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Abstract

We present Softspec, a technique for parallelizing sequen-
tial applications using only simple software mechanisms,
requiring no complex program analysis or hardware sup-
port. Softspec parallelizes loops whose memory references
are stride-predictable. By detecting and speculatively exe-
cuting potential parallelism at runtime Softspec succeeds in
parallelizing loops whose memory access patterns are stati-
cally indeterminable. For example, Softspec can parallelize
while loops with un-analyzable exit conditions, linked list
traversals, and sparse matrix applications with predictable
memory patterns. We show performance results using our
prototype implementation.

1 Introduction

Parallel processing can provide scalable performance im-
provements, and multiprocessor hardware is becoming
widely available. However, it is difficult to develop, debug,
and maintain parallel code. Compilers can automatically
parallelize some sequential applications but are limited in
the type of code that they can parallelize. In order to iden-
tify parallel regions of code they must use complex interpro-
cedural analyses to prove that the code has no data depen-
dences for all possible inputs. Typical code targeted by these
compilers consists of nested loops with affine array accesses
written in a language such as FORTRAN that has limited
aliasing. Large systems written in modern languages such
as C, C++, or Java usually contain multiple modules and
memory aliasing, which makes them not amenable to au-
tomatic parallelization. Furthermore, code whose memory
access patterns are indeterminable at compile time due to
dependence on program inputs can be impossible for these
compilers to parallelize.

Hardware-based speculative parallelism has been pro-
posed to address the problem of parallelizing code that is
hard to analyze statically [HWO98, SM98, MBVS97]. In
these schemes, code is speculatively executed in parallel and
extra hardware is used to detect dependences and to undo
the parallel execution in cases of misprediction. The ad-
ditional hardware required is extensive due to the need for
communication between all processors to determine if depen-
dences exist. Softspec uses compiler and runtime techniques
that take advantage of underlying properties of programs
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to parallelize difficult to analyze applications. Softspec suc-
ceeds in reducing the communication and computation over-
head of speculation and is able to achieve performance im-
provements without requiring specialized hardware.

Our approach to parallelizing applications stems from
two main observations. First, the performance improve-
ments for only partially parallel code do not scale well due to
synchronization costs. Second, memory access patterns in
loops can often be predicted at runtime using simple value
predictors. Softspec performs data dependence analysis at
runtime using predicted access patterns. It speculatively
parallelizes loops and detects speculation failures without
inter-processor communication.

We describe the Softspec technique for parallelizing se-
quential applications using only simple software mechanisms
which can improve performance of modern programs on ex-
isting hardware. We present a prototype implementation
consisting of a compiler and accompanying runtime sys-
tem and give experimental results on a symmetric shared-
memory multiprocessor.

Since Softspec often targets fine-grain parallelism, we ex-
pect even better performance on architectures with lower
inter-processor data sharing costs, such as single-chip mul-
tiprocessors [HNO97, SM98].

Softspec requires only local program information and
does not rely on any global analysis. Its simplicity means
it could execute entirely at runtime and target program bi-
naries. Runtime translation [Kla00, CHH98, ATCL"98]
and runtime optimization [BDB00] techniques are becom-
ing prevalent. Softspec can be readily incorporated into such
frameworks.

This paper makes the following contributions:

e It is the first application of stride prediction to paral-
lelizing loops.

e It presents a novel approach to speculative parallelism
that requires minimal program analysis and no addi-
tional hardware.

e It shows how interprocedural parallelism can be ex-
ploited without any interprocedural analysis.

o It gives a general technique for parallelizing while loops
and is the first technique that is applicable to while
loops when the exit condition is not known until the
last iteration.

e It gives a general technique for parallelizing sparse ma-
trix algorithms, especially effective for matrices with
dense clusters.



The paper is organized as follows. The next section gives
an overview of our technique. Section 3 describes the core al-
gorithm in detail, and Section 4 explains how the algorithm
handles more complicated loops. Section 5 gives experimen-
tal results of our prototype implementation. Related work
and conclusions finish the paper.

2 The Softspec Approach

This section gives an overview of the Softspec paralleliza-
tion technique. Softspec parallelizes loops whose memory
references are stride-predictable. A memory access is stride-
predictable if the address it accesses is incremented by a
constant stride for each successive dynamic instance (e.g.,
in a loop). Array accesses with affine index expressions
within loops are always stride-predictable. It has been
shown that many other memory accesses are also stride-
predictable [SS97].

Rather than proving at compile time that a loop con-
tains no inter-iteration dependences, we calculate the de-
pendences at runtime. First we dynamically profile the
addresses in the first three iterations of the loop. If the
addresses are stride-predictable in these three iterations,
we predict that the addresses have the same strides for
the rest of the loop. Once the stride of each memory ac-
cess has been identified, we determine whether or not there
are inter-iteration dependences among the memory accesses.
We do not parallelize loops that contain inter-iteration de-
pendences since the synchronization costs can outweigh the
benefits of parallelization — we only target loops whose it-
erations can all be executed in parallel (doall loops).

An inter-iteration dependence exists if a write in one iter-
ation is to the same address as a read or a write in another
iteration. In order to determine if any such dependences
exist, we examine all memory accesses in the loop pairwise.
Each memory access instruction covers a region of addresses
throughout the iterations of the loop. For each pair we de-
termine how many iterations may be executed before their
regions overlap. If there are R memory reads and W mem-
ory writes in the loop, W % (W + R) comparisons are per-
formed. The minimum of all the results is then the number
of parallelizable iterations in the loop.

If the number of parallelizable iterations in the loop is
large enough, the loop is speculatively executed in parallel,
its parallelizable iterations split evenly among the available
processors. If there are very few parallelizable iterations
and each iteration contains little work, speculation is not
attempted and the loop is executed sequentially.

While speculating, each processor checks that the pre-
dicted addresses match the actual addresses. This is a local
operation and requires no communication with other proces-
sors. In fact, the only global communication required is one
bit of information at the end of speculation stating whether
all predictions were correct or not. If there is a mispredic-
tion, all subsequent iterations must have their speculation
undone and be re-executed sequentially. An undo buffer is
allocated to store the original values at all addresses written
in the loop. Since the predicted addresses are guaranteed
to have no inter-iteration dependences, speculative memory
accesses use the predicted addresses instead of the actual
addresses (which may contain dependences). This enables
each processor to undo the effects of speculation indepen-
dently of the other processors. After undoing in parallel, the
remaining iterations of the loop are executed sequentially.

/*x* original code **x/
void foo(double *a, double *b, int j) {
double *p;
int i;
p = &aljl;
for (i=0; i<500; i++) {
ali] = i;
bl[i+j] = b[i]l - *p;

}

Figure 1: A sample procedure containing a parallelizable
loop.

Alternatively, the speculative process can be restarted —
for example, speculation could attempt to parallelize only a
piece of a loop at a time and only give up if there are many
mispredictions. In this way loops with a few gaps in their
stride-predictability or with widely varying iteration counts
can be fully parallelized.

3 The Core Algorithm

This section describes in detail how Softspec parallelizes sim-
ple loops with known numbers of iterations whose bodies are
straight-line code. This is the core of the Softspec algorithm.
Section 4 explains how we extend the core algorithm to han-
dle loop-carried dependences, branches in loop bodies, while
loops, nested loops, and interprocedural parallelism.

To illustrate how Softspec works, consider the code in
Figure 1. The loop in this procedure contains four memory
accesses: two writes (ali] and b[i+j]) and two reads (b[il
and *p). These accesses are stride-predictable with a stride
of 0 for *p and strides equal to sizeof (double) for the oth-
ers. If a and b are non-overlapping arrays with lengths at
least 500 and j >= 500, there will be no inter-iteration de-
pendences between the memory accesses and the entire loop
will be parallelizable.

In order for a parallelizing compiler to parallelize this
loop, it must prove statically that a and b are distinct ar-
rays and that there will be no inter-iteration dependences
between the memory accesses. Deducing this information at
compile time requires sophisticated interprocedural analysis,
or may be impossible if the memory addresses are dependent
on program inputs. However, a compiler that makes use of
runtime predicated parallelism can parallelize this loop by
inserting a test that at runtime will deduce if there are mem-
ory dependences and only execute the parallel version of the
loop if there are none. This example serves only to illus-
trate the core of the Softspec algorithm; the rest of the algo-
rithm explained in Section 4 targets loops for which practical
parallelism-detecting predicates do not exist.

Softspec parallelizes this loop by simply profiling the
initial addresses and calculating the intersections of their
strides. No complex compile-time analysis is required — all
that needs to be done is instrument each memory access.

The Softspec algorithm replaces the loop with four loops:
a profile loop, a detection loop, a speculation loop, and a
recovery loop. The execution path through these loops is
shown in Figure 2. The following sections describe this path
in more detail. For further information on the core algorithm
see [Dev99].
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Figure 2: The execution path of Softspec’s parallelization of the sample loop in Figure 1. The loop contains 500 iterations,
i=0 through i=499. The 27 iterations performed during detection is a typical empirical number for a small loop body. The top
portion of the figure shows successful speculation. The bottom portion shows what would happen if a misprediction occurred

when i=287.

/*x* profile loop ***/
for (i=0; i<3; i++) {

profile_address[i] [0] = &alil;
alil = i;

profile_address[i][1] = &b[i+j];
profile_address[i] [2] = &b[i];
profile_address[i][3] = p;

bli+j] = bl[il - *p;

}

Figure 3: The profile loop created from the sequential loop
in Figure 1.

3.1 Profiling and Parallelism Detection

The profile loop for the sample code of Figure 1 is shown
in Figure 3. As can be seen, it runs the first three it-
erations of the original loop with instructions inserted to
store the addresses of each memory access into data struc-
tures used by the runtime system. The outer index of the
profile_address array corresponds to the iteration of the
loop being profiled, and the inner index is used to number
the memory accesses.

When the profile loop finishes the runtime system cal-
culates the stride of each memory access by simply taking
the difference of addresses in consecutive iterations. If each

memory access has a consistent stride (i.e., the strides be-
tween the first and second and between the second and third
profiled iterations are the same), the runtime system then
determines how many iterations can be parallelized before
an inter-iteration dependence is encountered. If the strides
are not consistent then no speculation is performed and the
loop is run sequentially. This catches many accesses that are
not stride-predictable early on before any speculation needs
to be undone. How Softspec handles accesses that are not
executed in all three of the profiling iterations is discussed
in Section 4.2.

A second thread performs the stride calculations and par-
allelism detection while the original thread continues sequen-
tial execution of the loop, as shown in Figure 2. This enables
forward progress on the loop to be made while the detection
calculations are performed (the calculations can take time
equal to tens of iterations of loops with small bodies).

To identify whether parallelism exists, we examine the
memory accesses pairwise to determine how many iterations
may be executed before their addresses become equal. For
a pair of addresses with values in the first iteration a¢ and
a1 and with strides sp and s1, we need to find the minimum
values of integers ¢ and j such that ag + ¢ % so = a1 + j * s1.
Rewriting the equation as i*so—j*s1 = a1—ao, a solution ex-
ists if and only if the greatest common divisor (gcd) of sp and
s1 divides a1 —ap. The solution can be obtained as a singly
parameterized set using Euclid’s ged algorithm [AHUT74],
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Figure 4: Two memory accesses are compared to determine the number of iterations before they have an inter-iteration
dependence. The profiled addresses are shown as dots; their strides are extrapolated to obtain two lines. Inter-iteration
dependences may exist starting at the point where one line enters the other’s address space. In this case the first access is
to a 1000-element array located in memory adjacent to the second access. Thus, the two overlap at 1000 iterations. The
parallelizable iterations are divided among four processors as illustrated on the right.

from which the largest number of parallelizable iterations
can be calculated.

We found that nearly 90% of the parallelism detection
execution time was spent calculating gcd’s. To avoid this
calculation our prototype Softspec implementation uses an
approximation algorithm that calculates a conservative so-
lution but is much more efficient. In practice we have never
found a case where the conservative algorithm reports less
parallelism than the exact gcd algorithm.

This approximation algorithm views each address as a
line defined by the initial address value a; and the stride
Si: Yy = 8; *x + a;. For a given pair of addresses, the al-
gorithm extrapolates each profiled address into a line and
determines the minimum z value in the first quadrant at
which the two lines share y values. This z value is the first
iteration at which an inter-iteration dependence can occur.
Figure 4 gives an example of this process. The first inter-
iteration dependence may actually occur later than the z
value computed in this manner, since treating discrete ad-
dress values as a continuous line considers addresses to over-
lap that may never actually line up due to equal strides but
different offsets. For this reason we add a heuristic case to
the approximation algorithm: if the pair of addresses have
the same stride and either the same initial value or different
initial values modulo the stride then they will never overlap.

The cost of the detection algorithm becomes negligible as
the amount of computation in the target loop increases. An
adaptive detection algorithm that runs the approximation
algorithm for small loops and the full ged calculations for
large loops could be used.

3.2 Speculation and Recovery from Misprediction

If Softspec detects enough parallelism to warrant speculat-
ing, the speculative version of the loop is executed by each
processor. The speculative version of the sample loop from
Figure 1 is shown in Figure 5. It uses the predicted addresses
instead of the actual addresses so that only one mispredic-
tion conditional at the end of the loop is needed, instead of
a conditional before every memory access. The predicted
addresses are initialized before the loop by simply adding

/**x speculation loop ***/

for (i=start[thread]; i<stop[thread]l; i++) {
ncancel_flag &= (predict0 == &al[il);
*undo_buffer = *predictO;
undo_buffer++;
*predict0 = i;
ncancel_flag &= (predictl == &b[i+j]);
ncancel_flag &= (predict2 == &b[il);
ncancel_flag &= (predict3 == p);
*undo_buffer = *predictl;
undo_buffer++;
*predictl = *predict2 - *predict3;
if (!ncancel_flag) { /* fail */ }
predict0O += delta0;
predictl += deltal;
predict2 += delta2;
predict3 += delta3;

}

Figure 5: The speculation loop created from the sequential
loop in Figure 1.

the stride multiplied by the starting iteration number for
the thread to the initial address.

Code inserted into the loop stores values to be overwrit-
ten in the undo buffer and increments each predicted address
by its stride. Each processor has its own undo buffer that
is allocated prior to speculation (it is made large enough to
hold all writes in the loop). Additional code checks that
the predicted address matches the actual address; if not,
the speculation fails: all writes in iterations during and af-
ter the misprediction are undone and those iterations are
re-executed sequentially by the recovery loop. The recovery
loop is identical to the original sequential loop except that it
begins execution on the iteration of the misprediction. This
process is illustrated at the bottom of Figure 2. Note that
all operations are local to each processor except for the suc-
cess or failure of the speculation at the end of the loop; no
other global communication is required.

Undoing writes involves restoring the values from the



[ Loop [ Per Read | Per Write | Per Iteration |
Profile 1-4 1-4 0
Detect 0 0 2-4

Speculate 6-11 10-13 2-5
Recovery 0 0 0

Table 1: Overhead in terms of machine instructions for the
four loops that Softspec creates when parallelizing a target
loop.

undo buffer to the predicted addresses, from the most
recently executed iteration backward to the earliest exe-
cuted iteration. Since the predicted addresses are stride-
predictable, the undo buffer does not need to store any
memory addresses, only values. The processors can undo
in parallel since there are no overlaps in the predicted ad-
dresses.

If many execution instances of a loop experience early
speculation failures, the runtime system disables speculation
of that loop and executes it sequentially instead to avoid
overhead costs.

3.3 Runtime Overhead

The Softspec algorithm transforms the original sequential
loop into four loops. Omne of these, the recovery loop, is
essentially identical to the original loop. The other three
loops have extra instructions added that lead to runtime
overhead when compared to the original sequential loop.

The profile loop stores the address of each load and store
into a shared data structure. The detection loop, which se-
quentially makes forward progress on the loop while the run-
time system detects the amount of parallelism in the loop,
is equivalent to the original loop with a check every itera-
tion to see if the parallelism detection has finished. Finally,
the speculation loop contains an increment of the predicted
address and a check that the predicted address equals the
actual address for all memory reads and writes, a store to
the write buffer and increment of the write buffer pointer
for each write, and additionally a single speculation failure
branch. Table 1 summarizes these costs in units of machine
instructions for typical compilations.

Note that since speculation uses predicted memory ad-
dresses, nested array references (such as A[B[i]]) or multi-
ple levels of pointer indirection (such as **p) do not need to
wait for the first memory reference to resolve before access-
ing the second. Breaking this dependence allows for more
instruction-level parallelism and reordering.

Additional overhead is required to synchronize the
threads. A barrier is required at the end of the parallel
execution to determine if any threads encountered mispre-
dictions. This barrier may cost hundreds or even thousands
of cycles on a shared-memory multiprocessor. Fortunately
it is the only global synchronization needed by Softspec.

Very simple extensions to the underlying hardware, such
as adding a speculative bit to caches that eliminates the
need for an undo buffer, could reduce Softspec’s overhead
significantly.

4 Extending the Core Algorithm

The core of the Softspec algorithm described in Section 3
only handles loops with known numbers of iterations whose

bodies are straight-line code, i.e., no procedure calls or
branches inside of loops, and no while loops or nested loops.
This section explains how Softspec extends the core algo-
rithm to handle loop bodies containing loop-carried depen-
dences and nonlinear control flow, while loops, nested loops,
and interprocedural parallelism. We have incorporated all
but the last of these into our prototype Softspec implemen-
tation. We plan to implement interprocedural parallelism
in the near future; we describe here how to do so without
using any interprocedural analysis. We then discuss using
compiler information to reduce runtime overhead, and com-
pare the runtime overhead of these extensions to that of the
core algorithm.

4.1 Loops Containing Loop-Carried Dependences

Memory addresses are not the only values in a loop that are
often stride-predictable. Scalar variables with loop-carried
dependences exhibiting stride-predictability range from sim-
ple induction variables, which are usually analyzable at com-
pile time, to pointers that are difficult to analyze at compile
time. A pointer used to traverse a linked list, when the list
is laid out contiguously in memory, is a good example of a
stride-predictable loop-carried dependence.

Loop-carried dependences are treated in a similar man-
ner to memory addresses. Their values are profiled in the
first three iterations of the loop just like memory addresses,
and a stride is calculated that is predicted to hold for the
rest of the loop. If the stride does hold, the loop is paralleliz-
able; no inter-iteration dependence analysis is needed since
the value of the variable can be computed independently
for any iteration. This is in contrast to memory addresses,
for which merely being stride-predictable is not sufficient for
parallelism to exist since the addresses and not the values
at those addresses are being predicted, and the values may
depend on each other.

During speculation the “actual” value of the loop-carried
dependence is the predicted value for the current iteration.
At the end of the iteration, after this actual value is modi-
fied in the loop body, its resulting value is compared to the
predicted value for the next iteration and if a misprediction
occurs the speculation aborts. This is different from a mem-
ory address whose actual value is computed independently
of the predicted value.

The undo mechanism needs no extra information to be
able to restore loop-carried dependences to the values they
held prior to a misprediction. Each value can be computed
using the profiling data for the iteration prior to the specu-
lation failure.

If a loop-carried dependence is used as a pointer, care
must be taken to avoid a misprediction causing a memory
access outside of the program’s address space. The predicted
values of the pointer for the initial and final iterations of
the loop need to be checked to ensure that they are within
the application’s address space. If they are, then so are all
values at intermediate iterations. Within the address space,
any misprediction will be detected and all erroneous writes
will be restored to their original values from the undo buffer.

4.2 Loops Containing Nonlinear Control Flow

The core algorithm assumed that each memory access would
be executed on each iteration. Branches inside the loop body
often fail to meet this assumption. This can cause addresses
to be encountered during speculation that were not executed



during profiling. Speculation cannot proceed in such a case
since no predicted stride is available and no inter-iteration
dependence analysis has been performed on the new address.
Speculation must also abort if a branch is taken that leads
out of the loop.

If a particular access is not executed in any of the three
profiling iterations, that access must be distinguishable from
fully profiled accesses by the speculation loop. A sentinel in
the value of the predicted address is used for this purpose.
Unfortunately, the speculation loop must branch immedi-
ately based on its check for the sentinel because it cannot
execute instructions using an unknown address. Such a spec-
ulation failure branch must be placed before every address
use that could potentially be unprofiled. This branch causes
two problems. First, it degrades performance. This can be
avoided in some cases by generating a version of the specula-
tion loop without the branches and using that version when
all addresses are executed in the profile loop. Second, it re-
quires the ability to undo a partially finished iteration. This
is easily solved: when a misprediction occurs the address it
occurred at is recorded, and the undo mechanism uses that
information to undo just the portion of the iteration prior
to the misprediction.

If an access is executed in only one of the three profiling
iterations, a stride cannot be calculated. However, a stride
can be guessed based on the strides of other addresses in the
loop or possibly on stored strides from previous instances of
this loop. Our prototype implementation does not currently
guess strides and does not attempt to speculate a loop con-
taining an address that was profiled only once.

If an access is executed in two of the three profiling it-
erations, a stride can be calculated and speculated just like
a fully profiled address. Alternatively, a more dynamic ap-
proach could decide to execute further profiling iterations to
verify the stride.

Detecting unprofiled loop-carried dependences is done in
the same manner as for memory addresses, but since loop-
carried dependences can take on any value a sentinel cannot
be used. Instead, the profiling data structures are extended.

4.3 While Loops

While loops with un-analyzable exits are difficult to paral-
lelize since the number of iterations in the loop is not known
at compile time. In fact, the number of iterations is not
known until the final iteration of the loop. The only way
to parallelize such a loop is speculatively. The number of
iterations must be guessed and overshooting (guessing more
iterations than actually exist) must be handled.

The core algorithm is easily extended to handle while
loops. Guessing the number of iterations is accomplished in
one of several ways. It can be guessed outright. The loop
can be run sequentially the first time it is encountered and
the number of iterations from that execution can be used
as the guess for the next execution. Or, repeated specula-
tion can be used: a small number of iterations is repeatedly
speculated until the loop exit condition is reached. Repeated
speculation is a good strategy for while loops that may have
a few stride-predictability gaps but for the most part are
stride-predictable, and for while loops whose iteration count
varies widely. In any case, later speculation of the loop is
made adaptive by keeping a running average of the number
of iterations in previous executions of the loop and using it
to speculate future instances of the loop.

A while loop is converted into a for loop that executes
the guessed number of iterations and breaks if the while loop
exit condition is met before the for loop finishes. The profile,
detection, and speculation loops are generated from this for
loop. The recovery loop is the original while loop.

If the while condition is overshot, i.e., too many itera-
tions are executed, the extra iterations are undone and the
running average of the number of iterations is updated. If
the speculation ends successfully and the while condition
has not been reached, speculation can begin again on the
remainder of the loop, or else the recovery loop finishes exe-
cuting the loop. Address values in the speculation loop must
be checked to ensure they are within the address space of
the program (predicted values in iterations beyond the ac-
tual loop end could be outside of the address space). This
can be done by checking the initial and final predicted values
prior to the speculation loop.

4.4 Nested Loops

The core algorithm only handles innermost loops. Even
when parallelism exists in inner loops, greater performance
improvements can be achieved by parallelizing outer loops,
especially when executing on machines with high data shar-
ing costs between processors’ caches where a higher com-
putation to overhead ratio is required. However, target-
ing outer loops complicates parallelism detection because
there are many more opportunities for inter-iteration de-
pendences. Softspec extends the core algorithm to handle
outer loops without unduly increasing its complexity.

In a nested loop, the inner loops can be treated in two
ways. The inner loops’ memory accesses can be required
to be stride-predictable (the linear method), or they can be
required to fall within a certain range (the range method).
The two methods are handled similarly by Softspec. We im-
plemented both methods and found that, as expected, the
range method is less efficient than the linear method. Al-
though the range method places fewer restrictions on which
loops are parallelizable, we never encountered a loop for
which the range method applied but the linear method did
not. Our prototype implementation uses the linear method.

The profiling step for nested loops runs the outer loop for
three iterations and the inner loops for their full number of
iterations. The linear method only gathers profiling data on
the first three iterations of the inner loops, while the range
method keeps track of the maximum and minimum values
of each address accessed in each inner loop. For the linear
method, all memory accesses in a loop have a stride that
holds within the outer loop; a memory access in an inner
loop has a separate stride for that loop. Both strides are
necessary to predict addresses that are accessed in both the
inner and outer loop. To handle addresses that are accessed
in more than two layers of loops, additional separate strides
must be calculated.

Note that loop-carried dependences in nested loops can
be treated just like in non-nested loops. Only a single stride
is required for each loop-carried dependence since it does
not matter what happens to its value inside inner loops; all
that matters is that its value at the end of each iteration of
the outer loop is stride-predictable. That is the only value
that is profiled for both the linear and range methods.

In the detection step, the linear method calculates in-
ner and outer strides and from them calculates a range of
values for each memory access based on the number of iter-
ations in the inner loops, while the range method calculates



this range from the minimum and maximum profiled values.
Each range has a stride, just like a single memory access in
the outer iteration has a stride. The detection algorithm ex-
trapolates and compares the ranges in the same manner as
the core algorithm compares lines to calculate the number
of parallelizable iterations.

Speculation and undoing for the linear method are sim-
ilar to non-nested loops. For the range method, since its
addresses are not assumed to be stride-predictable, either
the undo buffer must store the address of each write whose
old value it stores, or the entire range of values overwrit-
ten in an inner loop must be copied to the undo buffer at
once. Also, the range method uses actual addresses instead
of predicted addresses in its inner loops, and so it must check
before each memory access that the actual address is within
the predicted range. These two factors combine to make the
range method less efficient than the linear method.

The greatest challenge for Softspec in parallelizing nested
loops is determining which loop to parallelize in multiply-
nested loops. Compiler analysis can sometimes find the out-
ermost parallelizable loop; a dynamic solution attempts par-
allelization of the outermost loop and if it fails tries each
nested inner loop in turn.

4.5 Interprocedural Parallelism

In a purely runtime implementation, procedure calls are not
an obstacle to parallelization with Softspec since the pro-
gram is viewed at the execution trace level and procedures
are essentially inlined.

Extending a compiler-based Softspec implementation to
handle procedure calls in loop bodies can be done with-
out any interprocedural analysis. Separate versions of each
procedure for profiling and speculating can be generated
independently. The memory references are then dynami-
cally numbered. Libraries must have their procedures made
“Softspec-ready”. Runtime analysis will view the loop from
the level of its trace, treating the procedures as though they
were inlined, and not need any interprocedural information.
A flag must be used to prevent nested speculation from loops
inside of procedure calls.

This is markedly simpler than any other treatment of
procedure calls in loops. Parallelizing compilers must per-
form complex interprocedural analysis to determine if pro-
cedure calls may be parallelized. Softspec enables a very
simple mechanism for interprocedural parallelism. We have
not yet incorporated this into our prototype implementation
of Softspec, but plan to do so in the near future.

4.6 Using Advanced Compiler Analysis

For many accesses in a loop, the compiler may be able to
prove that the accesses have a given pattern. For exam-
ple, the access pattern of a local induction variable whose
address is not taken can be easily discerned. These vari-
ables do not require any profiling or runtime checking. Also,
the loop’s dependence analysis can be partially evaluated at
compile time.

The overhead of the undo buffer can be reduced or elim-
inated using compile-time information. If a memory ref-
erence is read before it is written, the read value can be
directly written to the undo buffer, eliminating a load in-
struction. Furthermore, if the compiler can deduce how to
re-create the original value of a modified memory access, no
undo information for that access needs to be stored.

Incorporating Softspec into a parallelizing compiler will
make the compiler much more robust. A loop with a few
unanalyzable accesses will still be parallelizable with a little
extra runtime overhead.

4.7 Runtime Overhead of Extended Algorithm

The extensions to the core algorithm described in this sec-
tion add additional runtime overhead to that analyzed in
Section 3.3. Loop-carried dependences do not affect the
overhead much, since even in a nested loop they are only
checked at the end of the outer loop. Nonlinear control
flow, however, adds failure branches to the middle of the
speculation loop, which can be relatively expensive. The
only extra overheads of while loops come from overshooting
the number of iterations and the added overhead in repeated
speculation. Finally, nested loops using the linear method
do not have appreciably more runtime costs than non-nested
loops, while the range method adds costs in the form of fail-
ure branches and copying large regions to the undo buffer
at once.

5 Experimental Results

We have developed a prototype implementation of the Soft-
spec algorithm consisting of a compiler and accompanying
runtime system. The prototype incorporates all of the al-
gorithm components described in Section 4 except for in-
terprocedural parallelism. The compiler transforms target
sequential code into speculatively parallel code which is then
linked with the runtime system. The compiler was written
in SUIF [AALT95] and the runtime system was written in
C. The pthreads library is used to create a separate thread
for each processor on the machine; these threads are created
at program startup and are used for all speculation in the
program.

This section presents the results of using our prototype
to parallelize various types of applications. The target ap-
plications were run on a Digital AlphaServer 8400, which is
a bus-based shared-memory multiprocessor containing eight
Digital Alpha processors. We expect even better perfor-
mance improvements on architectures with lower costs of
data sharing between processors’ caches, such as single-chip
multiprocessors [HNO97, SM98].

Note that there is nothing about the Softspec technique
that requires a source-code compiler. It could operate on
program binaries, and could execute completely at runtime
in a dynamic optimization framework. If the speedups pre-
sented here can be achieved in such environments, they will
be even more impressive. The simplicity of the Softspec
approach lends it versatility.

5.1 Dense Matrix Applications

We first examine how Softspec performs on dense matrix ap-
plications, which are typically highly parallelizable by cur-
rent compilers. Obviously we do not expect Softspec to pro-
duce greater speedups than automatically parallelizing com-
pilers because of our runtime overhead. This section gives an
idea of how Softspec compares to automatically parallelizing
compilers.

Consider the matrix multiplication code in Figure 6. The
middle loop is parallelizable, and Softspec parallelizes it suc-
cessfully with speedup shown in Figure 7.



for(i=0; i<L; i++) {
for(j=0; j<M; j++) {
for(k=0; k<N; k++) {
c[il k] += al[il[j]1 * b[jl1[k];
}
}
}

Figure 6: Dense matrix multiplication loop nest.
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Figure 7: Speedup obtained by Softspec for multiplication
of a dense 1000 by 1000 square matrix.

When executed on one processor, speculation has a
nearly two times slowdown. The sequential program’s loop
body is very simple and more easily optimized by the com-
piler than the parallel version of the code generated by Soft-
spec. The sparse matrix code in Section 5.4 is more difficult
to optimize and thus exhibits higher speedups and much
lower slowdown on one processor. On two processors the
dense matrix multiplication breaks even, and its speedup
increases linearly by a little more than 0.5 with each proces-
sor added.

Figure 8 gives Softspec’s speedup when applied to the
SPECY95FP benchmark swim. The results are similar to the
matrix multiplication results.

5.2 While Loops with Un-analyzable Exits

Automatically parallelizing compilers naturally cannot
parallelize loops whose termination conditions are un-
analyzable until the last iteration at runtime. Softspec’s dy-
namic techniques can parallelize such loops. Our prototype
implementation of Softspec executes a while loop sequen-
tially the first time it is encountered and uses the number of
iterations in that first execution as the number of iterations
to speculate on. The iteration count is updated as a running
average to adapt to varying-length while loops.

Consider the example code in Figure 9, a procedure for
performing convolution in which one array’s end is marked
with a sentinel. In a program that calls this procedure multi-
ple times, Softspec obtains the speedup shown in Figure 10.
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Figure 8: Speedup for the SPEC95FP benchmark swim.

void convolve(double *A, int lengthA, double *B,

double sentinel, double *C) {
int 1i,j;
i = lengthA;
while (B[i] != sentinel) {

double tmp = 0;

for (j=0; j<lengthA; j++) {

tmp += A[j] * B[i-j1;

C[i] = tmp;
i++;
}
}

Figure 9: Example code containing a loop whose exit condi-
tion is not analyzable at compile time. The code performs
a convolution in which the end of array B is marked with a
sentinel.
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Figure 10: Speedup for a program that makes 100 calls to

the convolve procedure of Figure 9, each with lengthA=1000
and length of B = 20000.



void compute(node *link) {
while (link != NULL) {
/* do work on link */

/* move to next link */
link = link->next;

Figure 11: Code traversing a linked list and performing some
computation at each node.

5.3 Linked List Traversal

Code that traverses a linked list can be difficult to impos-
sible to parallelize. If the nodes of the list are all laid out
contiguously then the traversal is amenable to paralleliza-
tion by Softspec. In a system with a garbage collector, the
memory layout of the list can be controlled. The garbage
collector can cooperate with Softspec by keeping the list laid
out contiguously as much as possible. A Java virtual ma-
chine, for example, could implement Softspec dynamically
and use its control of memory layout to parallelize many
loops otherwise not parallelizable.

Without control over the memory layout, a repeated
speculation strategy can be used to obtain speedup on the
regions of the list that happen to be contiguous. We inves-
tigated performance on lists with varying memory layouts.
In practice lists often have clusters of noncontiguous nodes.
To model this, we allocate a 20,000 node list such that each
sequence of 50 consecutive nodes has a certain chance of ei-
ther being contiguous or having frequent gaps between the
nodes. We parallelized a program that traverses this list
and performs some computation at each node. The code
framework is shown in Figure 11.

Performance results for this program are given for differ-
ent chances of each sequence of the list containing gaps and
for different numbers of iterations to speculate (repeatedly).
Results for a 0% chance of each sequence having gaps (a
completely contiguous list) are shown in Figure 12, for a 1%
chance in Figure 13, and for a 5% chance in Figure 14. Each
figure shows the speedup for five different numbers of iter-
ations speculated: “All” performs speculation of the entire
loop and does not try again after reaching a misprediction
while the other four, “100”, “200”, “400”, and “800”, re-
peatedly speculate that many iterations at a time until the
loop finishes, regardless of how many speculations fail due
to mispredictions.

5.4 Sparse Matrix Applications

In this section we give an example of a sparse matrix applica-
tion that is for some matrices stride-predictable and contains
parallelism, but is not parallelizable by current compilers.
The FORTRAN code in Figure 15 is the core code for ma-
trix multiplication of sparse matrices stored in compressed
row storage format. The many arrays and multiple levels of
indirection make analysis of this loop too difficult for current
parallelizing compilers, but Softspec’s parallelization scheme
is applicable.

When the current row in each of the two matrices being
multiplied contains contiguous regions of non-zero values,
the memory references in each of the two branches of the
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Figure 12: Speedup for the sample program in Figure 11
operating on a completely contiguous list. Softspec either
used repeated speculation of a certain number of iterations
(100, 250, 400, 800) or speculated the entire loop (“All”).

if are stride-predictable. Thus when many consecutive it-
erations of the inner loop take the same branch, the inner
loop is parallelizable by Softspec. The then branch initial-
izes new non-zero elements in the product matrix while the
else branch adds to an existing element. The row by row
multiplication ends up often entering the same branch on
consecutive iterations of the inner loop. The frequency and
duration of parallelizable iteration sequences are dependent
on the input matrices. Sparse matrix data sets such as the
Non-Hermitian Eigenvalue Problem Collection [NHE] often
contain matrices with non-zero values in a stripe down the
diagonal or in blocks down the diagonal. Such patterns lead
to parallelizable iteration sequences of lengths equal to the
width of the stripes or blocks.

Figure 16 shows the speedup obtained by Softspec when
multiplying block diagonal sparse matrices with different
block sizes. Six different sparse matrices with non-zero el-
ements in square blocks down the diagonal were multiplied
by themselves. The block widths for the six matrices were
25, 50, 100, 200, 300, and 400, respectively. The number of
blocks does not affect the speedup much, as it only changes
the total run time and not the length of the parallelizable
sequences.

No speedup (or slowdown) occurs for parallelizable se-
quences of 25 or 50 iterations. For 100 iterations moderate
speedup is achieved, but there is not enough work for the
speedup to scale beyond five or six processors. Iteration
counts of 200, 300, and 400 all achieve scalable speedup.

The speedups obtained on a few hundred iterations of
the inner loop of the sparse matrix multiplication are greater
than those for the nested loop of the dense matrix multipli-
cation, even though the latter has much more work in each
parallelized iteration. The reason stems from the ability of
the compiler to more aggressively optimize the dense matrix
loop body versus the sparse matrix loop body. The multiple
array indirections inhibit optimizations that can be applied
to the simpler dense matrix code. This results in less of
a disparity in speed between the sequential code and the
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Figure 13: Speedup for the sample program in Figure 11
operating on a list with each sequence of 50 nodes having a
1% chance of containing many memory gaps (a 50% chance
of a gap between each node). Softspec either used repeated
speculation of a certain number of iterations (100, 250, 400,
800) or speculated the entire loop (“All”).
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Figure 14: Speedup for the sample program in Figure 11
operating on a list with each sequence of 50 nodes having a
5% chance of containing many memory gaps (a 50% chance
of a gap between each node). Softspec either used repeated
speculation of a certain number of iterations (100, 250, 400,
800) or speculated the entire loop (“All”).
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do j = offa(i) , offa(i+1)-1
do k = offb(ja(j)), offb(ja(j)+1)-1
if ((ptr(jb(k)) .eq. 0)) then
ptr(jb(k)) =i
c(ptr(jb(k))) = a(j)*b(k)
index (ptr(jb(k))) = jb(k)
i=1i+1
else
c(ptr(jb(k))) =
endif
enddo
enddo

c(ptr(jb(k)))+a(j)*b(k)

Figure 15: The core FORTRAN loop for multiplying sparse
matrices a and b and storing the result in c. The sparse
matrices are stored in compressed row storage format. The
arrays offa, ja, offb, and jb are used to locate the columns
and rows of elements in a and b.
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Figure 16: Speedup for the sparse matrix multiplication
code of Figure 15 operating on six different block diago-
nal matrices. The six matrices have blocks of widths 25, 50,
100, 200, 300, and 400, respectively.

parallelized code generated by Softspec.

6 Related Work

Over the last two decades, compiler techniques for automat-
ically parallelizing sequential applications have advanced re-
markably. Modern parallelizing compilers are very success-
ful when targeting certain types of code, namely nested loops
containing limited memory aliasing. However, these compil-
ers are large systems that use complex interprocedural anal-
yses: the Polaris compiler [BEH"94] contains over 170,000
lines of code, and the SUIF compiler [AALT95] contains over
150,000 lines of code.

Alias analysis algorithms [WL95, EGH94, RR98] can en-
able automatic parallelization in the presence of memory
aliases. However, these alias analysis systems work only
with small, self-contained programs and do not scale with
program size.



Hardware-based speculative parallelization has been pro-
posed to overcome the need for a compile-time proof that
code is parallelizable. Candidate loops are speculatively
executed in parallel while a complex hardware system ob-
serves all memory accesses in order to detect inter-iteration
data dependences. When a dependence is detected, addi-
tional hardware mechanisms undo the speculative execu-
tion and the loop is re-executed sequentially. Some pro-
posals extend existing multiprocessor hardware [HWO98,
SM98] while others present completely new hardware struc-
tures [MBVS97]. Targeting procedural parallelism using
hardware has also been proposed [OHL99]. Because spec-
ulative hardware schemes do not rely an program charac-
teristics they require a lot of work and global communica-
tion. Softspec takes advantage of memory access patterns
to reduce the amount of work and communication needed
to detect dependences, making it viable in software.

Fundamental research into program behavior has shown
that both data and address values can be predicted by
stride prediction and last-value prediction [SS97]. Stride-
predictability of memory accesses in scientific applications
has been successfully exploited to improve the cache be-
havior of these codes through compiler-inserted prefetch-
ing in uniprocessor and multiprocessor machines [FP91].
The stride-predictability of memory addresses has been used
to perform speculative prefetching in out-of-order super-
scalars [GGIT].

Software-based speculative parallelization schemes have
mostly focused on determining the inter-iteration depen-
dence patterns of a partially parallel loop in order to con-
struct parallelization schedules. These schemes focus on an
inspector-executor model [LZ93], in which an extracted in-
spector loop analyzes the memory accesses at run time and
constructs a schedule for the executor loop, which runs parts
of the loop in parallel using synchronization.

Other software-based techniques speculatively run code
in parallel and monitor all memory accesses using shadow
arrays [RP95a]. When an inter-iteration data dependence is
observed, the speculation is undone. This is similar to the
hardware-based proposals, but with greater runtime over-
head and only targeting for loops that operate on arrays.
Mechanisms for parallelizing certain types of while loops
have been developed [RP95b], but they require the help of
compiler analysis and code reorganization that could not
practically be done at runtime.

7 Conclusions

We have presented a novel approach to parallelization of se-
quential code that does not require complex program anal-
ysis or additional hardware mechanisms. We have demon-
strated the benefits of this approach on a variety of programs
using a prototype implementation.

The trend towards object-oriented programming and
shared library usage is making it increasingly difficult for an
automatically parallelizing compiler to perform the whole-
program analysis it needs to identify parallelism. We have
shown how to exploit interprocedural parallelism with no
need for interprocedural analysis, leading to a highly scal-
able solution that supports separate compilation. We plan
to incorporate this into our prototype implementation of
Softspec.

Softspec can be combined with existing automatically
parallelizing compilers to increase the range of loops they
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can parallelize. A Softspec-enhanced parallelizing compiler
would provide more robust performance.

We plan to simulate the performance of our implementa-
tion on proposed single-chip multiprocessors. A factor lim-
iting the speedups obtainable on shared-memory multipro-
cessors is the high cost of data sharing between processors’
caches. These costs are much lower on proposed single-chip
multiprocessors. Although we showed speedup on existing
hardware, simple hardware extensions such as adding a spec-
ulative bit to caches that eliminates undo overhead can dras-
tically improve Softspec performance.

Softspec can be implemented entirely in software and
can target program binaries. In the future we hope to in-
tegrate Softspec into a virtual machine environment with
control of the garbage collector to enhance data structure
stride-predictability. We would also like to investigate in-
corporating Softspec into a binary optimizer. This would
enable parallelization of legacy code or third-party software
that is only available in binary form and cannot be recom-
piled.

Softspec introduces a framework for parallelization based
on prediction rather than proof of parallelism that enables
parallelization of a large class of important applications that
are currently unable to use automatic parallelization tech-
niques. We believe that the Softspec framework will lead to
many other techniques involving different optimization and
prediction schemes.
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