bob

On The Existance of 3-Round Zero-Knowledge Proof Systems

Matthew Lepinski and Silvio Micali ${\it April~20,~2001}$

${\bf Abstract}$

We provide a proof of knowledge assumption that allows us to construct a three round zero-knowledge proof system for any language in NP.

1 Introduction

Goldwasser, Micali and Rackoff[5] defined a Zero-Knowledge Proof System. Brassard, Bhaum and Crèpeau[3] later defined a Zero-Knowledge argument which differs from a Zero-Knowledge proof in that the prover is assumed to be computationally bounded. Goldreich and Krawczyk[4] proved that any language with a 3-round Black Box Zero-Knowledge proof or argument is in BPP. At the time of Goldreich and Krawczyk's paper all known Zero-Knowledge proofs and arguments achieved Black Box Zero-Knowledge. Hada and Tanaka[6] provided a 3-round Zero-Knowledge argument for every language in NP under a very strong version of the Diffie-Hellman assumption.

We present a different assumption that can be used to prove the existence of 3-round Zero-Knowledge proofs for every language in NP. Our work is based on the concept of an oblivious transfer channel proposed by Micali and Bellare[1].

2 The Assumption

A proof of knowledge similar to the following is a commonly used in Zero-Knowledge Proofs.

- PROVER: Sends (p, g, R, H) to VERIFIER where p is a prime of the form 2q-1 and q is prime, g is a generator of Z_p^* , R is a random element of Z_p^* and H is a hash function whose range is $\{0,1\}^k$.
- VERIFIER: Selects a random x and y in Z_p^* . Flips a coin. If the coin comes up heads, he chooses the pair $X = (g^x, Rg^y)$ if the coin comes up tails, he chooses the pair $X = (Rg^x, g^y)$.
- VERIFIER: Selects k pairs A_i in the following manner. First select x_i and y_i from Z_p^* , then flip a coin to choose between $A_i = (g^{x_i}, Rg^{y_i})$ and $A_i = (Rg^{x_i}, g^{y_i})$. We say A_i is constructed in the same manner as X if $X = (g^x, Rg^y)$ and $A_i = (g^{x_i}, Rg^{y_i})$ or if $X = (Rg^x, g^y)$ and $X = (Rg^x, g^y)$.
- VERIFIER: Let $b_1 ldots b_k = H(X, A_1, ldots, A_k)$. If $b_i = 0$ then set $B_i = (x_i, y_i)$. If $b_i = 1$ and A_i is constructed in the same manner as X then set $B_i = (x + x_i, y + y_i)$. Otherwise set $B_i = (x + y_i, y + x_i)$.
- VERIFIER: Send $(X, A_1, \ldots, A_k, B_1, \ldots, B_k)$ to PROVER.
- PROVER: Compute $b_1 ldots b_k = H(X, A_1, ldots, A_k)$. Let $X = (W, Z), A_i = (C_i, D_i)$ and $B_i = (E_i, F_i)$. Accept if for each i either $b_i = 0$ and $A_i = (g^{E_i}, Rg^{F_i}), \ b_i = 0$ and $A_i = (Rg^{E_i}, R^{F_i}), \ b_i = 1$ and $(WC_i, ZD_i) = (Rg^{E_i}, Rg^{F_i})$ or $b_i = 1$ and $(WD_i, ZC_i) = (Rg^{E_i}, Rg^{F_i})$.

Assumption 1 (Proof of Knowledge) For any polynomial time verifier, V, that outputs $(X, A_1, \ldots, A_k, B_1, \ldots, B_k)$ such that the prover accepts in the above protocol, there exists a polynomial time verifier, V, who with probability

 $1 - \epsilon$ outputs $(X, A_1, \ldots, A_k, B_1, \ldots, B_k, x, y)$ such that $X = (g^x, Rg^y)$ or $X = (Rg^x, g^y)$ where ϵ is a negligible function of k.

3 The Protocol

Our protocol is based on Blum's protocol[2] for Hamiltonian Path.

- PROVER: Sends (p, g, R, H) to VERIFIER where p is a prime of the form 2q-1 and q is prime, g is a generator of Z_p^* , r is a random element of Z_p^* , $R=g^r$ and H is a hash function whose range is $\{0,1\}^k$.
- VERIFIER: Selects a random x and y in Z_p^* . Flips a coin. If the coin comes up heads, he chooses the pair $X = (g^x, Rg^y)$ if the coin comes up tails, he chooses the pair $X = (Rg^x, g^y)$.
- VERIFIER: Selects k pairs A_i in the following manner. First select x_i and y_i from Z_p^* , then flip a coin to choose between $A_i = (g^{x_i}, Rg^{y_i})$ and $A_i = (Rg^{x_i}, g^{y_i})$. We say A_i is constructed in the same manner as X if $X = (g^x, Rg^y)$ and $A_i = (g^{x_i}, Rg^{y_i})$ or if $X = (Rg^x, g^y)$ and $X = (Rg^x, g^y)$.
- VERIFIER: Let $b_1 ldots b_k = H(X, A_1, ldots, A_k)$. If $b_i = 0$ then set $B_i = (x_i, y_i)$. If $b_i = 1$ and A_i is constructed in the same manner as X then set $B_i = (x + x_i, y + y_i)$. Otherwise set $B_i = (x + y_i, y + x_i)$.
- VERIFIER: Send $(X, A_1, \ldots, A_k, B_1, \ldots, B_k)$ to PROVER.
- PROVER: Compute $b_1 ldots b_k = H(X, A_1, ldots, A_k)$. Let $X = (U, V), A_i = (C_i, D_i)$ and $B_i = (E_i, F_i)$. Reject unless for each i either $b_i = 0$ and $A_i = (g^{E_i}, Rg^{F_i}), b_i = 0$ and $A_i = (Rg^{E_i}, R^{F_i}), b_i = 1$ and $(UC_i, VD_i) = (Rg^{E_i}, Rg^{F_i})$ or $b_i = 1$ and $(UD_i, VC_i) = (Rg^{E_i}, Rg^{F_i})$.
- PROVER: Pick a random $z \in Z_p^*$. Let N_0 be the response to challenge 0 in Blum's protocol. Let N_1 be the response to challenge 1 in Blum's protocol. Encrypt N_0 using a secure private-key encryption scheme with key U^z . Encrypt N_1 using a secure private key encryption scheme with key V^z . Send g^z and both encryptions to VERIFIER.
- VERIFIER: If $X = (g^x, Rg^y)$ decrypt the first encryption with key $(g^z)^x$ and accept if it is a proper response to challenge 0 in the Blum protocol. If $X = (Rg^x, g^y)$ decrypt the second encryption with key $(g^z)^y$ and accept if it is a proper response to challenge 1 in the Blum protocol.

Theorem 1 The above protocol is a Zero-Knowledge Proof System for Hamiltonian Path

4 A Protocol Based on a Different Proof of Knowledge

This protocol is also based on Blum's protocol[2] for Hamiltonian Path. It differs from the previous protocol in that it is based on the hardness of factoring instead of the hardness of discrete log.

- PROVER: Sends (n, H) to VERIFIER where n is the product of two randomly chosen prime numbers and H is a hash function whose range is $\{0,1\}^k$.
- VERIFIER: Selects a random x in \mathbb{Z}_n^* . Let $X = x^2 \mod n$.
- VERIFIER: Selects k random numbers w_i in Z_n^* . Let $W_i = w_i^2 \mod n$.
- VERIFIER: Let $b_1 \dots b_k = H(X, W_1, \dots, W_k)$. Let $B_i = w_i x_i^{b_i}$.
- VERIFIER: Send $(X, W_1, \ldots, W_k, B_1, \ldots, B_k, \bar{R})$ to PROVER, where \bar{R} is a randomly chosen string.
- PROVER: Compute $b_1 \dots b_k = H(X, W_1, \dots, W_k)$. Reject unless for each $i, B_i^2 = W_i X^{b_i}$.
- PROVER: Let y and z be the two square roots of X in Z_n^* . Pick a sequence of k random strings R_i . Let K_y be the k-bit string whose i^{th} bit is $\langle R_i, y \rangle^1$. Similarly, let K_z be the k-bit string whose i^{th} bit is $\langle R_i, z \rangle$.
- PROVER: Let N_0 be the response to challenge 0 in Blum's protocol. Let N_1 be the response to challenge 1 in Blum's protocol. Encrypt $N_{\langle \bar{R}, y \rangle}$ using a secure private-key encryption scheme with key K_y . Encrypt $N_{\langle \bar{R}, z \rangle}$ using a secure private key encryption scheme with key K_z . Send (R_1, \ldots, R_k) and both encryptions to VERIFIER.
- VERIFIER: Let K_x be the k-bit string whose i^{th} bit is $\langle R_i, y \rangle$. Attempt to decrypt both encryptions with key K_x . Accept only if one of the decryptions is a correct response to challenge $\langle \bar{R}, x \rangle$ in Blum's protocol.

5 Conclusion

We believe that this protocol is an improvement over the Hada Tanaka protocol for the following reasons:

1. We feel that our assumption is more believable than the Strong Diffie-Hellman assumption used in the Hada Tanaka protocol because our assumption is based on a widely used Proof of Knowledge.

Where $\langle R_i, y \rangle$ is the inner product of R_i and y

- 2. We also prefer our Proof of Knowledge Assumption to the Strong Diffie-Hellman assumption because our assumption is really a class of assumptions. Instead of starting with a proof of knowledge for discrete log, a protocol similar to ours could be created based on a different Proof of Knowledge.
- 3. We believe that the proof that our protocol is a Zero-Knowledge Proof System is much simpler than the proof required for the Hada Tanaka protocol.
- 4. The protocol that we present is a Zero-Knowledge Proof System. That is, it is sound even if the prover is computationally unbounded.
- 5. In addition to the Strong Diffie Hellman assumption, the Hada Tanaka protocol required an assumption that Discrete Log is hard for all primes, p, of the form 2q+1. Our protocol requires us to assume only that Discrete Log is hard for a randomly chosen prime.

References

- [1] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In *Proceedings of Crypto'89*, 1989.
- [2] Manuel Blum. How to prove a theorem so no one else can claim it. In *Proceedings of the International Congress of Mathematicians*, 1986.
- [3] G. Brassard, D. Chaum, and C. Crèpeau. Minimum disclosure proofs of knowledge. *Journal of Computer and System Sciences*, 37(2), 1988.
- [4] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof systems. SIAM Journal of Computing, 25(1), 1996.
- [5] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal of Computing, 18(1), 1989.
- [6] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In *Proceedings of Crypto'98*, 1998.