
marks had more conservative �but still very high�� power
savings� We expect that at least a portion of these savings
can be translated to the processor regime � in which power
consumption is typically hundreds of times higher � if fu�
ture low power architectures can successfully take advantage
of a�priori bitwidth information�


�	 Discussion

For recon�gurable computing applications� savings can eas�
ily be a  make or break! di�erence when comparing perfor�
mance per area to that of traditional processors� Because
FPGAs provide an additional layer of abstraction �emulated
logic�� it is important to compile�through as many higher
levels of abstraction as possible� Statically taking advan�
tage of bitwidth optimization is a form of partial evaluation
which can help to make FPGAs competitive with more tra�
ditional� but less adaptive� computing solutions� Bitwidth
analysis is a key technology enabler for FPGA computing�



For ASIC implementations� bitwidth savings will directly
translate into reduced silicon costs� Of course� many of these
cost savings could be captured by manually specifying more
precise variable widths � but manual optimization comes at
the cost of manual labor� Additionally� reducing the proba�
bility of errors is invaluable in an ASIC environment� where
companies who miss with �rst silicon often miss entire mar�
ket windows� As we approach the billion transistor era�
raising the level of abstraction for ASIC designers will be
a requirement� not a luxury�

� Related Work

Brooks et�al�� dynamically recognize operands with narrow
bitwidths to exploit sub�word parallelism ���� Their research
con�rms our claim that a wide range of applications� par�
ticularly multimedia applications� exhibit narrow bitwidth
computations� Using their techniques� they are able to de�
tect and expoit bitwidth information that is not statically
known� However� because they are detecting bitwidths dy�
namically� their research cannot be applied to applications
that require a priori bitwidth information�

Scott Ananian also recognized the importance of static
bitwidth information ���� He uses bitwidth analysis in the
context of a Java to silicon compiler� Because bitwidth anal�
ysis is not the main thrust of his research� he uses a simple
data �ow technique that propagates bitwidth information�
Our method of propagating data�ranges is a more precise
method for discovering bitwidths�

The data�range propagation techniques presented by Ja�
son Patterson ���� and William Harrison �
� are similar to
those presented in this paper� While their work proved to be
e�ective� they did not consider backward propagation which
o�ers abundant data�range information� Furthermore� their
techniques for discovering loop�carried sequences do not in�
clude the general methods discussed in this paper�

� Conclusion

In the paper we have formalized bitwidth analysis as
a value range propagation problem� With a new suite
of bitwidth extraction techniques� we demonstrate bi�
directional bitwidth propagation as well as a closed form
solution for �nding bitwidth information in the presence
of loops� Our initial results are promising � compile�
time analysis approaches the accuracy of run�time pro�le�
based analysis� When incorporated into a silicon compiler�
bitwidth analysis dramatically reduces the logic area by
��	�
�	� improves the clock speed by �	�
��	� and re�
duces the power by ��	���	 of the resulting circuits� We
anticipate many future uses of this technique� including com�
pilation for SIMD architectures and compilation for low
power�
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