StreaMIT: A Language for Streaming Applications-

Bill Thies, Michal Karczmarek, and Saman Amarasinghe

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

{thies, karczma, saman}@lcs.mit.edu

August 6, 2001

ABSTRACT

We characterize high-performance streaming applications as
a new and distinct domain of programs that is becoming
increasingly important. The StreaMIT language provides
novel high-level representations to improve programmer pro-
ductivity and program robustness within the streaming do-
main. At the same time, the StreaMIT compiler aims to im-
prove the performance of streaming applications via stream-
specific analyses and optimizations. In this paper, we moti-
vate, describe and justify the language features of StreaMIT,
which include: a structured model of streams, a messaging
system for control, a re-initialization mechanism, and a nat-
ural textual syntax. We also present a means of reasoning
about time in terms of “information flow”: a concept that
we believe is fundamental to the streaming domain. Using
this concept, we give a formal semantics for StreaMIT’s mes-
saging system, as well as a simple algorithm for detecting
deadlock and buffer overlow.

1. INTRODUCTION

Applications that are structured around some notion of a

“stream” are becoming increasingly important and widespread.

There is evidence that streaming media applications are al-
ready consuming most of the cycles on consumer machines
[8], and their use is continuing to grow. In the embedded
domain, applications for hand-held computers, cell phones,
and DSP’s are centered around a stream of voice or video
data. The stream abstraction is also fundamental to high-
performance applications such as intelligent software routers,
cell phone base stations, and HDTV editing consoles.

Despite the prevalence of these applications, there is sur-
prisingly little language and compiler support for practical,
large-scale stream programming. Of course, the notion of a
stream as a programming abstraction has been around for
decades [2], and a number of special-purpose stream lan-
guages have been designed (see [9] for a review). Many of
these languages and representations are elegant and theo-
retically sound, but they often lack features and are too
inflexible to support straightforward development of mod-
ern stream applications, or their implementations are too
inefficient to use in practice.

*This document is MIT/LCS Technical Memo LCS-
TM-620, August 2001. A similar version was submitted to
POPL 2002. Please do not distribute.

Consequently, most programmers turn to general-purpose
languages such as C or C++ to implement stream programs,
resorting to low-level assembly codes for performance-critical
loops. This practice is labor-intensive, error-prone, and very
costly, since the performance-critical sections must be re-
implemented for each target architecture. Moreover, general
purpose languages do not provide a natural and intuitive
representation of streams, thereby having a negative effect
on readability, robustness, and programmer productivity.

StreaMIT is a language and compiler specifically designed
for modern stream programming. Its goals are two-fold:
first, to raise the abstraction level in stream programming,
thereby improving programmer productivity and program
robustness, and second, to provide a compiler that performs
stream-specific optimizations to achieve the performance of
an expert assembly programmer.

To address the first of these goals, this paper motivates,
describes, and justifies StreaMIT’s high-level language fea-
tures. The version of StreaMIT described in this paper re-
quires static flow rates in the streams; applications such as
compression that have dynamic flow rates will be the subject
of future work. This paper also presents a notion of “infor-
mation flow” that we believe is fundamental to the stream-
ing domain. Using this notion, we give a clear semantics
to StreaMIT’s messaging system and describe simple algo-
rithms for static deadlock and overflow detection.

This paper is organized as follows. In Section 2, we char-
acterize the domain of streaming programs that motivates
the design of StreaMIT. In Section 3, we provide a detailed
description of StreaMIT, and in Section 4 we formally define
the semantics of StreaMIT using a notion of “information
flow”. We present a detailed example of a software radio
in Section 5 and describe related work in Section 6. Sec-
tion 7 contains our conclusions, and the Appendix gives an
overview of StreaMIT syntax.

2. STREAMING APPLICATION DOMAIN

The applications that make use of a stream abstraction are
diverse, with targets ranging from embedded devices, to con-
sumer desktops, to high-performance severs. However, we
have observed a number of properties that these programs
have in common—enough so as to characterize them as be-

RFtolF

ReadFromAtoD

CheckFreqHop CheckQuality AudioBackEnd

Figure 1: A block diagram of a software radio. A detailed StreaMIT implementation appears in Figure 17.

longing to a distinct class of programs, which we will refer
to as streaming applications. The following are the salient
properties of a streaming application, independent of its im-
plementation:

1. Large streams of data. Perhaps the most fundamental
aspect of a streaming application is that it operates on
a large (or virtually infinite) sequence of data items,
hereafter referred to as a data stream. Data streams
generally enter the program from some external source,
and each data item is processed for a limited time be-
fore being discarded. This is in contrast to scientific
applications, in which a fixed input set is manipulated
with a large degree of data reuse.

2. Independent stream filters. Conceptually, a streaming
computation represents a sequence of transformations
on the data streams in the program. We will refer to
the basic unit of this transformation as a filter: an op-
eration that—on each execution step-reads one or more
items from an input stream, performs some computa-
tion, and writes one or more items to an output stream.
Filters are generally independent and self-contained,
without references to global variables or other filters.
A stream program is the composition of filters into a
stream graph, in which the outputs of some filters are
connected to the inputs of others.

3. A stable computation pattern. The structure of the
stream graph is generally constant during the steady-
state operation of a stream program. That is, a certain
set of filters are repeatedly applied in a regular, pre-
dictable order to produce an output stream that is a
given function of the input stream.

4. Occasional modification of stream structure. Even though

each arrangement of filters is executed for a long time,
there are still dynamic modifications to the stream
graph that occur on occasion. For instance, if a wire-
less network interface is experiencing high noise on an
input channel, it might react by adding some filters
to clean up the signal; a software radio re-initializes a
portion of the stream graph when a user switches from
AM to FM. Sometimes, these re-initializations are syn-
chronized with some data in the stream—for instance,
when a network protocol changes from bluetooth to
802.11 at a certain point of a transmission. There
is typically an enumerable number of configurations
that the stream graph can adopt in any one program,
such that all of the possible arrangements of filters are
known at compile time.

5. Occasional out-of-stream communication. In addition
to the high-volume data streams passing from one fil-
ter to another, filters also communicate small amounts
of control information on an infrequent and irregular

class FIR extends Filter {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
int N;

void init(int N) {

this.N = N;
}

void work() {
float sum = 0;
for (int i=0; i<N; i++)

sum += input.peek(i)*FIR_COEFF[i][N];

input.pop();
output.push(sum) ;

}

}

class Main extends Stream {
void init() {
add (new DataSource());
add (new FIR(N));
add (new Display());

Figure 2: An FIR filter in StreaMIT.

basis. Examples include changing the volume on a cell
phone, printing an error message to a screen, or chang-
ing a coefficient in an upstream FIR filter.

6. High performance ezpectations. Often there are real-
time constraints that must be satisfied by streaming
applications; thus, efficiency (in terms of both latency
and throughput) is of primary concern. Additionally,
many embedded applications are intended for mobile
environments where power consumption, memory re-
quirements, and code size are also important.

3. LANGUAGE OVERVIEW

StreaMIT includes stream-specific abstractions and repre-
sentations that are designed to improve programmer pro-
ductivity for the domain of programs described above. In
this paper, we present StreaMIT in legal Java syntax for ease
of presentation. Though this syntax can express the funda-
mental ideas of StreaMIT, in the longer term we plan to
develop a cleaner and more abstract syntax that is designed
specifically for stream programs.

Figure 17 contains a detailed example of a software radio
implemented in StreaMIT; a block diagram of the system
appears in Figure 1. In the following sections, we draw on
different components of this example to describe and justify
the major features of StreaMIT. A more detailed guide to
the syntax of StreaMIT can be found in the Appendix.

3.1 Filters
3.1.1 StreaMIT Approach

The basic unit of computation in StreaMIT is the Filter.
An example of a Filter is the FIRFilter, a component of our

int N = 5;
int BLOCK_SIZE = 100;

void step(float[] input, float[] output, int numIn, int numQut) {
float sum = 0;
for (int k=0; k<numIn; k++)
sum = sum + input[k]*FIR_COEFF [k+numIn] [N];
for (int k=numIn; k<N; k++)
sum = sum + input[k]*FIR_COEFF[k-numIn] [N];
output [numOut] = sum;
input [numIn] = getData();
}

void main() {
float input[] = new float[N];
float output[] = new float[BLOCK_SIZE];
int numIn, numQut;

for (numIn=0; numIn<N; numIn++)
input [numIn] = getData();

while (true) {

for (out=0; numIn<N; numIn++, numQut++)
step(input, output, numIn, numQut);

int wholeSteps = (BLOCK_SIZE-numQut)/N;
for (int k=0; k<wholeSteps; k++) {
for (numIn=0; numIn<N; numIn++, numQOut++)
step(input, output, numIn, numQut);

for (numIn=0; numQut<BLOCK_SIZE; numIn++, numQut++)
step(input, output, numIn, numQut);

displayBlock(output) ;
}
}

Figure 3: An optimized FIR filter in a procedural lan-
guage. A complicated loop nest is required to avoid
mod functions and to use memory efficiently, and the
structure of the loops depends on the data rates (e.g.,
BLOCK_SIZE) within the stream. An actual implemen-
tation might inline the calls to step.

software radio (see Figure 2). Each Filter contains an init
function that is called at initialization time; in this case, the
FIRFilter records N, the number of items it should filter at
once. A user should instantiate a filter by using its construc-
tor, and the init function will be called implicitly with the
same arguments that were passed to the constructor®.

The work function describes the most fine grained execu-
tion step of the filter in the steady state. Within the work
function, the filter can communicate with neighboring blocks
using the input and output channels, which are typed FIFO
queues declared as fields at the top of the class. These high-
volume channels support the three intuitive operations:

1. pop() removes an item from the end of the channel
and returns its value.

2. peek(i) returns the value of the item 4 spaces from
the end of the channel without removing it.

3. push(x) writes z to the front of the channel. The
argument z is passed by value; if it is an object, a
separate copy is enqueued on the channel.

'This design might seem unnatural, but it is necessary to
allow inlining (Section 3.2) and re-initialization (Section 3.4)
within a Java-based syntax.

class FIRFilter {
int N;
float[] input;

FIRFilter(int N) {
this.N = N;
}

float[] getData(float[] output, int offset, int length) {
if (input==null) {
input = new float[MAX_LENGTH];
source.getData(input, 0, N+length);
} else {
source.getData(input, N, length);
}

for (int i=0; i<length; i++) {
float sum = 0;
for (int j=0; j<N; j++) {
sum = sum + datal[i+jI1*FIR_COEFF[j1[N];
}
output[i+toffset] = sum;

}

for (int i=0; i<N; i++) {
input[i] = input[i+length];

}
}

void main() {

DataSource datasource = new DataSource();
FIRFilter filter = new FIRFilter(5);
Display display = new Display();
filter.source = datasource;
display.source = filter;

display.run();

}

Figure 4: An FIR filter in an object oriented language.
A “pull model” is used by each filter object to retrieve
a chunk of data from its source, and straight-line code
connects one filter to another.

A filter can also push, pop, and peek items from within the
init function if it needs to set up some initial state on its
channels, although this usually is not necessary.

A major restriction of the current version of StreaMIT is
that it requires filters to have static input and output rates.
That is, the number of items peeked, popped, and pushed
by each filter must be constant from one invocation of the
work function to the next. We plan to support dynamically
changing rates in a future version of StreaMIT.

3.1.2 Rationale

StreaMIT’s representation of a filter is an improvement over
general-purpose languages. In a procedural language, the
analog of a filter is a block of statements in a complicated
loop nest (see Figure 3). This representation is unnatural for
expressing the feedback and parallelism that is inherent in
streaming systems. Also, there is no clear abstraction bar-
rier between one filter and another, and high-volume stream
processing is muddled with global variables and control flow.
The loop nest must be re-arranged if the input or output ra-
tios of a filter changes, and scheduling optimizations further
inhibit the readability of the code. In contrast, StreaMIT
places the filter in its own independent unit, making explicit
the parallelism and inter-filter communication while hiding
the grungy details of scheduling and optimization from the
programmer.

class FFT extends Stream {
void init(int N) {
add(new SplitJoin() {
void init() {
setSplitter (WEIGHTED_ROUND_ROBIN(N/2, N/2));
for (int i=0; i<2; i++)
add(new SplitJoin() {
void init() {
setSplitter (ROUND_ROBIN) ;
add (IDENTITY());
add (IDENTITY());
setJoiner (WEIGHTED_ROUND_ROBIN(N/4, N/4);
!
setJoiner (ROUND_ROBIN) ;

W
for (int i=2; i<N; i%=2)
add (new Butterfly(i, N));
1}

Figure 5: A Fast Fourier Transform (FFT) in StreaMIT.

One could also use an object-oriented language to imple-
ment a stream abstraction (see Figure 4). This avoids some
of the problems associated with a procedural loop nest, but
the programming model is again complicated by efficiency
concerns. That is, a runtime library usually exectutes filters
according to a pull model, where a filter operates on a block
of data that it retrieves from the input channel. The block
size is often optimized for the cache size of a given archi-
tecture, which hampers portability. Moreover, operating on
large-grained blocks obscures the fundamental fine-grained
algorithm that is visible in a StreaMIT filter. Thus, the ab-
sence of a runtime model in favor of automated scheduling
and optimization again distinguishes StreaMIT.

3.2 ConnectingFilters
3.21 SreaMIT Approach

The basic construct for composing filters into a communi-
cating network is a Stream. The FFT in Figure 5 is an
example of a Stream that appears in our software radio.
Like a Filter, a Stream has an init function that is called
upon its instantiation. However, there is no work function,
and all input and output channels are implicit; instead, the
stream behaves as the sequential composition of filters that
are specified with successive calls to add from within init.
That is, Stream creates a single pipeline.

There are two other stream constructors besides Stream:

(a) A Stream.

(b) A SplitJoin.

!

Stream |-
O

(c) A FeedbackLoop.

Figure 6: Stream structures

StreaMIT.

supported by

1. WEIGHTED_ROUND _ROBIN(i1, 42, ..., k), which
reads the first 71 data items from the first stream, the
next 42 data items to the second stream, and so on.

N

. ROUND_ROBIN, which is just a weighted round robin
where all weights are 1.

w

. COMBINE, which reads from all the streams in par-
allel and combines the results into a structure. The
structure has a separate field for each stream, and the
joiner cannot fire until each field is filled by an item
from the corresponding output channel.

~

. NULL, which means that all of the parallel compo-
nents are sinks and there is no output to join together.

SplitJoin and FeedbackLoop. The former is used to specify
independent parallel streams that diverge from a common
splitter and merge into a common joiner. There are three
kinds of splitters:

The splitter and joiner type are specified with calls to setSplitter

and setJoiner, respectively (see Figure 5); the parallel streams

are specified by successive calls to add, with the ¢’th call set-

ting the 7’th stream in the SplitJoin . Note that a WEIGHTED_ROUND_R

1. WEIGHTED_ROUND ROBIN(i1, 42, ..., k), which
sends the first i1 data items to the first stream, the
next 42 data items to the second stream, and so on.

2. ROUND _ROBIN, which is just a weighted round robin
where all weights are 1.

3. DUPLICATE, which replicates each data item and
sends a copy to each parallel stream.

4. NULL, which means that all of the parallel compo-
nents are sources and there is no input to split.

Similarly, there are three kinds of joiners:

can function as an exclusive selector if one or more of the
weights are zero. Also, there are additional splitters and
joiners that we plan to add when StreaMIT supports filters
with dynamically changing rates, including:

1. TYPE_DISPATCH, which sends an item to one of mul-
tiple streams depending on its type.

2. ANY, which sends items to any parallel stream that
has space on its input, or reads items from any parallel
stream that has output available.

The last control construct provides a way to create cycles in
the stream graph: the FeedbackLoop. It contains a joiner,

class Fibonnacci extends FeedbackLoop {
void init() {
setDelay(2);
setJoiner (WEIGHTED_ROUND_ROBIN(0,1));
setBody(new Filter() {
Channel input = new IntChannel();
Channel output = new IntChannel();
void work() {
output.push(input.peek (0) +input.peek(1));
input.pop();
}
B;
setSplitter (DUPLICATE);
}

int initPath(int index) {
return index;
}
}

Figure 7: A FeedbackLoop version of Fibonnacci.

a body stream, a splitter, and a loop stream, which are
set with calls to setJoiner, setBody, setSplitter, and
setLoop, respectively (see Figure 7). The splitters and join-
ers can be any of those for SplitJoin, except for NULL.

The feedback loop has a special semantics when the stream
is first starting to run. Since there are no items on the feed-
back path at first, the stream instead inputs items from an
initPath function defined by the FeedbackLoop; initPath
is called with the number of the data item that is being
fabricated (starting from 0). With a call to setDelay from
within the init function, the user can specify how many
items should be calculated with initPath before the joiner
looks for data items from the feedback channel.

Evident in all of these examples is another feature of the
StreaMIT syntax: inlining. The definition of any stream or
filter can be inlined at the point of its instantiation, thereby
preventing the definition of many small classes that are used
only once, and, moreover, providing a syntax that reveals
the hierarchical structure of the streams from the indenta-
tion level of the code. In our Java syntax, we make use of
anonymous classes for inlining [5].

3.2.2 Rationale

StreaMIT differs from other languages in that it imposes a
well-defined structure on the streams; all stream graphs are
built out of a hierarchical composition of Streams, SplitJoins,
and FeedbackLoops. This is in contrast to other environ-
ments, which generally regard a stream as a flat and ar-
bitrary network of filters that are connected by channels.
However, arbitrary graphs are very hard for the compiler to
analyze, and equally difficult for a programmer to describe.
Most programmers either resort to straight-line code that
links one filter to another (thereby making it very hard to
visualize the stream graph), or using an ad-hoc graphical
programming environment that is awkward to use and ad-
mits no good textual representation.

In contrast, StreaMIT is a clean textual representation that—
especially with inlined streams-makes it very easy to see the
shape of the computation from the indentation level of the
code. The comparison of StreaMIT’s structure with arbi-
trary stream graphs could be likened to the difference be-
tween structured control flow and GOTO statements. Though
sometimes the structure restricts the expressiveness of the

class TrunkedRadio extends Stream {
RFtoIFPortal freqHop = new RFtoIFPortal();

void init() {

RFtoIF rf2if;
add(rf2if = new RFtOIF (STARTFREQ)) ;
freqgHop.register (rf2if) ;

add (new CheckFregHop (fregHop)) ;

}
}

class RFtoIF extends Filter {

// sets frequency to <f>
void setf(float f) {

}
}

class CheckFreqHop extends SplitJoin {
RFtoIFPortal fregHop;

void init (RFtoIFPortal fregHop) {
this.freqHop = freqHop;

add(new Filter() {
void work () {

if (val >= MIN_THRESHOLD)
freqHop.setf (Freq[kl , new TimeInterval (4*N, 6*N));

Figure 8: The frequency-hopping of our software
radio illustrates StreaMIT’s messaging system. In
TrunkedRadio, a Portal is created to hold the message
target, rf2if. Then, CheckFreqHop uses the Portal to
send a frequency-change message.

programmer, the gains in robustness, readability, and com-
piler analysis are immense.

A final benefit of stream graph construction in StreaMIT is
the ability to do scripting to parameterize graphs. For in-
stance, both the FFT stream in Figure 5 inputs a parameter
N and adjusts the number of butterfly stages appropriately.
This further improves readability and decreases code size.

3.3 Messages
3.3.1 StreaMIT Approach

StreaMIT provides a dynamic messaging system for pass-
ing irregular, low-volume control information between fil-
ters and streams. Messages are sent from within the body
of a filter’s work function, perhaps to change a parameter
in another filter. For example, in the CheckFreqHop stream
of our software radio example (Figure 8), a message is sent
upstream to change the frequency of the receiver if the down-
stream component detects that the transmitter is about to
change frequencies. The sender can continue to execute
while the message is en route, and the set_freq method
will be invoked in the receiver with argument Freq[k] when
the message arrives. Since message delivery is asynchronous,
there can be no return value; only void methods can be mes-
sage targets.

Message timing.The central aspect of the messaging sys-
tem is a sophisticated timing mechanism that allows filters
to specify when a message will be received relative to the
flow of information between the sender and the receiver.

Recall that each filter executes independently, without any
notion of global time. Thus, the only way for two filters to
talk about a time that is meaningful for both of them is in
terms of the data items that are passed through the streams
from one to the other.

In StreaMIT, one can specify a range of latencies for a mes-
sage to get delivered. This latency is measured in terms
of an information “wavefront” from one filter to another.
For example, in the CheckFreqHop example of Figure 8, the
sender indicates an interval of latencies between 4N and
6N. This means that the receiver will receive the message
immediately following the last invocation of its own work
function which produces an item affecting the some output
of the sender’s 4N’th to 6 N’th work functions, counting the
sender’s current work function as number 0. Defining this
notion precisely is the subject of Section 4, but the general
idea is simple: the receiver is invoked when it sees the infor-
mation wavefront that the sender sees in 4N to 6N execution
steps.

In some cases, the ability to synchronize the arrival of a
message with some element of the data stream is very im-
portant. For example, CheckFreqHop knows that the trans-
mitter will change the frequency between 4N and 6N steps
later, in terms of the frame that CheckFreqHop is inputting.
To ensure that the radio changes frequencies at the same
time-so as not to lose any data at the old or new frequency—
CheckFreqHop instructs the receiver to switch frequencies
when the receiver sees one of the last data items at the old
frequency.

If the receiver of a message is a stream instead of a filter,
then the message delivery is timed with respect to the first
(most upstream) filter in the stream. We are still formalizing
the message delivery semantics in cases where the receiver
is a stream that has no unique first filter (e.g., a SplitJoin
with NULL splitter). Note that the stream itself can receive
a message even though the timing is in terms of filter-to-
filter communication.

Portals for broadcast messaging. StreaMIT also has
support for modular broadcast messaging. When a sender
wants to send a message that will invoke method M of the
receiver R upon arrival, it does not call M on the object
R. Rather, it calls M on a Portal of which R is a member.
Portals are typed containers that forward all messages they
receive to the elements of the container. Portals could be
useful in cases when a component of a filter library needs to
announce a message (e.g., that it is shutting down) but does
not know the list of recipients; the user of the library can
pass the filter a Portal containing all interested receivers. As
for message delivery constraints, the user specifies a single
time interval for each message, and that interval is inter-
preted separately (as described above) for each receiver in
the Portal.

In a language with generic data types, a Portal could be
implemented as a templated list. However, since Java does
not yet support templates, we automatically generate an
<X>Portal class for every class and interface <X>. Our syn-
tax for using Portals is evident in the TrunkedRadio class in
Figure 8.

3.3.2 Rationale

Stream programs present a challenge in that filters need
both regular, high-volume data transfer and irregular, low-
volume control communication. Moreover, there is the prob-
lem of reasoning about the relative “time” between filters
when they are running asynchronously and in parallel.

A different approach to messaging is to embed control mes-
sages in the data stream instead of providing a separate
mechanism for dynamic message passing. This does have
the effect of associating the message time with a data item,
but it is complicated, error-prone, and leads to unreadable
code. Further, it could hurt performance in the steady state
(if each filter has to check whether or not a data item is
actual data or control, instead) and complicates compiler
analysis, too. Finally, one can’t send messages upstream
without creating a separate data channel for them to travel
in.

Another solution is to treat messages as synchronous method
calls. However, this delays the progress of the stream when
the message is en route, thereby degrading the performance
of the program and restricting the compiler’s freedom to
reorder filter executions.

We feel that the StreaMIT messaging model is an advance in
that it separates the notions of low-volume and high-volume
data transfer—both for the programmer and the compiler—
without losing a well-defind semantics where messages are
timed relative to the high-volume data flow. Further, by
separating message communication into its own category,
fewer connections are needed for steady-state data trans-
fer and the resulting stream graphs are more amenable to
structured stream programming.

3.4 Re-Initialization
34.1 SreaMIT Approach

One of the characteristics of a streaming application is the
need to occaisionally modify the structure of part of the
stream graph. StreaMIT allows these changes through a re-
initialization mechanism that is integrated with its messag-
ing model. If a sender targets a message at the init function
of a stream or filter S, then when the message arrives, it re-
executes the initialazation code and replaces S with a new
version of itself. However, the new version might have a
different structure than the original if the arguments to the
init call on re-initialization were different than during the
original initialization.

When an init message arrives, it does not kill all of the data
that is in the stream being re-initialized. Rather, it drains
the stream until the wavefront of information (as defined for
the messaging model) from the top of the stream has reached
the bottom. The draining occurs without consuming any
data from the input channels to the re-initialized region.
Instead, a drain function of each filter is invoked to pro-
vide input when its other input source is frozen. (Each filter
can override the drain function as part of its definition.) If
the programmer prefers to kill the data in a stream segment
instead of draining it, this can be indicated by sending an ex-
tra argument to the message portal with the re-initialization
message.

3.4.2 Rationale

Re-initialization is a headache for stream programmers because—

if done manually—the entire runtime system could be put
on hold to re-initialize a portion of the stream. The inter-
face to starting and stopping streams could be complicated
when there is not an explicit notion of initialization time vs.
steady-state execution time, and ad-hoc draining techniques
could risk losing data or deadlocking the system.

StreaMIT improves on this situation by abstracting the re-
initialization process from the user. That is, no auxillary
control program is needed to drain the old streams and cre-
ate the new structure; the user need only trigger the reini-
tialization process through a message. Additionally, any
hierarchical stream construct automatically becomes a pos-
sible candidate for re-initialization, due to the well-defined
stream structure and the simple interface with the init
function. Finally, it is easy for the compiler to recognize
stream re-initialization possibilities and to account for all
possible configurations of the stream flow graph during anal-
ysis and optimization.

3.5 Latency Constraints

Lastly, StreaMIT provides a simple way of restricting the
latency of an information wavefront in traveling from the
input of one filter to the output of a downstream filter. Is-
sueing the directive MAX_LATENCY(A, B, n) from within an
init means that A can only execute up to the wavefront of
information that B will see after n invocations of its own
work function.

In the case that A is a stream instead of a filter, then the
latency is with regards to the most upstream filter of A;
likewise, if B is a stream, then the latency is with regards to
the most downstream filter in B. We are still in the process
of formalizing the semantics in cases when there is no unique
upstream or downstream filter in these streams.

4. SEMANTICS OF TIME

In this section we develop a more formal semantics for the
message delivery guarantees described above. The timing
model in StreaMIT is unique in that all time is relative to
information wavefronts—that is, two independent filters can
describe a common time only in terms of when the effects of
one filter’s execution are seen by the other. Thus, although
each filter’s work function is invoked asynchronously without
any notion of global time, two invocations of a work function
occur at the same “information-relative time” if they operate
on the same information wavefront.

To define this notion more precisely, we present transfer
functions that describe the flow of information across fil-
ters and streams. Using these transfer functions, we trans-
late message delivery constraints into a set of constraints
on the execution schedule of the stream graph. Finally, we
use these scheduling constraints to formulate an operational
semantics for messaging and latency in StreaMIT.

4.1 Information Flow

The concept of information flow is central to the streaming
domain. When an item enters a stream, it carries with it
some new information. As execution progresses, this infor-
mation cascades through the stream, effecting the state of

=[5l

Filter

SEREREE EREE

Figure 9: A filter’s input and output tapes during an
execution step. With each step, the filter pushes two
items, pops two items, and peeks at three additional
items. The initial state of the input tape is shown
at left. The center shows the filter with both input
and output tapes during the invocation of work. The
final state of the output tape is shown at right

filters and the values of new data items which are produced.
We refer to an “information wavefront” as the sequence of
filter executions that first sees the effects of a given input
item. This wavefront is well-defined even in the presence of
rate-changing filters that peek or pop a different number of
items than they push. To formalize the wavefront, we intro-
duce some new representations for the state of the stream
graph. Consider that in place of each data channel there is
an infinite “tape” which contains the history of values that
have been pushed onto the channel (see Figure 9). Now
consider the following functions:

e Given that there are x items on tape a, the maxi-
mum number of items that can appear on tape b is
maxq—p(T).

e Given that there are x items on tape b, the mini-
mum number of items that must appear on tape a
is ming ().

Note that these functions are only defined over pairs of tapes
(a,b) where a is upstream of b—that is, where there is a di-
rected path in the stream graph from the filter following a
to the filter preceding b. We will say that the filter b is
downstream of a under exactly these same conditions.

The maz and min functions are related to the information
wavefront in the following sense. The item at position y =
ming—p(z) of tape a is the latest item on tape a to affect
the item at position z of tape b. This is because item =z
on tape b can be produced if and only if tape a contains at
least y items. Note that this effect might be via a control
dependence rather than a data dependence—for instance, if
item y needed to pass through a round-robin joiner before
some data from another stream could be routed to tape b.
However, when speaking of the information wavefront, we
only consider information passed through the data streams;
if a data item affects another via a low-latency downstream
message, then this effect could jump ahead of the wavefront.

‘We now turn to deriving expressions for maz,—p and mingp.
Doing so will allow us to formalize the semantics of messag-
ing and latency in StreaMIT, as well as enabling static veri-
fication techniques such as deadlock and overflow detection.

A B

Figure 10: Stream construct with labeling.

411 Filters

Consider a filter A that peeks peeka, pops popa, and pushes
pusha data items on every execution step. Further, let us
denote the input and output tapes of A by I4 and Oga, re-
spectively. We now turn our attention to finding mazr, o0,
and mins, « o, , describing the transfer of information across
the filter A.

To derive maz;, o0, (z), observe that the filter can execute
so long as it does not peek beyond the z’th item on the
input tape, I4. After the n’th execution, it has popped
n * popa items, peeked up to n * popa + (peeka — popa),
and pushed n * pusha items. Thus, it can execute n =
[(x — (peeka — popa))/popa)] times, leaving the following
expression for mazr, o, (z):

maTr,—»0,(T) =

z—(peeka—popa)

pusha * [e J if x> (peeka — popa)

0 if z < (peeka —popa)

By identical reasoning, the reader can verify the following
expression for mins, o ,(z):

w * pop + (peeka — popa)
pusha

ming, o, (¢) = "

4.1.2 Pipelines

Let us now derive expressions for min and mazx in the case
of pipelined filters. In the base case, consider that two filters
are connected, with the output of A feeding into the input
of B (see Figure ?7?7). We are seeking mazr, o5 (z): the
maximum number of items that can appear on tape Op
given that there are x items on tape I4. Observing that a
maximum of maz;, 0, (x) items can appear on tape Og,
and that O 4 must equal Ip since the filters are connected, we
see that a maximum of mazr,—o0,(Mmazr,—»o,(z)) items
can appear on Op:

maxiy,—0p = MATIg—0pg © MATI,—0 4

In the case of mins, oy (), the order of composition is re-
versed: given that there are x items on tape O, a minimum
of minr, oy (x) are on tape Ip, and since Op = I, we
have that a minimum of min;, o, (Miniz oz (x)) items
appear on I4, leaving:

MINT 4 0p = MINI, 0,4 © MINIz—Og

By identical reasoning, these composition laws hold for pipelined

streams as well as filters. That is, given tapes z, y, and z,
we have that:

MALz 2 = MATy—z © MATz sy)
MiNg 2 = MiNgy O MINy,

However, there are some restrictions on these definitions.

They only apply when there is a downstream path P; from

the filter following z to the filter preceding y, a downstream

path P, from the filter following y to the filter preceding z,

Figure 11: SplitJoin construct with labeling.

and the paths P; and P> are non-overlapping. This restric-
tion prevents the successive composition of transfer func-
tions around feedback loops, thereby ensuring a unique def-
inition for all pairs (z, z) where there is a downstream path
from z to z.

413 Splitdoins

We now derive min and maz in the case of a SplitJoin, as
pictured in Figure 11. For the splitter S there are two output
tapes; let us denote them by Ols and O2s. Similarly, let us
denote the two input tapes of the joiner J by Il; and I2;.
We derive below the transfer functions the round robin and
duplicate/combine nodes. Note that the duplicate/combine
nodes can be simulated with round robins and duplicating
filters, but we provide the transfer functions anyways to sim-
plify the semantic analysis of a program. We have yet to de-
rive these expressions for the weighted round robin nodes.

Round robin splitter. In the case of a round-robin split-
ter, the items from the input tape are alternately routed to
the output tapes, with the first item going onto tape Ols.
By this definition, we can see that the splitter’s maz is de-
fined as follows:

X
mazss o015 (@) = [7]

X
mazis-05(7) = |5 |

To derive the min function across a splitter, observe that
the input tape need only progress so far as to produce the
items on the emptier output tape. That is, we need to con-
sider the number of items on both of the splitter’s output to
determine the minimum number of items that are needed at
its input. Thus, our min function has two arguments: the
first corresponding to Ols and the second corresponding to
02s. The equation is as follows:

MiNIg (015,025)(T1,L2) = MIN (2% x1 — 1,2 % x2)

Round robin joiner. The rules for a round robin joiner
are in some sense dual to those of the round robin splitter.
Again assuming that items are alternately drawn from the
input tapes, starting with I1;, we have that:

. x
MinI1; <0y (z) = [5]

. T
mini2; <oy (z) = [§J

Again, the max function takes two arguments, correspond-
ing to the number of items on I1; and I2;, respectively:

mMax(1,,12,)—»0, (@1,02) = MIN(2 % 21 — 1,2 % x2)

Duplicate splitter. Clearly, the maxz function of a dupli-
cate splitter is simply the identity function, since it maps

(e
D COR G

n FJ OFJ

Figure 12: FeedbackLoop construct with labeling.

each element on the input tape to the same location on the
output tapes:

mazs—o1s(z) =

mariz—o02g () =

The min function is similar, except that—like the round robin
split—the input need only progress as far as the lesser output:

Mg (015,025)(T1,T2) = MIN(z1,z2)

Combine joiner. The combine joiner is simply the dual
of the duplicate splitter, with transfer functions that the
reader can verify as follows:

maz(1, r2,)-0, (1, 2) = MIN(z1, x2)
minn;«o,(x) =x

minge,; «o0,(z) =z

4.1.4 FeedbackLoops

We have to be careful when defining the transfer functions
for feedback loops (see Figure 12). The feedback splitter F'S
serves as a normal splitter, and has the same min and max
functions as defined above. However, the feedback joiner F'J
is slightly different than a standard joiner, since during the
first few executions it fabricates values from the loop body
before they appear on the input tape. The transfer function
must take special account of these initial values, since they
never appear on I2r;, the input tape from the loop body.
This is because we model the initialization of FeedbackLoops
by feeding the joiner the initial values directly instead of
pushing them onto a channel.

Let n be the number of initial values that are provided to
the feedback joiner before values from the feedback loop are
read. Let J be a normal COMBINE or ROUND_ROBIN
joiner as defined for SplitJoins. Now, let us define the trans-
fer functions for F'.J, the feedback joiner.

The min function for the main stream is as before:
MINI1p;Op; = MINI1 ;0

However, we must offset by n when considering the min
function that draws from the loop’s tape:

Miniap ;—0p; (8) = minrz;o,(x) —n

Finally, the maz function must be similarly shifted for the
input from the loop:

MAT (115 5,125)>0p s (T1,T2) = MAT(11;,12;)—0, (T1, T2 + 1)

415 Summary

We have derived expressions for maxq—b and mings for
when a and b are the respective input and output to 1) a fil-
ter, 2) a pipeline, 3) a split or join, and 4) a feedback split or
join. By composing these expressions following Equation 1,
we can arrive at values of max,—p and min,p for all pairs
of tapes (a, b) where there is some directed path through the
stream graph—that is, along the direction of data flow—from
the filter reading from tape a to the filter writing to tape b.

Ommitted from the above analysis are: 1) weighted round
robin nodes, 2) filters that push or pop items from within
their init functions, and 3) message handlers that send mes-
sages themselves. We hope to address these issues in a future
document.

4.2 Semantics

Equipped with definitions of max,—» and ming«p, we can
now address the semantics of StreaMIT’s message delivery
and latency guarantees.

4.2.1 Messages

Suppose that filter A sends a message to filter B with latency
A, where) is any integer. In)\ invocations of A’s work
function, A will produce one or more data items d. Now,
the messaging system guarantees that:

1. If B is upstream of A, then B will receive the message
immediately following the last invocation of its work
function which produces items that affect d.

2. If B is downstream of A, then B will receive the mes-
sage immediately preceding the first invocation of its
work function which produces items that are effected
by d.

3. If B runs in parallel with A, then the message timing
is in terms of a shared set of splitters and joiners. We
are developing semantics for this case, but they are
beyond the scope of this paper.

These guarantees can be expressed more formally as a set of
constraints on the number of items on certain tapes in the
system. We will use n(t) to represent the number of items
on tape t at a given point of execution. Again, suppose that
filter A sends a message to filter B with latency A, where A
is any integer. Let s be equal to n(04) at the time that the
message was sent. We have that:

1. If B is upstream of A, the message will be delivered
when:

n(OB) = Minogz o0, (s + pusha * A) (2)

That is, s + pusha * A is the number of items on A’s
output tape after producing the data of interest. Then,
Yy = minog—o 4 (s+pusha=)) is the latest item on B’s
output tape that affects the data of interest. The mes-
sage should be delivered immediately after the work
function producing this item, which occurs when the
item count n(Og) equals y, as specified by the con-
straint.

2. If B is downstream of A, the message will be delivered
when:

3)
That is, s + pusha * (A — 1) is the number of items
on A’s output tape before pushing the data of inter-
est, and y = mazro,-05(s + pusha * (A — 1)) is the
maximum number of items on B’s output tape as a
result of the outputs of A. Thus, when A pushes the
next set of data, it could affect the data that will be
pushed next onto the output tape of B. (Note that
the next set of data from A might not be sufficient
to calculate the next set on B’s output, but it could
affect it nonetheless.) The message must be delivered
immediately before this effected data appears on B’s
output, so the number of items n(Og) on B’s output
must equal y.

n(OB) = mazo 0z (s +pusha *x (A — 1))

422 Latency

Each directive MAX_LATENCY(A, B, n) has the same effect as
defining a message from filter B to upstream filter A with
latency n.

4.2.3 Scheduling

We can fully define the possible sequences of filter executions
as a set of constraints on the number of items on each tape
in the stream graph. This is useful not only from the per-
spective of semantics, but for compiler analysis of the space
of valid schedules. To begin the analysis, we formulate the
constraints imposed by message delivery guarantees on the
number of items on each tape.

Suppose that a filter A might send a message to filter B with
a maximum latency of A during any invocation of its work
function. Then we must constrain the execution of B to
make sure that it is not too far ahead to receive the message
with the given latency. That is, we can only execute B so
long as n(Op)—the item count on its output tape—does not
exceed the count when a message would be delivered. Re-
calling the expression for message delivery time (Equations
2 and 3), this constraint is as follows if B is upstream of A:

n(OB) < minog—o,(n(0a) + pusha * X) (4)
and as follows if B is downstream of A:
n(0B) < mazo, 05 (M(04) + pusha * (A — 1)) (5)

The guarantees for latency are treated identically to mes-
sage guarantees, as fitting with the semantics of latency as
described above.

Defining the schedule. We now have a set of constraints
expressing whether or not a given set of tapes respects the
latency and message delivery guarantees in a program. We
will now incorporate these constraints into an operational
semantics that defines a legal sequences of filter executions.

We represent a stream graph as a configuration ((p(t1), n(t1))
(p(t2),n(t2)), ..., (p(tr),n(tr))), where p(t) represents the
number of items that have been popped from tape t, and
t1 ...t are the tapes in the stream graph. Obviously, we
have the constraint that p(t) < n(t) for each tape t, since a
filter can only pop as many items as have appeared on its
input tape.

10

When the program begins, no items have been pushed or
popped from any data channels. Thus, each tape is empty,
and the starting configuration Cp is simply the zero vector.
It is possible that the initial configuration violates some of
the constraints imposed by the messaging and latency con-
structs, in which case the compiler can inform the program-
mer that the delivery constraints requested in the program
are unsatisfiable.

Let P(C) denote whether or not the constraints in Equa-
tions 4 and 5 are satisfied for all filters in a stream graph
with configuration C. We can then write the transition func-
tion between configurations as follows:

n(la) —p(la) > peeka;
(' EEE) (p(IA)7 n(IA»a ceey (p(04)7n(oA)>7 cee)?
P((-- -, (p(Ta) + popa,n{la)), ..., (p(Oa), n(O4) + pusha),...));

(- (p(Ia) + popa,n(la)),- .., (pP(0O4),n(04) + pusha),...)

There are two components of this rule. On the first line, we
state that, for filter A to fire, there must be at least peeka
items on A’s input tape that have not yet been popped.
Secondly, we express that once A has fired, the new configu-
ration must satisfy the messaging and latency constraints P.
The new configuration differs from the original only in that
popa items have been popped from A’s input and pusha
items have been pushed to A’s output.

Bounding the buffer size. It is a straightforward ex-
tension to incorporate a constraint on the maximum num-
ber of live items in the stream. This could be useful both
from a language perspective, in which a user might wish to
constrain the buffer size, or from a compiler perspective, in
which the scheduler is interested in constraining the number
of live items.

The live items in a given configuration are those that have
been pushed to a channel but have not yet been popped.

That is, the buffer size needed for a configuration ({p(t1), n(t1)),

oy (p(tr), n(tr))) is ZLO n(t;) —p(t;). If we wish to bound
the number of live items to MAXITEMS, then, we need only
add one condition to the transition rule:

n(Ia) — p(la) > peeka;
(- {p(Ia),n(La)), ..., (P(04),n(04)),...);
; (p(IA) + pOPAan(IA))i cee (p(OA)7 n(OA) +push,;), e))7
Sk n(ts) —p(ti) < MAXITEMS;

P ..

(-, (p(Ta) + popa,n(la)),...,(pP(Oa),n(Oa) + pusha),...)

4.3 Program Verification

A number of program analysis techniques are also enabled
by the min and max functions that we have defined. In
particular, it is very simple to compute 1) whether or not
the program will deadlock as a result of a starved input
channel, and 2) whether or not any buffer will grow without
bound during the steady-state execution of the program.

Deadlock detection. The deadlock detection algorithm
takes advantage of the fact that the only loops in our stream
graph are part of a FeedbackLoop construct. A stream graph
will be deadlock-free if and only if there is no net change of
output rate in the feedback loop. This can be formulated in
terms of the maz function by requiring that the wavefront
from the output of the feedback joiner F'.J unto itself is the
identity function. However, since we were careful to leave
the max function undefined over cycles in the stream graph,

Figure 13: A block diagram of a five tap FIR filter.

we define a new function maxloop that maps a given feed-
back joiner to the information wavefront around the loop:

mazloopryri(T) = MAT12,750rJ O MATORI =121

The order of composition is as in Equation 1 for the com-
position of pipelines. Also, for the purposes of calculating
mazlooprj—rs, one must assume that there are an infinite
number of items on tape Ilp;; that is, the join from the
feedback loop is not limited by the external data source.

Finally, we can state the constraint that the feedback loop
must respect. For a loop with declared latency A, the loop
will neither overflow nor deadlock if:

mazlooprjri(x) =+ A

If mazlooprs—rs(x) is less than = + A, then there will be
deadlock in the program.

Overflow detection. There are two places that a buffer
can overflow in the stream graph. The first is in a feedback
loop, when mazlooprs—rs(z) (calculated above) is more
than z + A. The second case is when the parallel streams of
a split/join have different production rates. For a splitter S
and a joiner J, the production rates will cause an overflow if
and only if mazoig-11,(x) — marozg—12; () is not O(1).
This difference could be analyzed by a compiler for every
SplitJoin in the stream graph to verify that no buffers will
overflow during steady-state execution.

5. DETAILED EXAMPLE

This section describes the Trunked Radio example imple-
mentation in Figure 17. The trunked radio is a frequency
hopping system. The transition times between the preset
frequencies is indicated to the receiver by transmitting a
preset tone. Our radio also has an FIR filter to increase
the gain of a weak signal. However, in order to save power,
this filter is activated only when the signal to noise ratio is
low. This implementation relies on transforming the signal
into the frequency domain for processing using a FFT. For
brevity, we have not shown the RF processing in the front-
end and the audio processing in the back-end. The code for
the trunked radio demonstrates many features of StreaMIT.

The high-level structure of the radio, graphically shown in
Figure 1, is implemented in the class TrunkedRadio. The
radio has seven stages, where the first three stages operate
in the time domain, the last three stages operate in the fre-
quency domain, and there is a conversion phase in between.
At this high level, the structure of the system is a pipeline
of either six or seven stream stages. The difference is due

11

ag - T+ T }_Di
aq W’_@E\ : + +
: O—
. — o :
- 5 e \W@_
: :
as " ?:\ o + " 7*\ /><><>37
: :
. S "/ B
. e T e \&

Figure 14: The multi-stage FFT algorithm

to the Booster stage, which can be active or inactive. The
switching on and off of the Booster stage, which happens in-
frequently, is accomplished using a reinitialization message
from the CheckQuality stage. We also use a message from
the CheckFreqHop stage to the RFtoIF stage to change the
baseband when a frequency hop tone is present.

The RFtoIF stage modulates the input signal from RF to
a frequency band around the current IF frequency. This
stage is implemented as a filter that multiplies the current
signal with a sine wave at the IF frequency. To support a
change in the IF frequency when frequency hopping occurs,
the filter contains a set_freq method that can be invoked
using a message.

The optional Booster stage is an FIR filter that is activated
when the signal is hard to detect. During normal operation,
however, it is deactivated to conserve power. The turning
on and off of the filter is controlled by a message. The filter
itself, shown in Figure 13, is implemented as a Filter that
peeks at N elements in the input stream.

The FFT stage converts the program from the time domain to
the frequency domain using a multi-stage FFT. It is graphi-
cally presented in 14. The FFT is composed of a reordering
filter and a multi-stage butterfly filter. The StreaMIT repre-
sentation of the reordering filter (a bit reverse order filter) is
given in Figure 15. Note that the complex data re-shuffling
is accomplished using a few SplitJoin constructs. A param-
eterized Butterfly implementation is used to abstract the
multi-stage butterfly in the FFT. As shown in Figure 16,
the Butterfly filter is also implemented using a combination
of SplitJoin constructs.

The StreaMIT implementation of the FFT filter is clean
and intuitive. It already has a large amount of pipelined
parallelism. Due to the simple and straightforward mapping
from the algorithm to the implementation, compiler analyses
should be able to extract the parallel structure of the FFT
when hardware resources are available.

The next stage, CheckFreqHop, checks four different frequen-
cies for the change frequency tone. When the stage de-
tects this tone, it has to change the frequency within a time
limit. This task is accomplished by sending a message to
the RFtoIF stage. The message requires the RFtoIF stage to
deliver between 4N and 6N items using the old modulation
before changing to the new frequency.

The CheckQuality stage checks if the signal has a distinct
frequency spectrum. If all the frequencies have similar am-
plitudes, the stage assumes that the signal-to-noise ratio is
low and sends a message to activate the Booster. This mes-
sage is sent using best-effort delivery.

6. RELATED WORK

A large number of programming languages have included a
concept of a stream; see [9] for a survey. Those that are
perhaps most related to the static-rate version of StreaMIT
are synchronous dataflow languages such as LUSTRE [6]
and ESTEREL [3] which require a fixed number of inputs
to arrive simultaneously before firing a stream node. How-
ever, most special-purpose stream languages are functional
instead of imperative, and do not contain features such as
messaging and support for modular program development
that are essential for modern stream applications. Also,
most of these languages are so abstract and unstructured
that the compiler cannot perform enough analysis and opti-
mization to result in an efficient implementation.

At an abstract level, the stream graphs of StreaMIT share a
number of properties with synchronous dataflow (SDF) do-
main as considered by the Ptolemy project [7]. Each node
in an SDF graph produces and consumes a given number
of items, and there can be delays along the arcs between
nodes (corresponding loosely to items that are peeked in
StreaMIT). As in StreaMIT, SDF graphs are guaranteed
to have a static schedule, testing for deadlock is decidable,
and there are a number of nice scheduling results incorpo-
rating code size and execution time [4]. However, previous
results on SDF scheduling do not consider constraints im-
posed by point-to-point messages, and do not include a no-
tion of StreaMIT’s information wavefronts, re-initialization,
and programming language support.

A specification package used in industry bearing some like-
ness to StreaMIT is SDL: Specificacation and Description
Language [1]. SDL is a formal, object-oriented language for
describing the structure and behavior of large, real-time sys-
tems, especially for telecommunications applications. It in-
cludes a notion of asynchronous messaging based on queues
at the receiver, but does not incorporate wavefront seman-
tics as does StreaMIT. Moreover, its focus is on specification
and verification whereas StreaMIT aims to produce an effi-
cient implementation.

7. CONCLUSIONS

This paper presents StreaMIT, a novel language for high-
performance streaming applications. Streaming programs
are an emerging class of very important applications with
distinct properties from other recognized application classes.

StreaMIT aims to raise the abstraction level in stream pro-
gramming, thereby improving programmer productivity and
program robustness. This paper presents fundamental pro-
gramming constructs for the Stream application domain. It
identifies information flow as the natural model for reasoning
about streaming applications, and presents a formal defini-
tion of the language using a semantics of time for StreaMIT.

The second goal of StreaMIT is to provide a compiler that
performs stream-specific optimizations to achieve the per-

12

formance of an expert assembly programmer. Currently, a
library-based implementation of StreaMIT is working. We
are starting the development of the first compiler implemen-
tation of StreaMIT. Another area of future research is to
develop a clean high-level syntax for StreaMIT. The Java-
based syntax has many advantages, including programmer
familiarity, availability of compiler frameworks and a robust
language specification. However, the resulting StreaMIT
syntax is cumbersome.

8. REFERENCES

[1] Specification and description language. CCITT
Recommendation Z.100, ITU, Geneva, 1992.

H. Abelson and G. Sussman. Structure and
interpretation of computer programs. MIT Press,
Cambridge, MA, 1985.

2]

G. Berry and G. Gonthier. The esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87-152, 1992.

(3]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Software Synthesis from Dataflow Graphs. Kluwer
Academic Publishers, 1996. 189 pages.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1997.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305-1320,
September 1991.

[7] E. A. Lee. Overview of the ptolemy project. UCB/ERL
Technical Memorandum UCB/ERL M01/11, Dept.
EECS, University of California, Berkeley, CA, March

2001.

S. Rixner, W. J. Dally, U. J. Kapani, B. Khailany,

A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens. A
bandwidth-efficient architecture for media processing.

In Proceedings of the 6th International Symposium on

High-Performance Computer Architecture, Dallas, TX,
November 1998.

[9]

R. Stephens. A survey of stream processing. Acta
Informatica, 34(7):491-541, 1997.

S 10
L]]]
s 10 > —9
= =N 0 0] 15
14 i — weighted round — —1 1
T 8 round robin i 3
13 B Tl robin (2, 2) = 31
ae 2] o - 5
T ! 13| > 14
10 5] 2 :(2)
() —|
- Welghmd) round robin 8
7 robin (4, 4) 2
: [15] =1 3
5 i 14 15 =
4 114] 12 13 EE
3 |13] 6 14 3
12 —4 Gl .
2 7 round robin — ‘'weighted round T
R 6 15] robin (2, 2) = 4
2 5] — 0
15| 13 =
L4] 7 2]
LS|

Figure 15: The bit reverse order filter in the FFT, with N=8. The tapes illustrate the data re-shuffling.

[11]
2 [9]
0 10
7 | 8 | Jout=pop()+pop() CIEEN)
7
— 1 5]) G
| 11] o 1] 6| (5+7) (O-11)
| 10] 9] %] (@+6) (8-10)
=N [10] BN (1+3) l(o+11)
18 8] 1 (0+2) 8+10)
1 7] (7] =1 5-7)
S Wweighted roun round robin ju 5 | duplicate [0] welggtedzro; " (9:6)
[5]\ robin(2,2) S — robin (2,2) /1 (5+7)
4] 4] |11 11 (226)
13| 11 o 3] | 9 | (8-10) (1-3)
12| 10 10, 1] 110/ -7 0-2)
1] 7 z 2] |8 | (46 at3)
Lo 3 S o] 17 (1-3) 0+2)
3 5 1> | 0-2)
2 | Yout=pop('w[.1Y' L2 % out=pop()-pop()
[3]
| 1]
12|
O]

Figure 16: The 4x4 butterfly stage in the FFT. The tapes illustrates the data transformation and computation.

13

class RFtoIF extends Filter {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
int size, count;
float weight[];
void init(float f) {
setf (f);
}
void work() {
output.push(input.pop() *weight [i++]);
if (count==size) count = 0;
}
void setf(float f) {
count = 0Q;
size = CARRIER_FREQ/f*N;
weight = new float[size];
for (int i=0; i<size; i++)
weight[i] = sine(i*PI/size);

}
class FIR extends Filter {

Channel input = new FloatChannel();
Channel output = new FloatChannel();

int N;

void init(int N) {
this.N = N;

}

void work() {
float sum = 0;
for (int i=0; i<N; i++) {
sum += input.peek(i)*FIR_COEFF[i][N];
}
input.pop();
output.push(sum) ;

}

class Booster extends Stream {
void init(int N, boolean adds) {
if (adds) add(new FIR(N));
}
}

class Butterfly extends Stream {
void init(int N, int W) {
add(new SplitJoin() {
void init() {
setSplitter (WEIGHTED_ROUND_ROBIN(N, N));
add(new Filter() {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
float weights[] = new float[W];
int curr;
void init() {
for (int i=0; i<W; i++)
weights[i] = calcWeight(i, N, W);
curr = 0;
}
void work() {
output.push(input.pop () *weights [curr++]);
if (curr>= W) curr = 0;
}
b
add (IDENTITY());
setJoiner (ROUND_ROBIN) ;
W
add(new SplitJoin() {
void init() {
setSplitter (DUPLICATE);
add(new Filter() {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
void work() {
output.push(input.pop() - input.pop());
}
B;
add(new Filter() {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
void work() {
output.push(input.pop() + input.pop());
}
b
setJoiner (WEIGHTED_ROUND_ROBIN(N, N));
W
1

Figure 17: A Trunked Radio Receiver in StreaMIT.

14

class FFT extends Stream {
void init(int N) {
add (new SplitJoin() {
void init() {
setSplitter (WEIGHTED_ROUND_ROBIN(N/2, N/2));
for (int i=0; i<2; i++)
add(new SplitJoin() {
void init() {
setSplitter (ROUND_ROBIN) ;
add (IDENTITY());
add (IDENTITY());
setJoiner (WEIGHTED_ROUND_ROBIN(N/4, N/4));
;
setJoiner (ROUND_ROBIN) ;
)
for (int i=2; i<N; i*=2)
add(new Butterfly(i, N));
1}

class CheckFreqHop extends SplitJoin {
RFtoIFPortal freqHop;
void init(RFtoIFPortal freqHop) {
this.freqHop = freqHop;
setSplitter (WEIGHTED_ROUND_ROBIN(N/4-2,1,1,N/2,1,1,N/4-2));
int k = 0;
for (int i=1; i<=5; i++) {
if ((i==2) || (i==4)) {
for (int j=0; j<2; j++) {
add(new Filter() {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
void work() {
float val = input.pop();
if (val >= MIN_THRESHOLD)

freqHop.setf (FREQ[k], new TimeInterval(4*N, 6%N));

output.push(val);
}
b
kt++;
}
} else add(IDENTITY());

}
setJoiner (WEIGHTED_ROUND_ROBIN(N/4-2,1,1,N/2,1,1,N/4-2));

}

class CheckQuality extends Filter {
Channel input = new FloatChannel();
Channel output = new FloatChannel();
float aveHi, avelo;
BoosterPortal boosterSwitch;
boolean booster(On;
void init(BoosterPortal boosterSwitch, boolean booster0On) {
aveHi = 0; avelo = 1;
this.boosterSwitch = boosterSwitch;
this.boosterOn = booster(On;
}
void work() {
float val = input.pop();
aveHi = max(0.9*aveHi, val);
avelo = min(1.1*aveLo, val);
if (aveHi - aveLo < QUAL_BAD_THRESHOLD && !booosterOn) {
boosterSwitch.init(true, BEST_EFFORT);
booster(On = true;
}
if (aveHi - avelLo > QUAL_GOOD_THRESHOLD & boosterOn) {
boosterSwitch.init(false, BEST_EFFORT);
boosterOn = false;
}
output.push(val);

}

class TrunkedRadio extends Stream {

int N = 64;

RFtoIFPortal freqHop = new RFtoIFPortal();

BoosterPortal on0ff = new BoosterPortal().

void init() {
ReadFromAtoD in = add(new ReadFromAtoD());
RFtoIF rf2if = add(new RFtoIF(STARTFREQ));
Booster iss = add(new Booster(N, false));
add (new FFT(N));
add (new CheckFreqHop(freqHop));
add(new CheckQuality(onOff, false));
AudioBackEnd out = add(new AudioBackEnd());

freqHop.register (rf2if);
on0ff.register(iss);
MAX_LATENCY(in, out, 10);

APPENDIX: Details on Java Syntax
*¥kk DR A FT***

1. JAVA CLASSES

A diagram of the Java class hierarchy for StreaMIT is shown
in Figure 18. A summary of the methods in each class is as
follows.

1.1 StreaMIT Object

A StreaMITObject contains static fields and methods that
are useful for all classes in the stream. The other classes
extend this type simply so that they can share the same
namespace as the constants and methods that it defines.

1.1.1 Fidds
TimeInterval BEST_EFFORT

This pre-defined time interval indicates that a message should
be delivered on a “best-effort” basis, without strict timing
guarantees.

SplitJoinType ROUND_ROBIN

This is used to specify a round robin splitter or joiner.

SplitJoinType NULL

This is used to specify a splitter or joiner that is null (it
processes no items).

SplitJoinType DUPLICATE
This specifies a duplicating splitter.

SplitJoinType COMBINE

This specifies a combining joiner.

112 Methods
SplitJoinType WEIGHTED_ROUND ROBIN(int wil, int w2,

This specifies a weighted round robin with the given weights.
This function does not take a variable number of arguments,
but rather is defined for all numbers of arguments that would
be likely to occur in a StreaMIT program.

Filter IDENTITY()

This returns a Filter that outputs exactly the items that
it inputs.

MAX_LATENCY(Stream a, Stream b, int n)

This directive constrains the schedule such that, at any given
time, a can only progress up to the wavefront of information
that b will see after n invocations of its own work function.

1.2 StreamextendsStreaMIT Object

The Stream represents a portion of the stream graph that
inputs has exactly one input channel and exactly one output
channel.

1.2.1 Methods

void init(user-defined arguments)

The init function is called automatically when the Stream

15

StreaMITObject

t

Stream

SplitJoin

Filter FeedbackLoop

Figure 18: The StreaMIT class hierarchy. Other
StreaMIT unrelated to this hierarchy are
SplitJoinType, Channel, Portal, and TimeInterval.

classes

is first instantiated; it receives as its arguments the same
arguments that were passed to the constructor. Addition-
ally, the init function can be called again with a message
at runtime to trigger a re-initialization of this stream. The
purpose of the function is to initialize child streams and to
set parameters used with this stream. The filter can also
push, pop, and peek items from its channels from within
the init function, although this usually isn’t necessary.

Stream add(Stream child)

The add function appends child to the current pipeline of
blocks comprising this stream and returns child. It can
only be called from within the init function.

void run()

The run function provides an outside interface for starting
the stream. No component of any stream may call run.

1.3 Filter extendsStream

The Filter is the most basic kind of stream. It contains
no child streams, and thus calling add is forbidden from
within its init function. Instead, the Filter defines a work
function that explicitly describes the transfer of input items
to output items. A filter has some input and output type,
hereafter referred to as <input-type> and <output-type>,
respectively.

131 Fields

Channel input
Channel output

These input and output channels must be the first two fields
declared in the class. At the line of their declaration, they
should be initialized to be a new <input-type>Channel and
<output-type>Channel, respectively. These Channel types
will be auto-generated.

1.3.2 Methods

void work()

The work function represents the most fine-grained execu-
tion step of the filter. It can read from the input channel,
write to the output channel, modify the state of the filter,
and send messages.

<input-type> drain(int index)

The drain function specifies what values should be output
from this filter if it lies on the boundary of a region that is
being re-initialized. For the information in the re-initialized
region to drain out, downstream filters will need to input
data from the upstream edge of the region. However, we do
not want to pull fresh information from outside of the region
into the drain, so the drain function is invoked instead to
fabricate data. The drain function is successively called
with indices 0, 1, 2, ... until the downstream region has
drained.

1.4 SplitJoin extendsStream
141 Methods

A SplitJoin is a set of independent, parallel streams that
are contained between a splitter and a joiner.

Splitter setSplitter(SplitJoinType splitter)

This command sets the splitter within a SplitJoin and re-
turns its argument. It must be called in the init function
of the SplitJoin.

Joiner setJoiner(SplitJoinType joiner)

This command sets the joiner within a SplitJoin and re-
turns its argument. It must be called in the init function
of the SplitJoin.

Stream add(Stream child)

This add function overrides the add function of Stream to ap-
pend child as a parallel component within the SplitJoin.
The first stream to be added is connected to the first port
of the splitter and joiner, and likewise with the rest of the
streams. This function returns its argument.

1.5 FeedbackLoopextendsStream
The FeedbackLoop provides the means for creating cycles in
the stream graph.

151 Methods

Joiner setJoiner(SplitJoinType joiner)
Stream setBody(Stream stream)

Splitter setSplitter(SplitJoinType splitter)
Stream setLoop(Stream stream)

These methods set the joiner, body stream, splitter, and
loop stream for the feedback loop; they each return their
argument. Each of them must be called from within the
init function.

<varying type> initPath(int index)

The initPath function provides inputs to the joiner at the
head of the feedback loop during the initialization period
when there are no items on the channels around the loop.
The function is called with the number of the item that is
being requested, starting from 0.

void setDelay(int delay)

The setDelay function specifies how many times the initPath

function is invoked before the joiner starts drawing input
items from the feedback channel.

1.6 SplitJoinType

A SplitJoinType represents a compiler-defined configura-
tion for the splitter or joiner in a SplitJoin. For now, the user
cannot define custom SplitJoinType’s, and the only ones
available are those that are constant fields in StreaMITObject.

1.7 Channel

Channels are of a given type <channel-type>, and are auto-

generated classes. Their full Java class name is <channel-type>Channel,

e.g., IntChannel. They provide typed FIFO queues commu-
nicating steady-state data between filters.

1.7.1 Methods

<type> pop()

The pop function removes the item from the end of the chan-
nel and returns it.

<type> peek(int index)

The peek function returns the value at index slots from the
end of the channel, where peek(0) = pop(). Unlike pop,
peek does not remove any items from the channel.

void push(<type> item)

The push function enqueues item onto the front of the chan-
nel.

1.8 Portal

Portals provide a means for broadcast messaging within
StreaMIT. They are of a given type <portal-type>, and
are auto-generated classes. Note that <portal-type> can
be either a class or an interface. Their full Java class name
is <portal-type>Portal, e.g., MyFilterPortal.

1.81 Methods

void register(<portal-type> receiver)

The register method adds receiver to this portal as an
object that will be the target of all messages passed to the
portal.

all void methods of <portal-type>

A portal automatically defines each of the void methods
that is implemented by <portal-type>. Since these meth-
ods have no return value, their invocation can act as a mes-
sage to the receiver object. However, the signature of these
methods is modified to accept an extra argument of type
TimeInterval, which specifies the timing of the message de-
livery. When a method is called on the Portal, it is treated as
a message and is forwarded to all registered receivers within
the given time interval.

1.9 Timelnterval

The TimeInterval class simply provides a wrapper for spec-
ifying the upper and lower time limits for a message delivery.

191 Methods

TimeInterval(int maxTime)

This constructs a time interval with maximum delivery time
maxTime. The units of time are according to relative infor-
mation wavefronts as described in the paper.

TimeInterval (int minTime, int maxTime)

This constructs a time interval with minimum delivery time
minTime and maximum delivery time maxTime. The units
of time are according to relative information wavefronts as
described in the paper.

2. SEMANTIC CHECKING

2.1 Javarestrictions

Although this version of StreaMIT is expressed as legal Java
syntax, it allows only a small subset of the features of Java.
Here we list some of the syntactical elements of Java that
fall outside the domain of legal StreaMIT programs.

1. StreaMIT disallows any instantiation, subclassing, or
method call to any object from the Java class libraries.
The only exception is Object itself, which may be sub-
classed as the basic means of abstraction; however, no
member functions of Object may be called. Note that
this eliminates threads and exceptions from considera-
tion because they require the instantiation of an object
from the class library.

2. StreaMIT does not support native method calls.

2.2 StreaMIT restrictions

Though every legal StreaMIT program is a legal Java pro-
gram, there are legal Java programs—even with the con-
straints of Section 2.1-that violate higher-level semantic re-
quirements of StreaMIT. We outline these constraints as fol-
lows:

1. In this version of StreaMIT, each invocation of a filter’s
work function must peek, pop, and push a constant
number of items. Dynamic rates will be the subject of
future work.

2. If two filters are connected, then their corresponding
input and output types must match. We postpone a
formal treatment of types until a future paper.

3. A given instance of a stream or filter must not appear
more than once in the stream graph.

4. A message handler cannot push, pop, or peek items
from the input and output channels of a filter. How-
ever, a message handler can send another message.

5. There must be no deadlock or buffer overflow in the pro-
gram. We have developed a simple algorithm to verify
that feedback loops and simple round-robin SplitJoins
neither deadlock nor overflow.

6. For weighted round robin SplitJoins, we are still devel-
oping our analysis. For now, we can at least verify that
if the first filter on a branch of a SplitJoin inputs zero
items and the splitter is a weighted round robin, then
the splitter must have a weight of 0 assigned to the
branch. Similarly, if the last filter on a branch output
zero items and the joiner is a weighted round robin,
then the joiner must assign a weight of 0 to the branch.

7. The numer of inputs and outputs on weighted round
robin joiners and splitters must match the number of
parallel streams in a SplitJoin.

8. The splitter and joiner in a feedback loop must have
two outputs and two inputs, respectively, and must be
something other than NULL.

17

