
Concurrent/Resettable Zero-Knowledge Protocols

for NP in the Public-Key Model

Silvio Micali and Leonid Reyzin�

August 18, 2000

Abstract

We propose a four-round protocol for concurrent and resettable zero-

knowledge arguments for any language in NP, assuming the veri�er has

a pre-registered public-key. We also propose a three-round protocol with

an additional timing assumption.

1 Four-round protocol in the public-key model

We propose the following 4-round protocol for resettable zero-knowledge argu-
ments for NP-languages in the public-key model (see [CGGM00] for de�nitions).

Without loss of generality, we assume that the prover is trying to convince
the veri�er of 3-colorability of a graph G.

Prior to any interaction with the prover about G, the veri�er has registered
in the public �le the public key, PK, of perfectly-committing encryption scheme
E, for which the veri�er knows the corresponding secret key SK.

We assume that there is a three-round proof-of-knowledge protocol for knowl-
edge of SK. We do not need the protocol to be zero-knowledge, but do need it
to be simulatable in time about 2k if the knowledge-error is 2�k (this is similar
to the protocol used in [CGGM00]).

The protocol is as follows.

1. The veri�er sends the prover the �rst message (commitment) of the three-
round proof-of-knowledge for SK, as well as an encryption ESK(�) of a
random string �.

2. The prover the sends the veri�er a challenge for the three-round proof-of-
knowledge for SK, together with a random string � (to make the protocol
resettable, both the challenge and the string � should be computed as a
pseudo-random function of the veri�er's �rst message).

�Supported by the National Science Foundation Graduate Research Fellowship and by a
grant from the NTT corporation.

1



3. The veri�er sends the prover the response for the challenge (thus complet-
ing the proof of knowledge), together with � and the random coins used
to ecnrypt � (thus decommitting the encryption of �).

4. The prover checks the correctness of the response and the decommitment,
computes R = � � � . Using the string R as the \shared random string,"
the prover then computes and sends to the veri�er a non-interactive zero-
knowledge proof [BFM88, BDMP91] that G is 3-colorable.1

4. The veri�er computes R = � � � and accepts if and only if the proof
received from the prover is valid with respect to R.

2 Three-round protocol in the public-key model

with timing

We propose the following 3-round protocol for resettable zero-knowledge argu-
ments for NP-languages in the public-key model (see [CGGM00] for de�nitions).
We have to assume that the prover and the veri�er have timers maximum dif-
ference bounded by b.2 The veri�er also keeps a table of entries whose is limited
as a function of b.

We assume familiarity with the notions of a pseudo-random function (PRF)
[GGM86] and of a veri�able random function (VRF) [MRV99].

Without loss of generality, we assume that the prover is trying to convince
the veri�er of 3-colorability of a graph G.

Prior to any interaction with the prover about G, the veri�er has registered
in the public �le the public key, PK, of a VRF, F , for which the veri�er knows
the corresponding secret key SK. (Thus F (�) = F (SK; �).)

The protocol is as follows.

1. The prover looks up PK in the public �le3, randomly selects a secret
seed s for a PRF f (i.e., f(�) = fs(�)), where f produces suitably long
outputs), and sends the veri�er the string � = f(G; t; 3 � col) together
with the prover's local time t.

2. The veri�er checks that its own local time is between t � b and t + b

(otherwise, it aborts). The veri�er then checks its table to see if the entry
(G; t) exists in it. If so, it aborts. If not, it adds (G; t) to the table, and
removes any entries (G0; t0) from the table for which t0+ b is less than the
veri�er's current time. Then the veri�er computes and sends to the prover

1Note that here we only need the simpler version of their protocols, in which the shared
random string is used to prove only a single theorem.

2If the timers di�er by more than b, then completeness (but not zero-knowledge nor sound-
ness) is impaired

3If the veri�er's identity is unknown to the prover, one can add an extra round where the
veri�er sends the public key to the prover, and the prover checks that it is indeed in the public
�le.

2



the strings, � = F (G; t) (of the same length as �) and �, the VRF's proof
that indeed � = F (G; t).

3. The prover checks the correctness of � relative to �; PK;G, and t, and then
computes R = � � � . Using the string R as the \shared random string,"
the prover then computes and sends to the veri�er a non-interactive zero-
knowledge proof [BFM88, BDMP91] that G is 3-colorable.4

4. The veri�er computes R = � � � and accepts if and only if the proof
received from the prover is valid with respect to R.

Remark: The protocol can be improved if the veri�er is allowed more storage.

References

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Per-
siano. Noninteractive zero-knowledge. SIAM Journal on Comput-

ing, 20(6):1084{1118, December 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive
zero-knowledge and its applications (extended abstract). In Pro-

ceedings of the Twentieth Annual ACM Symposium on Theory of

Computing, pages 103{112, Chicago, Illinois, 2{4 May 1988.

[CGGM00] Ran Canetti, Oded Goldreich, Sha� Goldwasser, and Silvio Micali.
Resettable zero-knowledge. In Proceedings of the Thirty-Second An-

nual ACM Symposium on Theory of Computing, Portland, Oregon,
21{23May 2000. Updated version available at the Cryptology ePrint
Archive, record 1999/022, http://eprint.iacr.org/.

[GGM86] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How to con-
struct random functions. Journal of the ACM, 33(4):792{807, Oc-
tober 1986.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Veri�able random
functions. In 40th Annual Symposium on Foundations of Computer

Science, pages 120{130, New York, October 1999. IEEE.

4Note that here we only need the simpler version of their protocols, in which the shared
random string is used to prove only a single theorem.

3


