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Abstract

We provide a proof of knowledge assumption that allows us to con-
struct a three round zero-knowledge proof system for any language in
NP.



1 Introduction

Goldwasser, Micali and Rackoff[5] defined a Zero-Knowledge Proof System.
Brassard, Bhaum and Crepeau[3] later defined a Zero-Knowledge argument
which differs from a Zero-Knowledge proof in that the prover is assumed to be
computationally bounded. Goldreich and Krawczyk[4] proved that any language
with a 3-round Black Box Zero-Knowledge proof or argument is in BPP. At the
time of Goldreich and Krawczyk’s paper all known Zero-Knowledge proofs and
arguments achieved Black Box Zero-Knowledge. Hada and Tanaka[6] provided
a 3-round Zero-Knowledge argument for every language in NP under a very
strong version of the Diffie-Hellman assumption.

We present a different assumption that can be used to prove the existence of
3-round Zero-Knowledge proofs for every language in NP. Our work is based on
the concept of an oblivious transfer channel proposed by Micali and Bellare[1].

2 The Assumption

A proof of knowledge similar to the following is a commonly used in Zero-
Knowledge Proofs.

e PROVER: Sends (p, g, R, H) to VERIFIER where p is a prime of the
form 2g —1 and q is prime, g is a generator of Z;, R is a random element
of Z» and H is a hash function whose range is {0, 1}*.

e VERIFIER: Selects a random x and y in Z;. Flips a coin. If the coin
comes up heads, he chooses the pair X = (¢, Rg¥) if the coin comes up
tails, he chooses the pair X = (Rg", g¥).

e VERIFIER: Selects k pairs A; in the following manner. First select x;
and y; from Z7, then flip a coin to choose between A; = (g, Rg¥?) and
A; = (Rg®i,g¥). We say A; is constructed in the same manner as X
if X = (¢%,RgY) and A; = (g%, Rg¥:) or if X = (Rg®,¢¥) and X =
(Rg”, g").

e VERIFIER: Let b;...b, = H(X,A,,...,A). If b; = 0 then set B; =
(zi,yi)- If b; =1 and A; is constructed in the same manner as X then set
B; = (z + z;,y + y;). Otherwise set B; = (z + yi,y + ;).

e VERIFIER: Send (X, A,..., A, Bi,...,Bg) to PROVER.

e PROVER: Compute by ...by, = H(X, A1,... ,Ag). Let X = (W, Z), A; =
(Ci,D;) and B; = (E;, F;). Accept if for each ¢ either b; = 0 and A; =
(g%, Rg¥?), b; = 0 and A; = (Rg¥, RY), b; = 1 and (WC;,ZD;) =
(Rg¥', Rg"?) or b; = 1 and (WD;, ZC;) = (Rg*i, Rg").

Assumption 1 (Proof of Knowledge) For any polynomial time verifier, V,
that outputs (X, Ay,...,Ar,B1,...,By) such that the prover accepts in the
above protocol, there exists a polynomial time verifier, V’, who with probability



1—€ outputs (X, Ay,..., Ak, B1,...,Bg,x,y) such that X = (¢*, Rg¥) or X =

(Rg”
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,gY) where € is a negligible function of k.

The Protocol

Our protocol is based on Blum’s protocol[2] for Hamiltonian Path.

PROVER: Sends (p, g, R, H) to VERIFIER where p is a prime of the
form 2¢g — 1 and q is prime, g is a generator of Z;, r is a random element
of Z*, R =g" and H is a hash function whose range is {0,1}*.

VERIFIER: Selects a random x and y in ZJ. Flips a coin. If the coin
comes up heads, he chooses the pair X = (g%, Rg¥) if the coin comes up
tails, he chooses the pair X = (Rg*, g¥).

VERIFIER: Selects k pairs A; in the following manner. First select z;
and y; from Z3, then flip a coin to choose between A; = (¢*¢, Rg¥?) and
A; = (Rg®,g¥). We say A; is constructed in the same manner as X
if X = (¢%,RgY) and A; = (g%, Rg¥i) or if X = (Rg®,¢¥) and X =
(Rg®,g%).

VERIFIER: Let by ...b, = H(X,Ay,... ,Ag). If b; = 0 then set B; =
(zi,yi). If b; =1 and A; is constructed in the same manner as X then set
B; = (z + z;,y + y;). Otherwise set B; = (z + yi,y + ;).

VERIFIER: Send (X, Ay, ..., Ay, Bi,...,By) to PROVER.

PROVER: Compute by ...by = H(X, Ay, ... ,Ax). Let X = (U,V), 4; =
(Ci,D;) and B; = (E;, F;). Reject unless for each ¢ either b; = 0 and
Ai = (gEi,RgFi), bl =0 and Al = (RgEi,RFi), bl =1 and (UC’Z,VDl) =
(Rg"i, Rg™) or b; = 1 and (UD;,VC;) = (Rg”, Rg™).

PROVER: Pick a random z € Z;. Let Ny be the response to challenge
0 in Blum’s protocol. Let N; be the response to challenge 1 in Blum’s
protocol. Encrypt Ny using a secure private-key encryption scheme with

key U*. Encrypt N; using a secure private key encryption scheme with
key V*. Send ¢g* and both encryptions to VERIFIER.

VERIFIER: If X = (¢*, Rg¥) decrypt the first encryption with key (g*)*
and accept if it is a proper response to challenge 0 in the Blum protocol.
If X = (Rg®,gY) decrypt the second encryption with key (g%)¥ and accept
if it is a proper response to challenge 1 in the Blum protocol.

Theorem 1 The above protocol is a Zero-Knowledge Proof System for Hamil-
tonian Path



4 A Protocol Based on a Different Proof of Knowl-
edge

This protocol is also based on Blum’s protocol[2] for Hamiltonian Path. It differs
from the previous protocol in that it is based on the hardness of factoring instead
of the hardness of discrete log.

e PROVER: Sends (n, H) to VERIFIER where n is the product of two
randomly chosen prime numbers and H is a hash function whose range is

{0,1}*.
e VERIFIER: Selects a random x in Z}. Let X = 22 mod n.
e VERIFIER: Selects k random numbers w; in Z%. Let W; = w? mod n.
e VERIFIER: Let b; ...b, = H(X,Wi,... ,W;). Let B; = w;a”.

e VERIFIER: Send (X, Wi,... ,Wy,Bi,..., By, R) to PROVER, where R
is a randomly chosen string.

e PROVER: Compute by ...b, = H(X,Wy,... ,W}). Reject unless for each
i, B2 = W;X".

e PROVER: Let y and z be the two square roots of X in Z}. Pick a
sequence of k random strings R;. Let K, be the k-bit string whose ith
bit is < R;,y >'. Similarly, let K. be the k-bit string whose i** bit is
< R,z >.

e PROVER: Let Ny be the response to challenge 0 in Blum’s protocol. Let
Ni be the response to challenge 1 in Blum’s protocol. Encrypt N g .~
using a secure private-key encryption scheme with key K,. Encrypt

N R, .~ using a secure private key encryption scheme with key K. Send
(Ry,...,Ryg) and both encryptions to VERIFIER.

e VERIFIER: Let K, be the k-bit string whose " bit is < R;,y >. At-
tempt to decrypt both encryptions with key K. Accept only if one of the
decryptions is a correct response to challenge < R,z > in Blum’s protocol.

5 Conclusion

We believe that this protocol is an improvement over the Hada Tanaka protocol
for the following reasons:

1. We feel that our assumption is more believable than the Strong Diffie-
Hellman assumption used in the Hada Tanaka protocol because our as-
sumption is based on a widely used Proof of Knowledge.

'Where < R;,y > is the inner product of R; and y



2. We also prefer our Proof of Knowledge Assumption to the Strong Diffie-

Hellman assumption because our assumption is really a class of assump-
tions. Instead of starting with a proof of knowledge for discrete log, a
protocol similar to ours could be created based on a different Proof of
Knowledge.

3. We believe that the proof that our protocol is a Zero-Knowledge Proof

System is much simpler than the proof required for the Hada Tanaka
protocol.

4. The protocol that we present is a Zero-Knowledge Proof System. That is,

it is sound even if the prover is computationally unbounded.

5. In addition to the Strong Diffie Hellman assumption, the Hada Tanaka

protocol required an assumption that Discrete Log is hard for all primes,
p, of the form 2¢+1. Our protocol requires us to assume only that Discrete
Log is hard for a randomly chosen prime.
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