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Abstract

Recent advances in graph-based search techniques derived from Kleinberg’s work
[1] have been impressive. This paper further improves the graph-based search algo-
rithm in two dimensions. Firstly, variants of Kleinberg’s techniques do not take into
account the semantics of the query string nor of the nodes being searched. As a result,
polysemy of query words cannot be resolved. This paper presents an interactive query
scheme utilizing the simple web ontology provided by the Open Directory Project to
resolve meanings of a user query. Secondly, we extend a recently proposed personalized
version of the Kleinberg algorithm [3]. Simulation results are presented to illustrate
the sensitivity of our technique. We outline the implementation of our algorithm in

the Persona personalized web search system.



1 Overview

Search engines index large numbers of documents and let users query desired docu-
ments. However, most search engines are not tailored to meet individual user pref-
erences. [6] noted that almost half of the documents returned by search engines are
deemed irrelevant by their users. There are several aspects to the problem. First is
the problem of synonyms and homonyms. Synonyms are two words that are spelt
differently but have the same meaning. Homonyms are words that are spelt the same
but have different meanings. Without prior knowledge, there is no way for the search
engine to predict user interest from simple text based queries. Secondly, search engines
should be deterministic in that it should return the same set of documents to all users
with the same query at a certain time. Therefore it is inherent that search engines are
not designed to adapt to personal preferences.

Current information retrieval and data mining research tries to enhance user’s web
experience from several directions. One direction is to create a better structural model
of the web, such that it can interface more efficiently with search engines. Another
approach is to model user behavior as to predict users’ interests better.

Along the lines of the former are efforts at better defining the meaning of queries
themselves. The Wordnet project at Princeton University is an online lexical reference
system that organizes English words into synonym sets [7]. A similar approach is to
build a taxonomy of words. A taxonomy comprises of a tree structure in which a word
belongs to a certain node, each with parents and children. A node’s parent serves a gen-
eral category that encompasses all of its children. A node may have children that are

sub-categories of itself. An example of such word taxonomies are the Open Directory



Project [http://dmoz.org] and the Magellan hierarchy [http://magellan.excite.com].
Yet another approach is to create a semantic structure in machine readable format.
As opposed to classifying content from a person’s point of view, this method embeds
meta data for classification, allowing document content to be machine readable. There
are currently efforts at standardizing these classification, for example OIL (Ontology
Interchange Language) and DAML (DARPA Agent Markup Language). Haystack [4]
is an ongoing project in semantic meta data indexing.

Along the lines of the latter approach, various research in data mining and knowl-
edge representation have build models to record user interest and predict user behavior.
Ultimately, these user models interface with a system so as to give it o priori knowledge
regarding user preferences.

Clearly, work in user profiling is closely related to building better personalized
systems. Different methods of gathering user data is often coupled with various per-
sonalization systems. We found that the combinations that are available in the context
of personalized search are unsatisfactory. We propose a novel approach in building a
better system with the following. First, we extend existing theory with regards to
personalized search. Second, we propose to model users interest using an interactive
query scheme utilizing the web ontology provided by the Open Directory Project.

To support our argument, we have built an implementation of a personalized search
engine. The system wraps a personalization module onto an existing search engine,
and refines search results using the proposed extension of the graph based algorithm.

At its core, the proposed system utilizes a taxonomy of user interest and disinterest.
We use a tree coloring method to represent user profiles. Visited nodes are ’colored’ by

the number of time it is visited, whether the user rate it as positive or negative, and



URLs that it associates to.

In addition, we run sets of controlled experiments to analyze the performance of
each of the existing variants. The experimental results verify our predictions and
confirm that the proposed extension performs better.

We offer a roadmap of this document. Section 2 outlines related work in personal-
ized web browsing and reviews existing methods using graph based search algorithms.
Section 3 describes our extension to existing theory. Section 4 describes the user mod-
eling technique. Section 5 outlines the implementation of Persona. Section 6 describes

the simulation results. We conclude in section 7 with some direction for future work.

2 Related Works

2.1 Examples of personalization applications

Personalization applications cover a range of spectrum. At one end of the spectrum,
we have filtering systems, which filter input from an information resource. Information
of possible interest are marked. An example of such a filtering system, SmartPush
[8] combines several novel ideas together. The system finds information by means of
semantic meta data to filter news articles. In addition, it builds the user profile using
a simple hierarchical concept model. For example, under the category news, there are
the categories sports, literature, economics, etc. The model records user preference by
giving weightings to these nodes. This idea seeks to improve from the common bag of
words approach in storing user profile. However, SmartPush requires news providers
to provide the semantic meta data. The concept hierarchy is also determined by the

content provider.



In the context of web browsing, there are several examples with regards to per-
sonalization systems. For example [9] uses implicit feedback to profile users’ browsing
behavior. In particular, the system analyzes activity logs of a proxy server that in-
tercepts requests coming out of a gateway and logs browsing information. Topics of
interest are calculated using a page interest estimator coupled with vector space tech-
niques. From these, the system extracts an n-gram set of words, namely bigrams and
trigrams, that represents user interest. The idea is to capture in the user profile sets of
words that may have different meaning when coupled together (e.g bar tender). The
paper also offers suggestions on which sets of words should be given more emphasis,
such those within the bold tag and italic tag in an HT'ML page.

Another work by [6] describes personalized search based on a taxonomy. It uses
an existing taxonomy from Magellan, which classifies documents into approximately
4400 nodes. Profiles are stored as concept hierarchies, as in the SmartPush system.
Each node is associated with a set of documents. Each document is represented by a
weighted keyword vector, determined by the number of occurrences of keywords. User
browsing behavior is analyzed from web server log, and documents that are browsed
are calculated into keyword vectors, and matched against documents associated with
nodes. The node that corresponds to the closest match is stored in the user’s profile.
The system also takes into account temporal effects, i.e how long a user browses each
document.

There are currently many available systems that allow for personalization to some
extent. Some systems allow users to specify page content [e.g My Yahoo|, while others
recommends web pages, books, music, etc. [5] contains a survey of many of the available

systems and their methodologies.



2.2 Graph based search techniques

The Hyperlink Induced Topic Selection (HITS) algorithm is a well known approach in
information retrieval. We can transform the relationship between a set of documents
into a directed graph, in which a node represent a document and a link from node i
to node j represents a reference from document 7 to document j. If such a graph can
be represented by an adjacency matrix M, the authority vector a, and the hub vector
h, we can find a converging, steady state solution using the power method from linear
algebra [1, 2]. The ¥ value of vector a represents the authority value for node i. The
adjacency matrix M has value M;; equals to one if there is a link from node ¢ to node
7, and zero otherwise.

In the context of personalization, we would like to indicate a preference on certain
documents. HITS assumes all nodes are equal; their authority and hub measure are de-
termined essentially by the number of in-degrees and out-degrees. Consider an example
in which there are two clusters of document, and we indicate that we like document j
in the second cluster better. Ideally, we want to ’lift’ the relative authoritativeness and
hubness of documents in the second cluster in relation to the whole document collec-
tion. Two variants of HITS that deals with such ’lifting’ are introduced and described

in [3]. The following describes each in turn.

2.2.1 Single node lifting

In single node lifting, the authority and hub measure of document j is lifted by aug-
menting the j component of either the authority vector a or the hub vector h at
each iteration. By directly changing the value of the j** element, the nodes that are

connected to it as are also affected. We start with an initial vector a, and add & at



each iteration loop. Because the steady state value of a only depends on the eigenvec-
tors of M”M [1], this amplification of the value a; has to happen at each step of the
iteration as to affect the original steady state. Intuitively, this makes sense: since we
are interested in node j, we want to amplify its value at each iteration such that the

original HITS steady state solution is somewhat shifted in favor of a;.

2.2.2 Gradient ascent HITS

The gradient ascent HITS has a different approach in lifting the authority and hub
measures for a node. The main idea behind gradient ascent is to find the values of My;
in the adjacency matrix M that maximizes a; or hj. At each iteration, the algorithm
takes a small step v - AMy; for all £ and 7 in a manner that increases the relative
value of a; or hj. Accordingly, we have a new resultant matrix M* = M + - AM at
each iteration! This entails to shifting the principal eigenvector at each iteration in the
direction of our document of interest.

This variant of HITS suffers from the common malaise of gradient ascent algorithms,
namely the trap of local maxima. At each step of the iteration, the algorithm tries to
maximize locally what step to take. The value of M* that produces a possible increase
in a; is maximized with respect to the previous M, not the original M. Therefore,
it only has a local view and optimize in that sense. Nevertheless, the algorithm does
shift the solution away from the original eigenvector of M’ M towards a new value

that tries to increase a; in the resultant vector a.



2.2.3 Comparison and analysis

Both the single node lifting and gradient ascent provide a way to 'lift’ an individual
node in a cluster of documents. [3] claims that gradient ascent is superior to single
node lifting. The single lifting approach looks at a node of interest j and directly
changes the adjacency matrix so as to affect all the nodes that link to it directly.

In contrast, the gradient ascent node tries to readjust the values of all the nodes
in the matrix M"M so as to lift aj. It looks at all the values in the matrix and
decides which ones should increase or decrease or stay the same so as to maximize the
authoritativeness or hubness of a certain document.

Intuitively, the second approach is more elegant and robust and should therefore

perform better. As our experiments in section 6 show, this is indeed the case.

3 Extensions to current techniques

We would like to extend the above algorithm with the following heuristic: decrease
the value of all nodes | # j. The motivation is that we would like to see a faster
rate of change for readjusting the relative rankings of authorities and hubs, by doing
both gradient ascent and descent at the same time. Adding this simple heuristic is a
natural extension of existing theory. [3] mentions the use of gradient descent to reduce
the authority of irrelevant documents, but claims that negative weight values of a;
complicates the analysis. The following sections introduce two methods that explores

this heuristic a step further.



3.1 Combination one

In this combination we take into account the contribution of lifting the node of interest
j as well as the average contribution of pushing nodes [ # j. However, we note that
the average contribution of the nodes [ # j may be greater the contribution from
lifting node j, for which the total step AMj; for a certain ¢, j in the matrix M may be
negative. We note that given an adjacency matrix M with values of ones and zeros, it
is not possible to have a negative entry Mj; using the gradient ascent method. Now
that we are pushing irrelevant nodes, these values may be negative.

Noting the contribution from lifting node j to be AMj;, and the contribution
from lifting node I # j to be AMjy;, we apply the following rule: if —AMy;, <
ﬁZl,lij AMy;,, then AMy; = AMkij else AMy; = AMMJ. + ﬁZl,lij AMy;, .
That is to say: if the effects of AMy; from lowering the authorities of all nodes [ # j

is such that the authority of node j is lowered, we ignore their contributions to A Mjy;.

3.2 Combination two

In this second extension, we loosen our previous restriction, and for all cases, let
AMyi = AMyi; + 57 201 125 AMpi,.

Now it is possible to have negative values for AMy;. The justification for this
method is the fact that we essentially care only about the relative rankings of the
node, and even if lowering node [ contributes to lowering the nominal value of a; or h;,
we allow it to happen because the relative value of a; is still greater than the lowered
node q;.

For a gradient ascent and descent algorithm running at n iteration, we can do the



following to attenuate possible negative values of AMj;:
o At odd values of n, calculate AMy; as AMy; = AMjy;;.
o At even values of n, calculate AMy; as AMy; = AMy;; + ﬁ Zl,l# AMy;,.

Alternating between these two give the algorithm some time to readjust its values in
the cases where My; is negative.

In general, we expect both combinations to have a faster rate of readjustment than
the normal gradient ascent HITS. We analyze the performance of each of these variants

in section 6.

4 Ontology based user profile modeling

4.1 Design criteria and choice

Gradient ascent HITS provides a method to bias certain documents in a graph based
structure. What is lacking, however, is a method of keeping track the history of user
interests. In this respect, we propose a model of user profiling to complement our
theoretical extension of graph based search.

We found that most user models lie in the common bag of words approach. Strings
of words that represent user interests are kept in the form of web browser cookies or
files. Moreover, most user models do not take into account what users dislike.

In the context of our search engine, this approach is inadequate for several reasons.
Firstly, the bag of words approach does not consider the semantics of words. For
example, when users indicate liking for ’cars’, this approach does not consider other

words such as ’automobile.” Likewise, when users indicate liking for 'rose’ in the sense
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of 'wine,” as opposed to 'flower,” the bag of words approach lacks an efficient method to
make a proper distinction. In other words, we run into the problem of homonyms and
synonyms. Secondly, by ignoring what users dislike, the system does not learn from
past mistakes. Though this approach of using only positive feedback is safer, it does
not put the set of dislikes in proper perspective.

We propose an approach that uses a tree coloring technique. The tree is an Open
Directory Project (ODP) taxonomy, which contains nodes that represent semantic con-
texts of web pages. We keep a record of visited nodes, and ’color’ each by the number
of times it has been visited, the number of times the user rates it positive or negative,
and URL’s that the node associates with.

ODP is a multiply connected tree. In the tree itself, ODP has only one parent, but
its format allows multiple aliasing, so in effect a node may have multiple parents. In
addition, each node is associated with an ID number and a set of ’leaves’ which are the
web pages associated with the node.

The user profile is a mapping from a context to a set of ODP nodes. A context is
defined as a user query. For each query, the system generates a set of pages. Users can
rate pages as being ’good’ or ’unrelated.’” Since each page is associated with a node in
ODP, this feedback is updated into the user profile. Each entry in the mapping has
the number of times the node has been visited, the number of positive and negative
feedback for the node and the set of URL associated with it. Figure 1 (a) displays a
schema of the user profile.

From our discussion in section 2, we found several methods that also uses this tree
coloring scheme. Note, however, that this approach, although along the same lines, are

distinct from these other methods. [6] uses a tree weighting scheme to calculate the
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vector space model of documents associated with each node. Documents of interests
are processed and its vector space value matched against the vector space values of
the nodes. The weights - in our case, colors - of the tree does not change. The other
example, SmartPush [8], uses a taxonomy provided by news provider to determine
which news articles to reccomend. This tree is dynamic, but does not cover the breadth
and depth of our proposed system. Hence, although the idea of tree coloring is not

new in itself, the way we combine it with the system is quite distinct.

4.2 Use cases

The following summarizes our user modeling technique:

e Data gathering
Our model gathers data using explicit feedback. Users are allowed to rate a
certain context positively and negatively. Feedback will be recorded in the user’s

profile.

e Representation
A user profile is a mapping from contexts to nodes. One context may map to
several nodes. For example, the context ’car’ may map to nodes that represent
"Honda’, "Volvo’, etc. Each node has a ’color’ that encodes the number of times

it has been visited, rated positive, negative, and associated URL’s.

e [Interpretation
The table is kept as the user profile. When a user submits a query, the system

does a table lookup to find the context. The following happens:

— If found, the system looks at the mapping of nodes, and accordingly give
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more or less weighting to its associated URL’s to be filtered.

— If not found, the system tries to associate that context with an ODP node.
There may be several nodes that can be associated with the context. For

each of these nodes, look up all the nodes in the table and check if either:

1. The node associated with the query has the same parent as any node in

the table.

2. The node associated with the query is a child of any of the node in the

table.

If any of the above is true, return the associated URL’s and their respective

weights to be filtered; else, return nothing.

The results are passed back to the graph based search algorithm from the previous
section. Nodes with positive weights are given positive bias, while nodes with negative
weightings are given negative bias. Note that the current prototype implementation
simply filters out the negatively weighted URL’s. It searches only up to one depth up
and down the tree to look for parents and children when comparing nodes.

We note that there is much room for improvements. For example, generalizing
the node searching mechanism up to n nodes up and down the classification tree, we
observe that the nodes are more generic as they reach the root node. We can add the
following simple heuristic: the closer a node is to the root, the less depth the tree will
be searched. So instead of finding up to depth n for each node, the depth should be a
function of how close a node is to a tree.

To illustrate clearly our profiling system, we give a simple example as drawn in

Figure 1 (b). In the past, a user had queried ’vision’ and was given two set of results,
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one relating health, another regarding computer science (machine vision). The user
indicated that he or she preferred vision in the health sense, and rated vision in the
computer science sense as negative. Next the user queries the word ’virus’. The system
does not have any information regarding the user’s preference on ’virus’ and therefore
looks at all the nodes in the profile table. Searching for ’virus’ in ODP, the system
finds two nodes, one in health/virus and another in computer_science/virus. Matching
the user’s profile shows that the user has indicated interest in the node health/vision,
a negative weighting on computer_science/machine_vision, finds that health/vision has
the same parent as health/virus and incoorporates this fact in returning the results.

Clearly, this ontological approach is beneficial in the sense that the system can bet-
ter predict user interest and further classify them into separate categories - leveraging
on the semantics inherent in an ontology. Instead of trying to capture the meaning of
words per se, an ontological profile captures the semantics of user queries, thus enabling
it to find synonyms or related contexts as well as hierarchical relationships. Therefore
we overcome many limitations of the standard bag of words approach.

Moreover, recent work by [10] introduces a technique for static matching of several
users who had two ’colored’ ontologies. This method has possible applications in the
area of interest matching and collaborative filtering.

In summary, the proposed user model introduces improvements over the common
bag of words approach and various other techniques. Given the design constraints, we
feel that it is the most feasible technique. The model is quite scalable and modular

and is easily extendible to other applications.
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Figure 1: Building and using the user profile (a) depicts a schema of the user profile, (b) is
an example of a use case
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Figure 2: System diagram

5 System description

The Persona system is a personalization module that wraps around a search engine.
It lies between the search engine and the end user, refining the results coming out of a
'normal’ search engine. Figure 5 shows a diagram of the system.

The system consists of a front end and a back end. The front end interfaces with
the user, accepting queries and user feedback. These are then passed to the back end,
which processes these queries and builds the user profile. The back end core of Persona
consists of two main modules: a filtering mechanism and a user profiling system. The

following sections describe each in turn.

5.1 Overview of filtering mechanism

The brief overview of the filtering mechanism is as follows:
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1. Query input
The user inputs a query, which will then be outsourced to dmoz, an existing search
engine - the result of which will be filtered to leave the top n results. These n

documents corresponds to nodes in the ODP taxonomy.

2. Personalization Agent
First, the system consults the user profile to check the user’s history. If there is
a match, the system incorporates past user preference. If not, a 'normal’ filtering
module then processes these results. The HITS algorithm as described in [1]

dictates the following:

(a) Call the initial set of results the root set.

(b) Expand the root set by order one distance, such that all web pages that point
from and to the root set are included. This set of node is the base set.

(c) Treating each web page as a node and each URL in that web page as a link,
create a directed graph structure consisting of all members of the base set.
In this calculation, the nodes that are from the same domain are not taken
into account and are thus filtered out.

(d) Using the number of in-degrees and out-degrees from each node, the algo-
rithm calculates the authoritativeness and hubness of each node. Based on a

node’s authoritativeness, the results are ranked accordingly.

(e) The ranked results are then updated against the user profile.

3. Feedback-based Result Refinement
The system returns the filtered results to the user. The user may give positive

or negative feedback on the returned set of documents. The system will then
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refine the current results based on these preferences, giving more weighting to

the positively rated pages and less to the negatively rated pages.

In addition, these user feedback are incorporated into the user profile. The user

profiling is discussed in the next section.

5.2 User Profile

The user profile relies on relevance feedback. Each positive and negative feedback serves
two function. First is to refine the set of searches and re-rank the results. Second is
to build the user’s profile. The user feedback is updated by ’coloring’ nodes as we
described in the previous section.

Each entry in the user profile consists of a context word, which consists of queries
that the user types in. Each of this entry is associated with a set of nodes. Each node
in the ODP has a unique identifier. The user profile keeps track of how many times
each node in the profile is visited, the number of positive ratings, negative ratings, as
well as the set of URLs associated with it.

In this manner, we do not keep the whole ODP taxonomy inside the user profile.
We only keep track of the nodes that has been colored. The user profile then can be
kept small, allowing for scalability.

The system consults the user profile at every new query. If a query exists in the
user profile, it returns the set of URL’s associated with the colored nodes. If there is
no data on the query, the user profile finds the set of ODP nodes that closely matches
the query and tries to find nodes in the profile that may be its parents or children.

In the case of user feedback, the user profile simple colors related nodes and passes

on the bias information to the variants of HITS. These variants will take the bias into
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account and return the set of most related documents.

We note that most search engines have the feature that lets users browse through
‘similar pages.” We claim that this refining technique is different from ours. Finding
'similar pages’ usually entails returning the closest document set that the search engine
indexes. In contrast, our filtering mechanism expands a set of URL’s and emphasize
those with positive feedback. It expands up to depth three down to create a new graph

structure, and lift those documents which are positive.

6 Experimental results

6.1 Controlled experiments

In the controlled experiment, we generate clusterings of documents. FEach cluster con-
sists of a fixed number of documents, and they are bind to a certain context. Each
document has a fixed number of links. There are two types of links, ones by which a
document points to a document in a the same cluster, and ones by which a document
points to another document in a different context. To generate a statistically reliable
data set, the way each node interacts with one another is determined stochastically.

To following summarizes the experiment parameters:

o Number of clusterings or context.
Each generated set contains a fixed number of contexts or topics. Each node k

in the set is attached to a context ¢, € {Ci,Cy,...,Cp} for M contexts.

e Number of documents in a cluster: D.

To create a set of balanced clusters, the number of documents per cluster is fixed.
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e Number of links per document: N.
Again, to create a set of balanced clusters, the number of links per document is

fixed. This parameter is upper bounded by the number of documents per cluster.

e Probability that a link connects two documents in the same cluster: p
Define p to be Prob( l;; | ¢; = ¢j) and 1 — p to be Prob( l;; | ¢; # ¢;), where [;;
is a link from node ¢ to node j. In other words, p denotes the probability of a
document pointing to another document of the same context, and 1 — p denotes
the probability of a document pointing to another document with a different

context.

e Gamma (7y)
v is the step size of the gradient ascent, and the perturbation size in single node

lifting.

e Number of iteration
Even though in theory would like to find the steady state value of the authority
and hub vectors, in practice we are only interested in the relative rankings of the

nodes, which stays relatively the same after four or five iterations.

Figure 3 illustrates an example of a possible clusterings of documents - represented
as nodes - as well as their interaction. Since links are probabilistic, each generated
nodes-set has varying graph structures.

Now that we have this platform, we want to create test harnesses based on our
algorithms. In particular, we would like to see the effects of lifting using all four

variants of HITS.
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Figure 3: View of clusters of documents tagged to different context cross referencing each
other
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Parameter Variable | Value
Number of categories M 3
Number of documents per category D 10
Number of links per document N 8
PI‘Ob( lz'j | Cc; = Cj) P -
PI‘Ob( lz'j | C; 75 Cj) 1 —p

Weighting factor v 0.5
Number of iterations - 5

Table 1: Parameters for a sample data point

6.1.1 Performance Metric

We would like to have a performance metric to quantify these results. We want to mea-
sure performance on two criteria: how much the average relative rankings of relevant
nodes are increased by the technique, and how much of the average relative rankings
of irrelevant nodes are decreased. By relevant nodes, we mean nodes that has the same
context as the lifted node. To quantify this fact, we use a performance metric described

as follows:

e Given D number of documents per category, and node ¢ with rank R; and context

Ci = Clift—node; W€ measure the average ’lift” L to be:

1
L = 5 ' Z (Riold - Rinew)

Vi | €i=C(1; ft—node)

e The average ’suppress’ S of all nodes j with context ¢; # cjift—node is defined to

be:

1
S = Dar=1) > (Ripy — Rinew)
Vj ‘ Cj#C(liftfnode)

Note that L and S are not independent metrics. For example, if all the rankings

stay the same, that is, if L = 0 then there is very high probability that S is also equal
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to zero. If most of the rankings change - i.e L is relatively high - then S is very likely
to be relatively high as well.
Using these performance metrics, we can perform several runs and accumulate data

for statistical analysis.

6.1.2 Simulation Results

We are interested in the relationship between probability of a node pointing to another
node of the same context p to the performance metrics L and S. Using the parameters
described in Table 1, we vary the value of p from 0 to 1, with increments of 0.1.
At each interval, we calculate the L and S metrics for five different trials. With
higher p, we expect the number of documents lifted or suppressed to be larger. The
relationship should be somewhat linear. In the following, we will run two sets, one for
authoritativeness measure, another for hubness measure. We refer to our theoretical
extension from section 3 as gradient ascent combination one, or gradient ascent™, and
gradient ascent combination two, or gradient ascent™™.

The discussion is broken down into the two subsections. First we distinguish be-

tween authority and hub measures. Second we separate the L metric from the S metric.

6.1.3 Authority simulation results

First we analyze the results for the L metric. We graph the set of points to better
visualize the results. Figure 4 plots this graph in its point representation and its least
square estimate for each cluster of data. In this simulation, the line that represents
single node lifting is very close to the line that represents gradient ascent®. The

line that represents gradient ascent is very close to the line that represents gradient
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ascent ™. The shape of all the lines, however, are linearly increasing, which is what
we should expect.

In section 3, we discuss that both extension of the gradient ascent method should
perform better. However, the graph merely shows that gradient ascent™ performs at
least as well as single node lifting, and gradient ascent™ performs at least as well as
the original gradient ascent. We had expected both variants of gradient ascent should
converge faster to a solution that differentiates between lifted and suppressed nodes.

What we can infer from this graph is the difference between the performance of
gradient ascent in comparison to the single node lifting variant of HITS. Single node
lifting at most lifts as much documents than the gradient ascent variants. With these
tentative results, we look at the next graph.

Figure 5 plots the data points and its least square estimation for the S metric. Here
the results are more encouraging. We see that the gradient ascent™ does confirm our
theoretical expectations. However, gradient ascent™ performs in between single node
lifting and the original gradient ascent.

This substantial difference suggests that both extensions of gradient ascent works
better in suppressing irrelevant documents than lifting relevant documents. With this

fact in mind, we move on to the next analysis.

6.2 Hub simulation results

This section analyzes the results from running the simulation to calculate hub measure.
As before, the raw data and least square estimate for the L metric is calculated.
Figure 6 plots these values.

As in the previous L metric analysis, the original gradient ascent is very closely
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Figure 4: Data points for authoritativeness measure using metric L. The top line represents
the least square estimate for gradient ascent and gradient ascent™ . The bottom line rep-
resents the estimate for gradient ascent™ and single node lifting, the other two merged into

one.
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Figure 5: Data points for authoritativeness measure using metric S. The dashed line at
the top is the least square estimate for gradient ascent™ . The dotted line represents nor-
mal gradient ascent. The solid line represents gradient ascent *. Lastly, the bottom line
represents single node lifting.
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connected to gradient ascent™™ in that they are practically collinear. The other gra-
dient ascent variant, however, fare better than in the previous simulation, though it is
still distinctly below the original gradient ascent.

We note that the metric values are negative in this simulation for p less than 0.4
The reason is that for low p, the lifted document will be linked to many irrelevant
documents. The lifted hub will pull up these documents along with it.

The S metric analysis, however, shows interesting results. In this simulation, as
depicted in Figure 7, both variants of the gradient ascent perform better than the
original gradient ascent and the single node lifting variant. Again, this follows the
trend that we see in our previous S metric analysis: both extensions of gradient ascent
suppress irrelevant document better than they lift relevant documents.

Figure 7 validates our expectation that combining both gradient ascent and descent
results in a faster rate of change. The slope is steeper for both gradient ascent™ and

gradient ascent™™ than it is for the other two techniques.

6.3 Summary of analysis

Though the results are somewhat mixed, we can conclude the following results:

e The first combination of gradient ascent, or gradient ascent™ at least performs as

well as single node lifting.

e The second combination of gradient ascent, or gradient ascent ™™ at least performs

as well than the original gradient ascent.

e Both combinations does better at suppressing irrelevant documents rather than

lifting relevant documents.
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Figure 6: Data points for hubness measure using metric L. The dotted line is the least

square estimate for single node lifting, the dashed line for gradient ascent combo 1, the other
two merged into one.
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Figure 7: Data points for hubness measure using metric S. The top solid line is the least
square estimate of gradient ascent™. The dotted line is the estimate for gradient ascent™.
The second from the bottom solid line is for normal gradient ascent. The dashed line is for
single node lifting.
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The reason why our first combination does not work as well may be that the ap-
proach is ’half hearted’ in that instead of totally maximizing the contribution of pre-
ferred document j and minimizing the contribution of other documents [ # j, we only
do so when the nominal value of j at least increases. The result is a gradient step
size that does neither. Our second approach is more effective because we only concern
ourselves with the relative value of document j in comparison to other nodes. In the

end, this does indeed produce better results.

6.4 Real-time analysis

The purpose of the set of validation and testing above is to complement the system
implementation, since it is not possible to run controlled experiments in this real time
system. However, we did test the Persona prototype to check if it produces reasonable
results. We tried using several queries, namely: machine learning and virus. For the
machine learning query, we indicate that we like a page that relates machine learning
to games, and indicate all other unrelated pages as negative. After submitting our
feedback, Persona returns seven out of ten pages relating to machine learning, as
opposed to one out of ten pages in the previous case. As for the virus query, we got
back two sets of pages, one pointing to health related virus, and another to computer
related virus. We indicate as positive all the pages that are health related, and indicate
as negative all the pages that are computer related. Persona returns a set of ten pages
all relating to health. We explained in section 5 how our method is different than the
‘click to find similar pages’ that we find in other search engines.

However, the prototype as it stands needs much improvement, particularly in terms

of speed. Right now, for every page, it will open all the URL’s in real time, causing
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the system response to be very slow. We need to add a caching and a multi threading
model to hide latency. The filtering process itself is relatively fast; the system can
process a few hundred nodes in less than one second.

A snapshot of the Persona user interface is shown in Figure 8.

7 Conclusion

In this paper, we perform analyses of several methodologies in graph based search
algorithms and extend existing theory. In addition, we develop a robust, scalable user
model using a taxonomy structure as provided by the Open Directory Project. Our
goal is to create a system that better personalizes users’ web experience. In hoping
to achieve this goal, we implemented Persona, a personalization module that wraps
around an existing search engine.

Our extension of current theory is derived from the gradient ascent variant of HITS.
We experiment with two possible combinations of gradient ascent. From running sets
of simulations, we verified that gradient ascent is superior to single node lifting. One of
our proposed combination managed to perform at least as well as the gradient ascent
variant. We come up with robust quantitative results regarding the performance of
these techniques.

We build a user model that improves upon current existing methods. Though it
is not feasible to test the effectiveness of our user profiling technique, several tests
with the Persona system has shown positive results. Moreover, recent models has been
developed to perform static matching among user profiles to determine similarities

between users [10]. We find this very encouraging, and may extend further work in
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Figure 8: Snapshot of the Persona system
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this direction.
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