
A New Self-Play Experiment in Computer Chess

[M.I.T. LCS Technical Memo 608 / MIT-LCS-TM-608]

Ernst A. Heinz

M.I.T. Laboratory for Computer Science (Room NE 43 { 228)
Massachussetts Institute of Technology

545 Technology Square, Cambridge, MA 02139, USA

Email = <heinz@mit.edu>, WWW = <http://supertech.lcs.mit.edu/~heinz/>

May 20, 2000

Content Areas: computer chess, self-play experiments

Abstract. This paper presents the results of a new self-play experiment
in computer chess. It is the �rst such experiment ever to feature search
depths beyond 9 plies and thousands of games for every single match.
Overall, we executed 17,150 self-play games (1,050{3,000 per match) in
one \calibration" match and seven \depth X+1, X" handicap matches
at �xed iteration depths ranging from 5{12 plies. For the experiment to
be realistic and independently repeatable, we relied on a state-of-the-art
commercial contestant: Fritz 6, one of the strongest modern chess pro-
grams available. The main result of our new experiment is that it shows
the existence of diminishing returns for additional search in computer
chess self-play by Fritz 6 with 95% statistical con�dence. The dimin-
ishing returns manifest themselves by declining rates of won games and
reversely increasing rates of drawn games for the deeper searching pro-
gram versions. The rate of lost games, however, remains quite steady for
the whole depth range of 5{12 plies.

1 Introduction

To the best of our knowledge, Gillogly and Newborn in 1978 independently
reported the earliest attempts at modeling the relationship between the playing
strength of chess programs on one hand and the available computing power
or search depth on the other. Gillogly [4] introduced his \technology curve"
that plotted the playing strength against what he called \machine power" on
a logarithmic scale. Newborn [21, 22] related the numbers of nodes as searched
by di�erent chess programs in three minutes (the average time per move in
tournament games) to the playing strengths of the very same programs as derived
from their actual performances in tournaments. Later on, Levy [17] and Levy
and Newborn [16] re�ned Newborn's initial scheme by contrasting the highest
rated tournament performances of the best chess programs with the years of their
achievement. All these comparisons inevitably led to speculative extrapolations

1



Table 1. Timeline of published self-play experiments in computer chess.
[TechMate and Zugzwang self-played with time handicaps.]

Year Program Experimenter Depths �ELO No. Games

(in Plies) (per Ply) All Each

1982 Belle Thompson 3 { 8 +246 100 20

1983 Belle Condon, Thompson 4 { 9 +217 300 20

1988 TechMate Szabo, Szabo { { { { 6,882 � 32

1990 Hitech Berliner et al. 4 { 9 +195 1,056 16
Lotech +232

1994 Zugzwang Mysliwietz { { { { 450 50

1996 Phoenix Schae�er 4 { 9 +228 120 20

1997 The Turk Junghanns et al. 3 { 9 +200 480 80

which Levy characterized as the \meta-science of prediction in computer chess"
in his latest article [15] about the subject in 1997.

In the early 1980s, Thompson [3, 28] pioneered the usage of self-play with
his then reigning World Computer-Chess Champion machine Belle. Self-play
with handicaps in search depth, search speed, or search time between otherwise
identical program versions represents a more rigorous approach of investigating
the relationship of computing power and the strength of chess programs. A no-
table advantage of such matches is that the scoring rates quantify the di�erences
in playing strength of the various participating versions of the same program.
Despite unresolved questions regarding the magnitude of self-play rating dif-
ferences [1], self-play seems to be the best of the available methods to resolve
the old but still ongoing \search versus knowledge" debate [11, 24, 25]. Almost
everybody seems to agree with the intuitive notion that the positive e�ect of
more search ought to taper o� with increasing overall search e�ort. In self-play
matches such \diminishing returns for additional search" should lead to signif-
icantly lower scoring rates of the deeper searching program versions with the
progression towards higher search depths.

However, Thompson's experiments [3, 28] led to the surprising result that
the playing strength of Belle increased almost linearly with search depth. For
�xed-depth searches of 3{9 plies, the increase in playing strength amounted to
roughly 200 ELO rating points per ply. Several other researchers later con�rmed
Thompson's �ndings by self-play experiments with their own chess programsHi-
tech, Lotech, Phoenix, and The Turk [1, 12]. In Figure 1 of their article [12],
Junghanns et al. showed that the scoring rates of the program versions searching
one ply deeper remained range-bound between 70%{80% in all cases. There are
no clearly visible average downward trends at the end of these 9-ply data curves.

1.1 Previous Self-Play Experiments in Computer Chess

Table 1 presents an overview and timeline of self-play experiments in computer
chess published up to now. Beside names, depths, and average ELO increases,

2



the table also lists the overall numbers of games played in the experiments as
a whole and for each single match. Unfortunately, all the experiments feature
only very low numbers of games per match which do not allow for any con�dent
quanti�cation of rating di�erences between the opponents. Hence, we completely
agree with Mysliwietz [19] who criticized the statistical uncertainty of self-play
experiments in computer chess already back in 1994.

Based on this criticism, we re-assessed and carefully re-analyzed all experi-
ments from Table 1 in our recent publications [6, 8]. The outcome of our analyses
was bleak and simple: none of the previous self-play experiments provide any
con�dent quanti�cations of the di�erences in playing strength. The experimen-
tal results are just not statistically signi�cant. The experiments do not feature
enough games per match to draw reliable conclusions. Based on rigorous analy-
ses of hypothetical match results, we conjectured [6, 8] that at least 1,000 games
per match are necessary to assess diminishing returns in computer self-play with
95% statistical con�dence. Further questions regarding previous self-play exper-
iments are the exact meaning of \�xed depth" in each case, the details of the
experimental setups, and their repeatability.

The \�xed depth" question is not trivial because the modes of operation of
the programs di�er substantially depending on its real meaning. In the search-
theoretical sense, \�xed depth" denotes true brute-force search with uniform
path lengths from the root to all horizon nodes and no selectivity at all { neither
by means of depth reductions or other kinds of forward pruning nor by any search
extensions. In computer-chess practice, however, \�xed depth" usually equals
\�xed iteration depth" which relates to the depth limit of iterative deepening
[13, 26] as performed by the top-level search control. Here, the programs operate
with an iteration limit instead of a time bound but otherwise execute their
sophisticated variable-depth search procedure as built in { with all kinds of
depth reductions, forward pruning, and search extensions fully enabled.

The exact setups of the experiments are not only important for the purpose
of repeatability. The engine settings and hash-table sizes, the opening books
or positions used, the endgame databases, etc. may as well have non-negligible
in
uences on the match results. Of course, the whole setup must be identical
for all sibling versions of a program during handicap self-play. In particular, it
is not admissible to increase the hash-table sizes of deeper searching versions in
order to speed-up their times to completion.

As for repeatability, Table 1 shows that all self-play experiments published
up to now featured proprietary chess program. Several of them also relied on
special hardware (Belle, Hitech, Lotech, and Zugzwang). Hence, even as-
suming detailed knowledge of the exact setups, none of the experiments was
independently repeatable by others in practice.

1.2 Our New Self-Play Experiment in Computer Chess

We designed our new self-play experiment in such a way as to overcome the
aforementioned drawbacks of its predecessors from Table 1. Our primary con-
cerns were the rigorous analysis of the results (see Section 3) and their statistical

3



signi�cance. We played seven \depth X+1 , X" handicap matches at �xed it-
eration depths ranging from 5{12 plies with 1,050{3,000 games per match (see
Section 5). By extending the self-play depths beyond 9 plies for the �rst time
ever, we sought to gain new information about potentially diminishing returns
for additional search in computer chess at high depths.

Moreover, we intended our self-play experiment to be transparent and real-
istic at the time of execution and independently repeatable by others later on.
To this end, we needed a state-of-the-art contestant featuring general world-
wide availability, x86-PC compatibility, well-de�ned parameter control, and {
last but not least { handicap self-play ability. The commercial chess program
Fritz 6 (written by Frans Morsch and Matthias Feist) met all our requirements
because handicap self-play abilities were included in it upon our special request.
Fritz 6 is certainly one of the strongest modern chess programs available.

Further advantages of employing Fritz 6 spring from its database capabil-
ities, versatile chess-engine concept, and excellent opening book (composed by
Alexander Kure). In particular, the wide and well-balanced opening book facil-
itates the automatic play of fair matches with thousands of games. Just to be
sure, we checked the integrity and Black/White fairness of the opening book
by means of a \calibration" match between two identical opponents (see Sec-
tion 4.1). The various di�erent engines available for the Fritz 6 interface allow
for the possibility to include other chess programs in our future self-play research.

2 Related Work

In the introduction, we already mentioned the attempts of Gillogly [4], Newborn
[21, 22], Levy [15, 17], and Levy and Newborn [16] at modeling the relationship
between playing strength and computing power. Newborn [20] introduced yet
another technique to study this relationship in 1985. The rationale of Newborn's
novel approach sprang from the assumption that new best moves as discovered
by chess programs at higher search depths ought to represent better choices than
the best moves preferred at shallower depths. To this end, Newborn tracked the
behaviour of Belle for searches to �xed depths of 11 plies on a set of 447 test
positions from real games. Interestingly enough, his data correlated closely with
Thompson's earlier self-play results of Belle [3, 28].

In 1997, Junghanns et al. [12] let Phoenix and The Turk search roughly
1,000 positions from self-play games to �xed depths of 9 plies while recording new
best moves beside other information. Also during 1997, Hyatt and Newborn [10]
conducted another behavioural experiment with Hyatt's chess program Crafty

searching 347 new test positions to �xed depths of 14 plies. This experiment re-
vealed the astonishing fact that the rate of new best moves as chosen by Crafty
at high search depths of 9{14 plies remained quite steady around 15%{17% on
average and hardly decreased anymore. Following up thereon, we con�rmed Hy-
att and Newborn's �ndings by repeating their \go deep" experiment with our
own chess program DarkThought in 1998 [6, 9]. Recently, we pushed the lim-

4



its of going deep to �xed depths of 16 plies [6, 7] where the best-change rate of
DarkThought still remains steady at roughly 15%.

Self-play with handicaps in search depth, search speed, or search time be-
tween otherwise identical program versions is a valuable tool not only for com-
puter chess but for computer strategy game-playing in general. Examples from
other domains than chess include self-play experiments in computer checkers by
Schae�er et al. [11, 12, 23, 24] with the reigning World Man-Machine Checkers
Champion Chinook as well as self-play experiments in computer Othello by Lee
and Mahajan [14] with their program Bill and by Brockington et al. [2, 11, 12]
with his Othello program Keyano. For all published self-play experiments in
computer chess (see also Table 1) we provide further descriptions below.

1982: Thompson [28]. Thompson's pioneering experiment featured 100 self-
play games with matches of 20 games each between versions of Belle dif-
fering by exactly one ply in lookahead for �xed depths of 3{8 plies. The
gain in playing strength averaged at 246 rating points per ply of search. The
experiment showed no diminishing returns at any depth.

1983: Condon and Thompson [3]. In the second experiment, Condon and
Thompson let Belle self-play 300 games in round-robin style with matches
of 20 games each between all program versions for �xed depths of 4{9 plies.
The gain in playing strength averaged at 217 rating points per ply of search.
The observed ratings slightly hinted at limited diminishing returns from a
�xed depth of 6 plies onwards. Yet, the results of the experiment are not
statistically signi�cant.

1988: Szabo and Szabo [27]. The Szabos determined the technology curve
of their chess program TechMate that self-played 6,882 games on two Atari
ST computers. The number of games per match between longer and shorter
searching versions of the program varied strongly from a minimum of 32 to a
maximum of 1367. The gain in playing strength averaged at 156 rating points
per doubling of available search time (computing power). The experimental
data indicated slight diminishing returns at longer search times. However,
the Szabos simply did not play enough games at long times to draw reliable
conclusions.

1990: Berliner et al. [1]. The Hitech team made their chess machine self-
play 1,056 games in a round-robin setting with matches of 16 games each
between all program versions of Hitech and Lotech (a variant of Hi-
tech scaled down knowledge-wise) for �xed depths of 4{9 plies. The gain
in playing strength averaged 195 rating points per ply of search for Hitech
and 232 rating points per ply for Lotech. The ratings showed possible signs
of limited diminishing returns starting at a �xed depth of 6 plies. But there
was no clear trend of diminishing returns at higher search depths and the
experimental results are not statistically signi�cant.

1994: Mysliwietz [19]. Mysliwietz let the parallel chess program Zugzwang

self-play 450 games with 50 games per match between program versions that

5



di�ered roughly by a factor of two in search speed due to varying numbers of
allotted processors. The gain in playing strength averaged 109 rating points
per doubling of search speed for 9 successive doubling steps. The observed
ratings do not exhibit any diminishing returns at all.

1996: Schae�er [12]. Junghanns et al. [11, 12] brie
y mentioned the results of
a self-play experiment by Schae�er with his chess program Phoenix in 1996.
The experiment comprised 120 self-play games with matches of 20 games
each between program versions that di�ered by exactly one ply in lookahead
for �xed depths of 3{9 plies. The gain in playing strength averaged at 228
rating points per ply of search. The result of the \9 , 8" match might be
interpreted as an indication of diminishing returns. Yet, a single error-prone
data point like this at the end of the curve really lacks signi�cance.

1997: Junghanns et al. [12]. The self-play experiment with Bj�ornsson and
Junghanns' chess program The Turk featured 480 games with matches
of 80 games each between program versions di�ering by exactly one ply in
lookahead for �xed depths of 3{9 plies. The gain in playing strength averaged
around 200 rating points per ply of search. The scoring rates of the deeper
searching versions of The Turk actually increased steadily from �xed search
depths of 6 plies onwards, thus even hinting at additional gains in returns
for higher search depths rather than diminishing ones.

Junghanns et al. continued to look for diminishing returns by means of other
metrics than self-play in [12]. They �nally claimed to have found empirical ev-
idence in this respect. According to their explanations, the low search quality
of chess programs (i.e. their high error probability) and the abnormally large
lengths of self-play games inadvertently hide diminishing returns in computer
chess (which doubtlessly exist in their opinion). Although we greatly appreciate
Junghanns et al.'s trial aimed at the better understanding of diminishing returns
in computer chess, we are not convinced that their claims hold when subjected to
rigorous methodological and statistical testing. Hence, the quest for indisputable
and statistically signi�cant demonstrations of diminishing returns for additional
search in computer chess still remained to be concluded.

3 Statistical Analysis of Self-Play Experiments

In our recent publications [6, 8] we introduced a general mathematical framework
for the statistical con�dence analysis of self-play experiments. Based on this
framework, we scrutinized the self-play data published by other researchers for
computer chess, computer checkers, and computer Othello (see Chapter 9 of [6]).
Of course, we apply the same framework here to analyze our own new self-play
results. For the sake of completeness, we explain the underlying fundamentals
and notations of the framework in brief below.

We call w = x=n the scoring rate which results from a score of x � n points
in a match or tournament of n games. The scoring rate 0 � w � 1 estimates

6



a player's real winning probability in games versus the respective opponents.
Therefore, we may simply assume the scoring rate to be the sample mean of a
binary-valued random variable that counts two draws as a loss plus a win. This
enables the calculation of standard errors and %-level con�dent bounds for any
match results by applying classical statistics [5, 18] to the values of x and n.

Standard Errors of Scoring Rates. The standard error s(w) of a scoring
rate w = x=n is given by s(w) =

p
w � (1� w)=n.

Con�dent Bounds on Winning Probabilities. Let z% denote the upper
critical value of the standard N(0; 1) normal distribution for any desired
%-level of statistical con�dence (z90% = 1:645, z95% = 1:96).

� w � z% � s(w)

places %-level con�dent lower and upper bounds on the real winning proba-
bility of a player with scoring rate w = x=n. [Remark: The bounds are accurate

only if x > 4 and n� x > 4. Otherwise, the sample data does not provide enough

information for the determination of statistically con�dent bounds. In such cases

the approximate bound values as calculated by the given formula underestimate

the real deviations possible.]

Con�dent Bounds on Di�erences of Winning Probabilities. From the
above we derive %-level con�dent lower and upper bounds on the di�erence in
real winning probability between two players with scoring rates w1 = x1=n1
and w2 = x2=n2 where w1 � w2.

� l% = max
�
(w1 � z% � s(w1))� (w2 + z% � s(w2)); � 1

�

� u% = min
�
(w1 + z% � s(w1))� (w2 � z% � s(w2)); + 1

�

For these bounds it holds that �1 � l% � u% � 1 and u% � 0. We denote
the range [l%; u%] by %-level con�dent �w. The tables of this paper also
refer thereto by \90%-C �w" and \95%-C �w" in their column heads.

The bounds allow for con�dent quanti�cations of di�erences in playing strength
between two players as measured by their winning probabilities. Whenever l% >
0 we are %-level con�dent that the player with the higher scoring rate is indeed
stronger than the other. If l% � 0, however, we cannot discriminate the two
players' strengths with the desired con�dence: the supposedly weaker player with
the lower scoring rate might really be as strong as the other or even stronger.

Our self-play matches test the playing strengths of successive program ver-
sions on the scale of increasing search depths. We use the scoring rates w1 of the
match winners and w2 = 1� w1 of the losers for our calculations of l% and u%.
After determining w and s(w), we calculate the %-level con�dent ranges [l%; u%]
for all consecutive matches and call their intersection [�w]%. If [�w]% = ;

(empty intersection) we are %-level con�dent that the di�erences in real winning
probability and, thus, playing strength of successive program versions cannot be
identical for all tested ones. Then, the overall results refute the notion of con-
stant returns for additional search throughout the whole experiment with the

7



Table 2. Detailed engine setup of Fritz 6 for the self-play matches.

Book Choice \General.ctg"

Book Options use tournament book = on, use book = on

minimum games = 2

variety of play = maximal (++)

in
uence of learn value = none (��)

learning strength = none (��)

Use Tablebases o�

Engine Parameters contempt value = 0, aggressiveness = 0

selectivity = 2, tablebase depth = 0

Hashtable Size 32MB

desired %-level of con�dence. Otherwise, the union [L%; U%] =
S
[l%; u%] of all

con�dent bound ranges con�rms constant or at least nearly constant returns for
additional search of the tested program if U% � L% < � for some small � � 0.

4 Experimental Setup

In our self-play matches the initially released version of the Fritz 6 engine dated
November 10, 1999 (size: 291,328 bytes) competed against itself. All opponents
relied on the opening book \General.ctg" from the original Fritz 6 CD-ROM
with tournament mode and maximal variety of play activated. We disabled the
book learning, tablebase access (no endgame databases installed), permanent
brain, and early resign options. Moreover, we set the contempt values of the
engines to zero. The detailed overall engine setup of Fritz 6 for our self-play
matches looked as shown in Table 2.

We executed the self-play matches on several di�erent Windows-98/NT
machines (300MHz Pentium-II, 333MHz Celeron, 450MHz K6-2, 450MHz &
500MHz Pentium-III) with 128MB{256MB RAM. We used the \Engine Match"
function of Fritz 6 to set up and play the matches at �xed iteration depths for
both contestants. The engines with the higher �xed depths always appear as
Fritz 6A in the game scores. By activating the \Alternate Colours" option of
the \Engine Match" dialogue, we made sure that all opening positions chosen
from the book by random served as sources for two games with the opponents
playing reversed colours in each. We used the free ChessBase Reader program
to analyze the generated match databases.

4.1 Calibration Match

We checked the integrity and Black/White fairness of the Fritz 6 opening book
by means of a \calibration" match with 2,500 games between two completely
identical opponents. The calibration match pitted Fritz 6 at a �xed iteration
depth of 8 plies against itself. During the calibration match, we disabled the

8



Table 3. Match details of Fritz 6 self-play calibration results.

Depth m W : D : L / Total Wins Draws Losses Score

8W , 8B 66 742 : 1,086 : 672 / 2,500 29.68% 43.44% 26.88% 51.40%

Table 4. Statistical analysis of Fritz 6 self-play calibration results.

Depth Score w s(w) 90%-C �w 95%-C �w

8W , 8B 1285.0 / 2,500 0.514 0.010 �0.005, 0.061 �0.011, 0.067

\Alternate Colours" option of the \Engine Match" dialogue in order to avoid
useless game repetitions. Thus, the 8-ply Fritz 6 engines playing Black in the
calibration match always appear as Fritz 6A in the game scores.

Table 3 provides detailed information about the outcome of the calibration
match: \m" gives the average number of moves per game and \W : D : L"
presents the absolute overall numbers of wins, draws, and losses of the �rst
player (\8W=B" denotes 8-ply Fritz 6 playing White /Black). The remaining
columns of the table list the \W : D : L" data and the overall score of the �rst
player as relative percentages of the total game count for the match. Table 4 sub-
jects the results of the calibration match to our procedure of statistical analysis
as introduced in Section 3. The extremely level score of the calibration match
(\8W " White 51.4% vs. 48.6% Black \8B") and its high statistical con�dence
(just 1% standard error) validate the suitability of both Fritz 6 and its opening
book for our self-play purposes.

Book Calibration. Assuming equal playing strength for Fritz 6 with Black
and White at a �xed depth of 8 plies, the calibration match veri�es the
integrity and Black /White fairness of the opening book.

Engine Calibration. Assuming the integrity and Black/White fairness of the
opening book, the calibration match veri�es the equal playing strength of
Fritz 6 with Black and White at a �xed depth of 8 plies. Scaling the engine
calibration to other �xed depths requires additional calibration matches at
these depths. We did not deem the according e�ort worthwhile because it
is most unlikely that the Black/White behaviour of Fritz 6 at other �xed
depths di�ers substantially from the one observed by us at 8 plies.

5 Self-Play Results

We executed seven \depth X+1, X" handicap matches with Fritz 6 at �xed it-
eration depths ranging from 5{12 plies. The overall number of handicap self-play
games amounts to 14,650 with 1,050{3,000 games per match. Table 5 provides
detailed information about the outcome of the self-play matches (see Section 4.1
and Table 3 for an explanation of the format). Table 6 presents a rigorous statisti-
cal analysis of the match results based on the framework introduced in Section 3.

9



Table 5. Match details of Fritz 6 self-play results.

Depth m W : D : L / Total Wins Draws Losses Score ELO

6 , 5 63 1,686 : 915 : 399 / 3,000 56.20% 30.50% 13.30% 71.45% +159

7 , 6 65 1,643 : 1,066 : 291 / 3,000 54.77% 35.53% 9.70% 72.53% +169

8 , 7 67 1,457 : 1,212 : 331 / 3,000 48.57% 40.40% 11.03% 68.77% +137

9 , 8 66 1,093 : 1,133 : 274 / 2,500 43.72% 45.32% 10.96% 66.38% +118

10 , 9 67 434 : 509 : 107 / 1,050 41.33% 48.48% 10.19% 65.57% +112

11 , 10 66 404 : 539 : 107 / 1,050 38.48% 51.33% 10.19% 64.14% +101

12 , 11 68 375 : 550 : 125 / 1,050 35.71% 52.38% 11.90% 61.90% +84

Table 6. Statistical analysis of Fritz 6 self-play results.

Depth Score w s(w) 90%-C �w 95%-C �w

6 , 5 2143.5 / 3,000 0.715 0.008 0.402, 0.456 0.397, 0.461

7 , 6 2176.0 / 3,000 0.725 0.008 0.424, 0.477 0.419, 0.483

8 , 7 2063.0 / 3,000 0.688 0.008 0.347, 0.403 0.342, 0.409

9 , 8 1659.5 / 2,500 0.664 0.009 0.297, 0.359 0.291, 0.365

10 , 9 688.5 / 1,050 0.656 0.015 0.263, 0.360 0.254, 0.369

11 , 10 673.5 / 1,050 0.641 0.015 0.234, 0.332 0.225, 0.341

12 , 11 650.0 / 1,050 0.619 0.015 0.189, 0.287 0.179, 0.297

[�w] { { { ; ;

[�w]0 { { { 0.402, 0.403 0.397, 0.409

[�w]00 { { { 0.297, 0.332 0.291, 0.297

The stunning conclusion of our experiment is that it not only hints at but
clearly shows the existence of diminishing returns for additional search in direct
computer self-play by the chess program Fritz 6. Beyond �xed iteration depths
of 7 plies, the scoring rates of the deeper searching program versions steadily
decline from 72.5% for \7, 6" to a mere 61.9% for \12, 11". The experimental
data allows us to conclude with 95% statistical con�dence that the di�erences in
playing strength of Fritz 6 in handicap self-play at �xed depths ranging from
9{12 plies are indeed smaller than those at 6{8 plies: [�w]90% = [�w]95% = ;

and 0:369 = max(u95%) < 0:397 = min(l95%) holds for these two sets of depths.

Further evidence for the existence of diminishing returns is visible from the
\W : D : L" data. The changes in the rates of games won and drawn by the
deeper searching program versions are of particular signi�cance in this context.
While the rates of lost games stay fairly constant around 11%, the rates of won
games decrease steadily from 56.2% for \6 , 5" to 35.7% for \12 , 11" and
the rates of drawn games increase reversely from 30.5% for \6 , 5" to 52.4%
for \12 , 11". Although the deeper searching program versions apparently do
not lose more games, they show clear signs of diminishing abilities to win with

10



progressing search depth. Interestingly enough, the average length of the self-play
games hardly changes throughout the whole depth range.

Unfortunately, the available data does not allow us to quantify the diminish-
ing returns with good statistical con�dence. The non-empty intersections [�w]0

for the �w ranges up to \8 , 7"and [�w]00 for the remaining ones show that
the di�erences in playing strength could still be constant from 5{8 plies and
8{12 plies respectively. Because of the steadily decreasing scoring rates and �w
bounds, however, we deem this scenario of constants to be highly unlikely.

6 Future Work

In view of our current results laid down in Tables 5 and 6, the course of future
self-play research seems quite obvious.

1. Try to quantify the diminishing returns and di�erences in playing strength
at �xed depths up to 12 plies with good statistical con�dence ) play even
more games at these depths.

2. Push the depth range of self-play in computer chess beyond 12 plies and
then do the same for these extremely high depths as before.

3. Perform self-play experiments with other chess programs in order to ensure
that we are not only measuring weird artifacts of Fritz 6.

Acknowledgements

ChessBase GmbH donated free copies of Fritz 6 to us and included the nec-
essary handicap self-play abilities in the program upon our request. Matthias
W�ullenweber of ChessBase GmbH proved to be an especially avid supporter of
our new self-play experiment. He provided the Fritz 6A engine clone of the
originally released Fritz 6 version without which the whole experiment would
have been impossible.

The availability and exclusive usage of several fast x86-PC compatible ma-
chines for a period of several months starting in December 1999 was equally
important for the overall success of the experiment. These PCs were kindly pro-
vided by the Supertechnologies Group of the Laboratory for Computer Science at
the Massachussetts Institute of Technology (M.I.T.), headed by Prof. Leiserson.

References

1. Berliner, H. J. and Goetsch, G. and Campbell, M. S. and Ebeling, C. (1990). Mea-
suring the performance potential of chess programs. Arti�cial Intelligence, Vol. 43,
No. 1, pp. 7{21.

2. Brockington, M.G. (1997). Keyano unplugged { The construction of an Othello

program. Technical Report TR 97{05, Department of Computing Science, Univer-
sity of Alberta.

11



3. Condon, J. H. and Thompson, K. (1983). Belle. Chess Skill in Man and Machine,
P.W. Frey (ed.), pp. 82{118, Springer, 2nd ed. 1983, ISBN 0-387-90790-4 / 3-540-
90790-4.

4. Gillogly. J. J. (1978). Performance Analysis of the Technology Chess Program.
Ph.D. Thesis, Carnegie-Mellon University [printed as Technical Report CMU-CS-
78-189, Computer Science Department, Carnegie-Mellon University].

5. Heinhold, J. and Gaede, K.-W. (1964). Ingenieur-Statistik. Oldenbourg, 3rd ed.
1972, ISBN 3-486-31743-1.

6. Heinz, E.A. (2000). Scalable Search in Computer Chess. Vieweg / Morgan Kauf-
mann, ISBN 3-528-05732-7.

7. Heinz, E.A. (2000). Modeling the \go deep" behaviour of Crafty and Dark-

Thought. Advances in Computer Games 9, Proceedings, H. J. van den Herik and
B. Monien (eds.), to be published.

8. Heinz, E.A. (2000). Self-play experiments in computer chess revisited. Advances
in Computer Games 9, Proceedings, H. J. van den Herik and B. Monien (eds.), to
be published.

9. Heinz, E.A. (1998). DarkThought goes deep. ICCA Journal, Vol. 21, No. 4,
pp. 228{244.

10. Hyatt, R.M. and Newborn, M.M. (1997). Crafty goes deep. ICCA Journal,
Vol. 20, No. 2, pp. 79{86.

11. Junghanns, A. and Schae�er, J. (1997). Search versus knowledge in game-playing
programs revisited. 15th International Joint Conference on Arti�cial Intelligence,
Proceedings Vol. I, pp. 692{697, Morgan Kaufmann, ISBN 1-558-60480-4.

12. Junghanns, A. and Schae�er, J. and Brockington, M. and Bj�ornsson, Y. and Mars-
land, T. A. (1997). Diminishing returns for additional search in chess. Advances in
Computer Chess 8, H. J. van den Herik and J.W.H.M. Uiterwijk (eds.), pp. 53{67,
University of Maastricht, ISBN 9-062-16234-7.

13. Korf, R. E. (1985). Iterative deepening: An optimal admissible tree search. Arti�cial
Intelligence, Vol. 27, No. 1, pp. 97{109.

14. Lee, K.-F. and Mahajan, S. (1990). The development of a world-class Othello
program. Arti�cial Intelligence, Vol. 43, No. 1, pp. 21{36.

15. Levy, D.N.L. (1997). Crystal balls: The meta-science of prediction in computer
chess. ICCA Journal, Vol. 20, No. 2, pp. 71{78.

16. Levy, D.N. L. and Newborn, M.M. (1991). How Computers Play Chess. Computer
Science Press, ISBN 0-716-78121-2 / 0-716-78239-1.

17. Levy, D.N. L. (1986). When will brute force programs beat Kasparov? ICCA Jour-

nal, Vol. 9, No. 2, pp. 81{86.
18. Moore, D. S. and McCabe, G. P. (1993). Introduction to the Practice of Statistics.

W.H. Freyman, 2nd. ed., ISBN 0-716-72250-X.
19. Mysliwietz, P. (1994). Konstruktion und Optimierung von Bewertungsfunktionen

beim Schach. Dissertation (Ph.D. Thesis), University of Paderborn.
20. Newborn, M.M. (1985). A hypothesis concerning the strength of chess programs.

ICCA Journal, Vol. 8, No. 4, pp. 209{215.
21. Newborn, M.M. (1979). Recent progress in computer chess. Advances in Com-

puters, Vol. 18, pp. 59{117 [reprinted in Computer Games I, D.N. L. Levy (ed.),
pp. 226{324, Springer, ISBN 0-387-96496-4 / 3-540-96496-4].

22. Newborn, M.M. (1978). Computer chess: Recent progress and future expectations.
3rd Jerusalem Conference on Information Technology, Proceedings, J. Moneta
(ed.), North-Holland, ISBN 0-444-85192-5.

23. Schae�er, J. (1997). One Jump Ahead: Challenging Human Supremacy in Check-

ers. Springer, ISBN 0-387-94930-5.

12



24. Schae�er, J. and Lu, P. and Szafron, D. and Lake, R. (1993). A re-examination of
brute-force search, AAAI Fall Symposium, Proceedings (AAAI Report FS-93-02:
Intelligent Games { Planning and Learning), S. Epstein and R. Levinson (eds.),
pp. 51{58, AAAI Press, ISBN 0-929-28051-2.

25. Schae�er, J. (1986). Experiments in Search and Knowledge. Ph.D. Thesis, Univer-
sity of Waterloo [reprinted as Technical Report TR 86{12, Department of Com-
puting Science, University of Alberta].

26. Slate, D. J. and Atkin, L.R. (1977). Chess 4.5 { The Northwestern University
chess program. Chess Skill in Man and Machine, P.W. Frey (ed.), pp. 82{118,
Springer, 2nd ed. 1983, ISBN 0-387-90790-4/3-540-90790-4.

27. Szabo, A. and Szabo, B. (1988). The technology curve revisited. ICCA Journal,
Vol. 11, No. 1, pp. 14{20.

28. Thompson, K. (1982). Computer chess strength. Advances in Computer Chess 3,
M.R.B. Clarke (ed.), pp. 55{56, Pergamon, ISBN 0-080-26898-6.

13


