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Abstract

Memory alignment is an important property in memory sys-
tem performance. Extraction of alignment information at
compile-time enables the possibility for new classes of pro-
gram optimization. In this paper, we present methods for
increasing and detecting the alignment of memory references
in a program. Our transformations and analyses do not re-
quire interprocedural analysis and introduce almost no over-
head. As a result, they can be incorporated into real com-
pilation systems.

On average, our techniques are able to achieve a five-fold
increase in the number of dynamically aligned memory ref-
erences. We are then able to detect 94% of these operations.
This success is invaluable in providing performance gains in
a range of different areas. When alignment information is
incorporated into a vectorizing compiler, we can increase the
performance of a G4 AltiVec processor by more than a fac-
tor of two. Using the same methods, we are able to reduce
energy consumption in a data cache by as much as 35%.

1 Introduction

An important focus of past compiler research has been op-
timizations that target the memory system. Examples in-
clude register allocation, loop tiling, array padding, and data
prefetching. In the late 1980’s, the Bulldog compiler intro-
duced the importance of alignment issues in memory system
performance [7]. However, in the years following, little work
has been done in this area. One of the major reasons for
this is that very few memory references are actually aligned
in practice. In the SPEC95fp and MediaBench benchmark
suites only 14% of the dynamic accesses are aligned.

In this paper, we introduce a comprehensive set of pro-
gram transformations to improve memory alignment. These
techniques are able to increase alignment to 80% in the
SPEC95fp benchmarks and 62% in the MediaBench bench-
marks. We also present an algorithm that automatically
detects aligned memory references. The availability of qual-
ity alignment information at compile-time enables a new
class of program optimizations. We demonstrate the need
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for alignment information in improving the performance of
multimedia and clustered architectures, as well as reducing
energy consumption in low-power processors.

Ordinarily, the compiler abstracts data memory as a lin-
ear array of cells. However, it is often beneficial to view a
memory structure as a two-dimensional array of rows and
columns. Cache memory, for example, is composed of a col-
lection of cache lines that are loaded and evicted atomically.
Here, the cache lines can be viewed as rows and the address-
able units within the cache line can be viewed as columns.
Based on this row and column paradigm, detecting mem-
ory alignment consists of computing the columns accessed
by a particular static memory reference. This is most useful
when it can be determined that a load or store operation in
fact accesses the same column for each dynamic invocation.
In this situation, we consider the memory reference to be
aligned. For aligned references, we associate an alignment
that specifies which column is accessed.

In a cache memory, the alignment of an aligned reference
and the width of the operation specify which bytes within
the cache line are accessed. Since the width of a cache line
is conventionally a power of two, alignment detection can be
regarded as determining the low-order bits of an address at
compile-time. As another example, consider the application
of memory alignment to a clustered or banked-memory ar-
chitecture. In a clustered design, memory is divided among
a number of distinct banks. Here, it is natural to regard a
row as a slice through the banks. With this view, the align-
ment of a memory reference specifies the bank in which the
data are located.

This paper makes the following contributions:

e Introduces a two-dimensional abstraction for data
memory that leads to a simple formulation for an align-
ment detection algorithm.

e Provides an extensive suite of alignment enhancing op-
timizations.

e Shows that a profile-based system is capable of extract-
ing the necessary global alignment information with-
out reliance on whole-program analysis.

e Demonstrates the effectiveness of obtaining alignment
information for two benchmark suites.

e Establishes the importance of alignment information
in improving performance and energy consumption.

The remainder of this paper proceeds as follows: In the
next section we overview the areas in which alignment in-
formation is already being used. In Section 3, we discuss
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Figure 1: Dataflow lattices for problems with eight and six columns.

the details of the alignment detection algorithm we have de-
veloped. Section 4 describes our suite of transformations
for increasing the number of aligned memory references in a
program. In Section 5, we present results of our techniques
and the effect they have on improving performance in real
systems. Finally, we outline related work and conclude.

2 Applications of Alignment Detection

Alignment information is central to a wide variety of
memory-related compiler optimizations. These range from
techniques to increase parallelism, to methods for reducing
energy consumption. The following subsections discuss some
of the areas in which our compiler system is already being
employed.

2.1 Multimedia Compilation

Multimedia instructions are now common among general-
purpose microprocessors. These extensions add a set of
short SIMD or vector instructions to the ISA in order to
exploit the data parallelism available in multimedia appli-
cations. One of the key benefits provided by these extensions
is the ability to load or store multiple data items using a sin-
gle wide memory instruction. In order to achieve the best
performance, however, these operations must be naturally
aligned, meaning that a transfer of n bytes must fall on an
n-byte boundary.

Architectures such as Motorola’s AltiVec are unable to
operate on data that are not naturally aligned. If align-
ment can not be guaranteed, software must explicitly merge
data from two consecutive regions. Proper alignment can
improve performance by as much as a factor of two, with
an average improvement of 20% [1]. Even architectures that
are capable of accessing misaligned data can incur a per-
formance penalty. For example, the wide load instructions
offered in the Pentium II and Pentium III require six to nine
extra cycles if the data cross a cache line boundary [11].

In previous work, we presented a compiler algorithm
that automatically extracts SIMD parallelism from sequen-
tial programs without using complicated vectorization tech-
niques [13]. We use alignment information to ensure that
all wide memory operations fall on a natural boundary. In
our approach, alignment information greatly simplifies the
parallelization algorithm.

2.2 Compilation for Banked Memory Architectures

Global wire delay will soon become a significant problem
for conventional microprocessor designs [2, 10]. Large, cen-
tralized structures will limit cycle time, making it diffi-
cult to provide performance improvements. To deal with

this, future architectures will likely consist of clusters or
tiles [15, 16]. Among other things, these architectures re-
place a centralized memory with a series of independent
banks. Compared to a monolithic memory, decentralized
memory banks operate with lower latency and can provide
higher aggregate bandwidth.

In a clustered design it is typical that each processing
unit has fast access to a subset of the memory banks. Data
that are close to a processing unit can be accessed quickly,
whereas communication to a remote bank is slower. In this
situation, it is desirable that computation be placed near its
data. Furthermore, memory operations that access differ-
ent banks are guaranteed to be distinct and can be safely
executed in parallel. As mentioned in the previous section,
alignment detection is used to determine the bank in which
particular data reside.

The prototype compiler for the Raw machine [16] is cur-
rently using our analyses to help parallelize sequential appli-
cations across clusters of processing units. Alignment tech-
niques will be useful in any design where memory access
time is dependent on the distance to a remote bank.

2.3 Compilation for Low-Power

Low-power microprocessors are garnering more attention re-
cently due to the proliferation of mobile computing devices.
One way to improve energy consumption is to eliminate tag
checks in the data cache. This can have a significant effect
on total performance since low-power caches, such as the
one found in the StrongARM microprocessor, expend over
50% of their energy in the tag checks [19].

Tag checks can be eliminated when the location of a data
item is known beforehand. As discussed, alignment informa-
tion reveals the cache line location of a memory operation
at compile-time. A simple architectural enhancement can
use this information to eliminate data cache tag checks [18].
The techniques described in this paper are essential in the
resulting reduction of energy consumption.

3 Alignment Detection

We have developed a simple and robust analysis for detect-
ing alignment in programs. The algorithm operates on ar-
bitrary control flow and low-level address calculations. As
such, it is not dependent on language or programming style.

The set of locations accessed by a particular static mem-
ory operation is represented using a stride and offset. If
we denote the stride as a and the offset as b, then this set
is characterized by the linear equation an + b, where n is
a non-negative integer. Under this scheme, we say that a
memory reference is aligned if its stride is equal to the num-
ber of columns in the given application. The alignment of
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Table 1: Transfer functions for alignment detection. The result
of operating on any element e and T is e. Otherwise, new elements
are computed using the number of columns, C, and the inputs
ain + b1 and aam + ba.

an aligned reference is given by the offset.

We have implemented alignment detection as an iterative
dataflow analysis. For every point in a procedure, we asso-
ciate each address variable with a linear equation of the form
described above. The elements present in the dataflow lat-
tice and the structure of the lattice itself are dictated by the
number of columns in the specific problem. Figure 1 shows
the lattices for problems with eight and six columns. In or-
der to successfully uncover aligned memory references, the
maximum stride represented in the lattice must be equal to
the number of columns. The other strides seen in the lattice
include all factors of this value. These points are described
more carefully in the appendix.

In the lattices for alignment detection, the L element
usually seen in dataflow analysis is equivalent to the element
n + 0. This element is used when nothing is known about
the value of a variable. In this case, we must assume the
variable can take on any value. The T element has its usual
representation. It is associated with variables that have yet
to be assigned during iteration over the control-flow graph.

Element values are propagated using the transfer func-
tions listed in Table 1. Addition, subtraction, and multipli-
cation are the operations typically found in address calcu-
lations. The meet operator is used to merge control flow.
Derivations for the transfer functions can be found in the
appendix. Any operations not listed in the table result in
the element n+ 0. For a constant, D, we assign the element
Cn+d, where C is the number of columns and d = D mod C.
While this describes values beyond the constant itself, it cap-
tures the correct alignment information.

It may be possible to derive transfer functions for other
arithmetic or logical operations. However, we have not
found any instances in the benchmarks we surveyed where
this would be useful. Load instructions appear in address
calculations when memory is accessed indirectly, but our
analysis does not attempt to track values in memory. As
a result, we do not detect alignment for indirect memory
references.

4 Alignment-Enhancing Transformations

In order for alignment detection to be useful, aligned refer-
ences must exist in the program. In Section 5, we present

int a[100];
for (i=0; i<100; i++) {
a[i] = 0;
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Figure 2: (a) The memory reference in the loop body is unaligned
since it accesses consecutive locations. (b) After unrolling, each
memory reference accesses only a single location. For simplicity,
we will assume the iteration count is always a multiple of the
unroll factor.

data showing that the vast majority of memory references
are in fact unaligned in practice. The primary reason for this
is illustrated in the simple loop of Figure 2(a). Here, the ar-
ray reference within the loop accesses consecutive memory
locations on each iteration and is therefore unaligned. This
section discusses the transformations we have implemented
to greatly increase the number of aligned memory references.

In the next three subsections, we discuss the transforma-
tions that form our core approach to increasing alignment.
In all of the benchmarks we surveyed, these transformations
were universally effective in creating aligned memory refer-
ences. In addition, these techniques have the advantage of
being applied locally and do not require global or whole-
program analysis.

4.1 Alignment Conventions

To improve alignment when accessing aggregate data such
as arrays and structures, we regulate where these data are
placed. This requires that we allocate stack frames in blocks
that are a multiple of the number of columns. Alignment
of stack-allocated data can depend on the current position
of the stack pointer. Aligning stack frames ensures that
these data are aligned identically for any invocation of the
enclosing procedure.

Since the compiler is responsible for placement of data
within the stack, we can force the alignment of local data to
an arbitrary value. This is important for alignment detec-
tion since the analysis can not determine the alignment of
an array reference if the alignment of the base is unknown.
The same is true for an access to a structure field. For this
reason, we force all aggregate data structures to start on
a zero-aligned boundary. When the analysis encounters an
immediate value representing the base of an aggregate, it
can assume an element value of Cn + 0.

This same technique is used for global and heap-allocated
data as well. It is simple for the compiler to allocate global
data on whatever boundary it chooses. For data allocated
from the heap, it was necessary to modify the malloc library
routine to ensure that it always returns properly aligned
pointers.



void init(int *x)
{ . .
int i;
for (i=0; i<100; i++) {
if (&[i] %16 == 0)
br eak;
x[i] =0;
}
for (; i<100; i += 4) {
x[i +0] 0;
x[i+1]
x[i +2]
x[i +3]
}

0;
0;
0

}

int main()
{
int x[200];
init(&[0]);
}

Figure 3: A pre-loop is used to iterate until a known alignment
is reached. This guarantees alignment within the unrolled loop.

4.2 Loop Unrolling

Loop unrolling is used to increase the number of aligned
memory references within loop bodies. An example of this is
shown in Figure 2(b). When the loop is unrolled by a factor
consistent with the number of columns, each new memory
reference will access only a single column. In our current
approach, we unroll each loop by a factor of C'/w where C
is the number of columns and w is the width of the largest
data type loaded or stored in the loop body.

Since the majority of dynamically executed memory op-
erations are located within loops, loop unrolling is funda-
mental to ensuring that a large number of memory references
are aligned.

4.3 Enforcing Alignment with a Pre-loop

After loop unrolling, we are able to detect the alignment
of most accesses to a local or global array. This relies on
the fact that the bases of these arrays are guaranteed to
be zero-aligned. However, programming languages such as
C allow arbitrary pointers into the middle of an array. If
an array base is passed as a pointer to a procedure, the
alignment of an access derived from this pointer is unknown
unless we know the alignment of the pointer upon entry to
the procedure.

We can overcome this difficulty using a pre-loop. An ex-
ample of this is shown in Figure 3. The pre-loop is used to
execute a few iterations of the original loop until the mem-
ory reference within the loop reaches a known alignment. At
this point, we can exit the pre-loop and begin execution of
the unrolled version. This has two consequences. First, we
guarantee that the memory references within the unrolled
loop are aligned. Second, the alignment can be communi-
cated to the alignment detection analysis since the compiler
is responsible for choosing the exit condition.

The pre-loop is a simple optimization that allows us to
determine the alignments of references derived from pointer
arguments. The difficulty is in choosing the exit condition.
Our solution is to use a profile-based scheme to observe the
run-time alignment behavior. Before we give the details of

void init(int *x)

{
int i;
for (i=0; i<100; i+=2) {
if (&[i] %16 == 0) “0 _40
br eak; . :
x[i] = 0; > -
} e
} second call
[ i [ &=z[i]%16 |
int nmain() (1) g
{ L s
int x[200];
init(&[1]);
init(&[0]);
}

Figure 4: A memory access with non-unit stride complicates the
choice for the exit condition. In this example, the exit condition
is never satisfied for the first call.

this solution, we first describe the complexities of choosing
the exit condition.

4.3.1 Non-unit Strides

At first glance, it may seem as though the choice for an exit
condition is arbitrary. In the example of Figure 3, the pre-
loop exits when the alignment of the memory access reaches
zero. Regardless of how the array is passed, the pre-loop
will execute a small number of iterations until the desired
alignment is reached. As long as the total iteration count is
sufficiently high, the majority of dynamic memory references
will take place in the unrolled loop.

However, an arbitrary choice for the exit condition can
lead to a circumstance where the exit condition is never
satisfied. Consider a situation in which a memory reference
does not have unit stride. An example of this is shown in
Figure 4. For the first call to the procedure, an alignment
of zero is never observed. This means that all iterations will
take place in the pre-loop and we will gain no alignment
information. Assuming the iteration count is sufficiently
high, the exit condition will be satisfied under the following
condition:

Theorem 4.1 Given a memory reference with stride s, ini-
tial access to location xo, and C columns, there will be an
access to column c iff

2o =c¢ (mod ged(s,C)).

The idea is that the memory reference will access exactly
the columns z¢ + sn (mod C), for integer n. Thus, we are
trying to determine if the equation

sn=(c—z0) (modC)

has any solutions for n given s, ¢, o and C. This occurs
exactly under the conditions given in the theorem. The
proof can be found in any text covering elementary number
theory, for example [5].

4.3.2 Calls with Conflicting Alignments

The choice of exit condition becomes more complicated
when a pointer parameter is assigned different alignments



void copy(int *x, int *y)

int i; first call
for (i=0; i<100; i++) { 1 [ %16 [ y%16

if (&[i] %16 == 0 && 0] o 0
&y[i] %16 == 0) ; g ;}

br eak; 3| 12 12

x[i] =vy[il; P 0 0

} second call

[ 1 [z%16 [ y%16 |

int main() 0 0 4
{ 1 1 8
. ) 2 8 12
!nt x[ 2007 ; 3 13 0
int y[200]; 1 0 1
copy(&x[0], &y[0]);

} copy(&x[0], &[1]);

Figure 5: A pre-loop with multiple variables. The exit condition
can be satisfied for only one of the function calls.

for different invocations of the enclosing procedure. An ex-
ample of this is also shown in Figure 4. In this situation, it
is not possible to find an exit condition that is satisfied for
both invocations of the procedure. If the exit condition is
set to four, the pre-loop will exit for the first call, but not
for the second. If it is left at zero, the reverse is true.

4.3.3 Multiple Variables

The final consideration in constructing the pre-loop exit con-
dition is the inclusion of multiple variables. In real appli-
cations, most loops will contain accesses to more than one
pointer. A check has to be made for each variable whose
alignment we wish to guarantee in the unrolled loop. A
simple example of two variables is shown in Figure 5. Here,
the discrepancies in alignments among different invocations
of the procedure lead to two possible courses of action. First,
we could exit from the pre-loop based on the alignment of
both variables. This would guarantee their alignment in
only one of the function calls. For the other call, the exit
condition would never be met. Alternatively, we could exit
from the pre-loop contingent on the alignment of z[i] or y[4]
alone. With this scheme, we would be able to guarantee
the alignment of one of the references for both procedure
calls. However, the alignment of the other variable would
be unknown.

4.3.4 Choosing the Exit Condition

Now that we have outlined the choices available in construct-
ing the pre-loop exit condition, we now discuss our specific
implementation. The goal is to maximize the number of
aligned references we are able to detect at compile-time.
The best choice depends on the number of memory refer-
ences in the loop, their initial alignment and stride, and the
total iteration count of the loop.

Our solution is to use a profile-based approach. The tech-
nique is as follows. Before each inner loop, we insert code
to record the initial alignment of every memory reference in
the loop. Each set of alignments is then augmented with
the total iteration count across all invocations of the loop.
After executing the application, this information can be an-
alyzed offline. In the worst case, profiling data could grow
unmanageably large. Specifically, in a loop with n mem-

ory references, there are C™ possible sets of alignments for
a target of C columns. If profiling data become too large,
we could choose to store only the most frequently encoun-
tered sets of alignments. However, we have not observed
this problem in the applications we surveyed. None of our
benchmarks require more than a 28 kilobyte text file to store
all profiling information.

In order to determine the upper limit on performance
we can achieve with profiling, we have implemented an al-
gorithm that chooses the exit condition using an exhaustive
search. For each memory reference in the original loop body,
we need to decide if it will be included in the pre-loop exit
condition. If not, then we can not guarantee its alignment
in the unrolled loop. If it is included, we need to choose
the alignment against which to compare. The exhaustive
search iterates over all possible exit conditions. For a given
set of alignments, we can compute the other sets that can be
satisfied using Theorem 4.1. Based on the profile data, we
can calculate the number of iterations that would be spent
in the unrolled loop versus the pre-loop. This number is
then multiplied by the number of references that will have
guaranteed alignment in the unrolled body. The exit con-
dition with the highest resulting value maximizes alignment
information.

The exhaustive search finishes quickly for most of our
benchmarks. However, it requires an unreasonable amount
of time for two loops in applu. Since an exhaustive search
requires exponential running time, a heuristic algorithm is
needed for a general solution. The simplest approach merely
chooses the set of alignments with the highest associated
iteration count. Here, all memory references within the loop
are included in the exit condition. With this approach, we
are able to detect over 97% of the aligned references detected
with the exhaustive search. Since this result is near-optimal,
we do not explore other heuristics.

A potential shortcoming in any profile-based scheme is
that program transformations are based on the results of a
single data set. If alignment characteristics vary widely with
input data, profiling will not produce good results. In Sec-
tion 5, we present data showing that our results are highly
immune to the particular choice of profile data set. In fact,
we achieve nearly identical results regardless of the input
data. As such, we believe that profiling is particularly well-
suited to the alignment problem.

An alternative to profiling is a completely static ap-
proach that employs interprocedural analyses. In fact, we
have implemented a version of our analysis that propagates
alignment information across call boundaries. However, we
strongly believe that whole-program analysis is not practical
for real applications. Traditionally, whole-program analyses
do not scale to large program sizes. Furthermore, they usu-
ally require that the entire source be available. This makes it
difficult to use separate compilation or dynamically-linked
libraries. Even when whole-program analysis is practical,
the presence of pointer aliasing makes it difficult to main-
tain precise alignment information.

4.4 Secondary Transformations

The transformations described above form the basis of our
approach for increasing the amount of aligned memory refer-
ences. These techniques are generally applicable and provide
large improvements for all of our benchmarks. This section
covers other techniques that can be used to further increase
alignment. The transformations listed here are more spe-
cialized, increasing alignment in specific situations.
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Figure 6: Memory layout of a two-dimensional array with three
elements in the low-order dimension. (a) The same index into the
low-order dimension is aligned differently for different indexes into
the high-order dimension. (b) After padding, they have the same
alignment.

441 Padding Multidimensional Arrays

When accessing multidimensional arrays, it may be useful
to pad the array in the lowest dimension. A particular ref-
erence into the low-order dimension of the array will be con-
sistently aligned only if the size of the lowest dimension is a
multiple of the number of columns. For example, consider
the memory layout depicted in Figure 6. Part (a) shows
the layout without padding. Here, an index into the low-
order dimension is aligned differently for different indexes
into the high-order dimension. Part (b) shows the layout
after padding. In this case, the alignment is dependent only
on the low-order index.

Padding of multidimensional arrays must be handled
carefully. In Fortran, common block reshapes can be used
to view an array with an arbitrary number of dimensions,
regardless of how it is used elsewhere. In C, type casting
achieves the same effect. We have implemented an analysis
that determines when padding can be applied safely. Since
the algorithm must look at all uses of an array, it necessarily
requires whole-program analysis. Fortunately, we have dis-
covered that we can obtain the same benefits of padding us-
ing the pre-loop transformation. When multiple loop nests
are used to iterate over the elements of a multidimensional
array, a pre-loop is placed before the innermost loop. This
has the effect of realigning the memory references within
the inner loop on every iteration of the outer loop. Since
we expect the majority of memory references to take place
in the unrolled inner loop, most references are aligned. In
our experiments, we were able to obtain the same results
without padding.

4.42 Duplicating Constant Tables

Many multimedia codes contain references to arrays of con-
stants. These tables are often accessed in non-uniform pat-
terns, making their dynamic alignment erratic. Since these
arrays are usually small, we can duplicate them for each
possible alignment. For any reference to the table, we can
arbitrarily choose which copy to access.

This approach is effective, but has some limitations. The
first is an increased usage of memory. If the array elements
are b bytes, then we will require C/b copies of the array.
Also, we should make sure the table is never written. Oth-
erwise, modifications would have to be duplicated for every
alignment.

We have implemented a simple transformation that du-
plicates constant arrays that are below a size of our choos-

ing. The analysis only duplicates arrays that are local to the
source file and for which no modifications are performed. In
practice, these tables were small enough that the increased
memory usage was unnoticeable.

4.4.3 Other Loop Transformations

In situations when an inner loop does not iterate over the
low-order dimension of an array, unrolling will not create
aligned memory references. Under certain circumstances, it
may be possible to rearrange the order of loops in a loop
nest such that the innermost loop ranges over the low-order
dimension. This transformation is known as loop inter-
change [3]. While powerful, it is limited in that loops must
be perfectly nested. Also, loop-carried dependences may
render the transformation unsafe.

Another way to create aligned memory references when
loop nests are not conveniently ordered is to unroll outer
loops. In [4], Barua et al. developed precise equations for
computing the unroll factors of loops in a loop nest. This
technique has the advantage that it can create aligned refer-
ences in the presence of unpadded multidimensional arrays.
The only drawback to this approach is a potentially large
increase in code size due to excessive unrolling.

In the benchmarks we surveyed, we found limited oppor-
tunities for improving alignment using these loop transfor-
mations. If future investigations reveal a need, we will add
them to our toolchain.

5 Results

In this section, we present the results of our alignment
transformations and analyses. All compiler passes were im-
plemented in the SUIF [17] infrastructure. Where possi-
ble, results are shown for two benchmark suites: Media-
Bench [14] and SPEC95fp. For MediaBench, we have ex-
cluded ghostscript since the complex compilation process
for this benchmark is currently stressing our toolchain.

5.1 Effectiveness

We first show the ability of our transformations to increase
the number of aligned references and the success of our anal-
ysis in detecting them. For both suites, alignment was de-
termined relative to a column width of 32 bytes, which is
a typical size for a cache line. In Figure 7, the left bar
for each benchmark shows the number of aligned references
as a percentage of the total dynamic memory operations.
A single dynamic memory reference is considered aligned if
its alignment is the same for all other dynamic instances of
the same static operation. Results were obtained by instru-
menting each benchmark to record the alignment of every
memory reference at run-time. The transformed code was
converted to C, compiled natively, and then executed. For
the SPEC95fp benchmarks, the profile data set was used for
profiling and the reference data set was used to gather the
numbers shown in the graphs. The MediaBench benchmarks
do not have a standard profile data set, so the same input
was used for both runs.

The graphs in Figure 7 show alignment before modifica-
tion (original), and after successive application of each core
transformation. These include alignment conventions (con-
ven), inner loop unrolling (unrolling), pre-loop using the
simple heuristic (simple), and pre-loop using the exhaus-
tive search (exhaust). For the MediaBench benchmarks, we
also include duplication of constant tables (duplicate). This
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Figure 7: Alignment results for the MediaBench and SPEC95{p benchmark suites. The left bar for each benchmark shows the percentage
of aligned memory references. The right bar shows the percentage detected by our analysis. Results are shown after successive application

of each alignment-increasing transformation.

transformation is particularly important for adpcm. Padding
of multidimensional arrays did prove useful for some of the
SPEC95fp benchmarks. However, we have not included the
effect of this transformation since we were able to obtain the
same results using the pre-loop.

As can be seen from the figures, we rely heavily on
the alignment-enhancing techniques. Before the transforma-
tions are applied, only fpppp has a significant percentage of
aligned memory references. After the transformations, 62%
and 80% of the dynamic memory references are aligned in
the MediaBench and SPEC95fp benchmarks, respectively.
It is interesting to note the high contribution of the pre-
loop transformation in many of the benchmarks. For applu,
hydro2d, and mgrid, arguments to key procedures are passed
with different alignments for different invocations of the pro-
cedure. For swim and tomcatv, important multidimensional
arrays have a size that is inconsistent with the number of
columns and would otherwise require padding. Without the
pre-loop optimization, we observe very few aligned refer-
ences.

Figure 7 also presents the percentage of dynamically
aligned memory references that were detected by our
dataflow analysis. This is shown on the right bar for each
benchmark. Without our transformations, we are unable
to detect any alignment. At a minimum, alignment con-
ventions are needed to guarantee the position of array and
structure bases. After application of every transformation,
the analysis is able to detect nearly all of the aligned refer-
ences. The average percentage detected across each bench-
mark suite was 57% for MediaBench and 78% for SPEC95fp.
Overall, the alignment detection algorithm was able to un-
cover 94% of the aligned references available in the trans-
formed benchmarks.

Our compiler infrastructure does not include a back-end.
Therefore, the results presented in this section do not ac-
count for memory operations generated from register spills
and parameter passing. Since we already require the align-
ment of stack frames, any scalar stack accesses will be guar-
anteed to be aligned. Furthermore, the compiler is respon-
sible for placement of these data within the stack, meaning
their alignment is known at compile-time. As a result, the
numbers presented here are a conservative estimate of what
can be achieved using our techniques.

5.2 Overheads

We next analyze the overheads associated with our trans-
formations. The most worrisome is a possible increase in
execution time. This could negatively impact any perfor-
mance gains we achieve using alignment information. There
are two potential sources for an increase in execution time.
The first is unrolling, which can negatively impact the per-
formance of the instruction cache by increasing code size.
The second is the pre-loop, which introduces runtime align-
ment checks.

To test the impact of our transformations, we timed the
execution of the benchmarks in the SPEC95fp suite after
applying each transformation. Benchmarks were converted
to C from SUIF, compiled natively with gcc using full op-
timization, and timed using the Unix ¢ime command. The
MediaBench benchmarks execute too quickly in comparison
to the precision offered by the time command. Therefore, we
were unable to achieve meaningful results for these bench-
marks.

Increases in code size and execution time are shown in
Table 2. As can be seen, the execution time overheads for
both transformations are extremely low. For many of the
benchmarks, unrolling actually has a positive effect on the
execution time. The only benchmark that shows a notice-
able increase in execution time is wave5. Unrolling increases
execution time by 3.756%. Combined with the pre-loop, ex-
ecution time is increased by 4.58%.

[ I Code size i Execution time |

[ |[ Unrolling | + Pre-loop || Unrolling | + Pre-loop |
applu 2.26 2.79 -6.27% -5.28%
apsi 1.46 1.49 0.93% 1.13%
fpppp 1.67 1.85 0.00% 0.00%
hydro2d 1.42 1.58 0.99% 0.39%
mgrid 1.23 1.31 0.72% 0.72%
su2cor 1.78 1.98 -0.32% 0.11%
swim 1.39 1.49 -0.96% -0.17%
tomcatv 1.09 1.14 -0.18% 0.65%
turb3d 1.28 1.31 -0.80% 1.72%
waveb 2.05 2.05 3.75% 4.58%

Table 2: Factor increase in code size and percentage increase in
execution time due to unrolling and the pre-loop.



[ Run data ]| test [ train [ ref |
| Profile data | train [ ref | test [ ref | test [ train |
applu 0.02% 0.02% [ 0.39% 0.11% [ 0.00% | 0.02%
apsi 0.02% 0.00% | 8.13% 8.13% | 0.00% | 0.02%
ToPPD 0.07% | 0.00% | 0.11% | 0.11% | 0.00% | 0.02%
hydro2d 0.00% 0.00% | 0.00% 0.00% | 0.00% | 0.00%
mgrid 0.00% 0.00% | 0.00% 0.00% | 0.00% | 0.00%
su2cor 0.00% 0.04% | 0.00% 0.04% | 0.00% | 0.00%
swim 0.00% 0.00% | 0.00% 0.00% | 0.00% | 0.00%
tomcatv 0.00% 0.00% | 0.00% 0.00% | 0.00% | 0.00%
turb3d 0.00% 0.00% | 0.44% 0.00% | 0.00% | 0.00%
waveb 0.00% 0.00% | 0.00% 0.00% | 0.13% | 0.13%

Table 3: Percentage of dynamic aligned references undetected
when different data sets are used for profiling and execution.

Another possible overhead is an inflated use of data mem-
ory. Specifically, alignment of stack frames could result in
an increase in total stack space. To see if this was the case,
we monitored the memory usage of each benchmark after
successive application of each transformation. On our host
platform, memory is allocated by the operating system in
pages of 4 kilobytes. Inspection of the maximum number of
allocated pages revealed that none of our transformations
caused the use of extra pages.

5.3 Profiling Accuracy

Next, we examine the effect of the profile data set on the
percentage of aligned memory references detected by the
analysis. The SPEC95fp benchmarks are distributed with
three data sets. This means there are nine possible pairings
of profile and execution data sets. Assuming that alignment
results are best when the same data set is used for both runs,
we computed the percentage of memory references that were
undetected when a different data set was used. The results
are shown in Table 3.

As can be seen from the table, there is only one case
where a significant number of memory references go unde-
tected. This occurs for apsi when we use the test or ref data
sets for profiling, and the train data set to gather alignment
results. For all other cases, the differences are negligible.

5.4 Application of Alignment

Finally, we evaluate the impact of alignment information in
two real systems. The following two subsections describe
the importance of alignment techniques in providing energy
savings for a low-power architecture, and in providing speed
increases for a multimedia processor.

5.4.1 Energy Savings

Alignment information is a key component in a design that
has been shown to reduce energy consumption in a low-
power architecture [18]. In this approach, architectural ex-
tensions are able to use compile-time information to elimi-
nate tag checks in the data cache.

The compiler algorithm attempts to identify pairs of
memory references that access the same cache line. If the
first dominates the second, it is guaranteed that the second
will hit in the cache. In this case, a pair of special memory
operations is issued. The first performs a normal load or
store, but records the way in which the cache line is located.
The second can then use this information to access the cache
line directly, skipping the expensive tag checks.
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Figure 8: Data cache energy savings for the MediaBench and
SPEC95fp benchmarks. Results are shown with and without the
use of alignment information.

Tag checks can be eliminated using this mechanism when
it can be proven that a pair of memory references access the
same location. These will be guaranteed to access the same
cache line. In the majority of situations, however, more
information is necessary. When two references are separated
by a non-zero amount that is less than the width of a cache
line, alignment information is required to determine whether
or not the references access the same line.

Reduction in energy consumption was computed by in-
strumenting the benchmarks with calls to a cache simula-
tor. The cache line size was set to 32 bytes. The simula-
tor detected when tag checks were successfully eliminated.
Energy consumption for tag-checked and tag-unchecked ac-
cesses were computed using a detailed hardware model based
on physical layout information [12].

Figure 8 shows the energy savings with and without our
alignment techniques. When alignment is unknown, tag
checks can only be eliminated when a pair of references is
guaranteed to access the same location. It can be seen from
the graph that most of the energy savings are a result of
alignment information. Data cache energy savings ranged
from about 12% to 40% for the MediaBench benchmarks
and 10% to 35% for the SPEC95fp benchmarks. In the best
case, our analyses are responsible for a 35% reduction in
energy consumption.

5.4.2 SIMD Compilation

As discussed in Section 2, the SIMD memory operations
available in popular multimedia extensions are more efficient
when the data are naturally aligned. To measure the impact
of alignment techniques on performance, we targeted a G4
PowerMac workstation running Linux. The G4 micropro-
cessor incorporates the AltiVec multimedia extension which
supports 128-bit SIMD operations. AltiVec instructions op-
erate on various datatypes packed into a 128-bit superword.
Therefore, the effective vector length depends on the size of
the elements.

Ideally, we would like to compare parallelization when
alignment is known to parallelization when it is unknown.
The SIMD compiler we presented in [13] is completely de-
pendent on alignment information to achieve parallelization.
As a result, it has not been optimized to generate efficient
code for unaligned loads and stores. In an attempt to isolate
the effects of alignment, we have used a commercial vector-



| [-00 [ -01 [ -02 [ -03 |
float (32-bit) | 1.76 | 1.64 | 1.45 | 1.45
int (32-bit) | 1.79 | 1.25 | 1.35 | 1.36
short (16-bit) | 1.61 | 2.47 | 1.97 | 1.97
char (8-bit) | 1.60 | 2.47 | 2.21 | 2.21

Table 4: Speedup of an aligned vector addition operation over the
unaligned version for various data sizes and optimization levels.

izer for this study. The VAST compiler [1] can still provide
performance gains in the absence of alignment information
by producing efficient code for merging two consecutive un-
aligned regions.

Unfortunately, the mechanism for communicating align-
ment information to the VAST compiler is limited. Pro-
cedures can be designated as aligned using command line
options or pragmas. This asserts that every memory refer-
ence on the first iteration of each loop is aligned on a 128-bit
boundary. This narrow channel allows us to communicate
only a small fraction of the alignment information we are
able to extract. As a result, we limit our study to a vec-
tor addition operation. With this simple benchmark, we are
able to effectively communicate alignment information since
all arrays are identically aligned.

Table 4 shows the speedup obtained when alignment is
enforced using a pre-loop. Without the pre-loop, all SIMD
memory accesses are unaligned. The VAST compiler gen-
erates C code with AltiVec macros inserted where vector-
ization is successful. This output is then compiled natively
using gce. Since the impact of the pre-loop seems to dif-
fer depending on the degree of gcc optimization, we show
speedups for several different levels. We have also shown
results for different basic data types, since this varies the
degree of parallelization.

The vector addition operation is easily vectorized by the
VAST compiler and makes full use of the AltiVec execution
unit. As a result, the numbers shown in Table 4 represent an
upper bound on the performance improvement we can ex-
pect from alignment information. Nonetheless, the speedups
are considerable. It is clear that alignment techniques are
necessary to achieve the best performance from multimedia
architectures.

6 Related Work

To the best of our knowledge, Fisher [8] and Ellis 7] were
the first to discuss the importance of alignment informa-
tion. They used loop unrolling as a method for increasing
the number of aligned memory references. Their work was
done in the context of the Bulldog compiler that targeted
a clustered VLIW. In their architecture, main memory was
distributed across a set of banks. Alignment was important
because local memory accesses had lower latency than re-
mote accesses. In addition, each bank could be accessed in
parallel, provided that every cluster accessed a local bank.
The use of a pre-loop was also proposed to ensure aligned
references in cases where an array base is unknown. How-
ever, this transformation was done by hand and apparently
only used in simple cases. This research did not propose a
mechanism for choosing the exit condition when a loop body
contained several references, each with different alignments.

In order to determine which bank was accessed by a par-
ticular memory reference, a constraint-based system called
Memory Bank Disambiguation was used. In order to be

successful, this system required the programmer to provide
hints about the alignment of certain variables. Compara-
tively, our alignment detection algorithm requires no pro-
grammer intervention in order to detect aligned references.

Barua et al. proposed a more complicated form of loop
unrolling [4] to aid in compilation for the Raw machine [16].
The Raw architecture is composed of a mesh of identical
tiles, each with a local memory bank. In this design, data
access time is a function of the distance to the bank con-
taining the data. Unrolling was used to create memory ref-
erences that were guaranteed to access a single bank. Precise
equations were presented to determine the unroll factors of
arbitrary loop nests.

Davidson et al. [6] discussed alignment issues in their
work on Memory Access Coalescing. This research focused
on combining narrow width load and store instructions into
wide memory operations. The goal was to provide better
memory bus utilization. Since RISC architectures typically
require memory operations to be naturally aligned, dynamic
checks were inserted to ensure that wide memory operations
were aligned properly. In our approach, all alignment infor-
mation is determined at compile-time.

Equations very similar to our transfer functions appear
in a different context called Bounded Regular Section Analy-
sis [9]. Researchers at Rice University discussed an efficient
method for characterizing the memory locations accessed
by a procedure. This information could then be used for
dependence checking when parallelizing loops that contain
function calls. In this scheme, a range of memory locations
was described with a lower bound, upper bound, and stride.
This is similar to the stride and offset representation used
in our analysis. As a result, the equations for computing
a new stride when combining two ranges are the same as
the equations used for combining our lattice elements. In
Bounded Regular Section Analysis, it is necessary to repre-
sent all possible range and stride combinations. Alignment
detection requires a small number of stride and offset pairs.
Consequently, the lattice describing our analysis is much
more concise.

7 Conclusion

Compiler optimizations that target the memory system are
important for improving computer performance. The ex-
traction of quality alignment information is one area that
can unlock a new class of program optimizations. However,
due to a lack of aligned memory references in real programs,
little progress has been made since the Bulldog compiler first
considered alignment issues over a decade ago.

In this paper we present simple and robust methods
for increasing and detecting alignment. Our methods have
proven very effective, and we are able to increase the per-
centage of aligned memory references by a factor of five. We
are then able to detect the alignment for over 94% of these
operations. Using a novel profiling technique, we can extract
the needed global information without using whole-program
analysis. Furthermore, our transformations introduce al-
most no overhead in terms of execution time or memory
usage.

The methods discussed in this paper are being used to
improve performance in radically different systems. These
include the prototype Raw compiler, SIMD compilation, and
compilation for energy reduction. When alignment informa-
tion is used in conjunction with a commercial vectorizer for
a G4 AltiVec processor, we can observe a greater than two-
fold improvement in execution time. When combined with



a design for a low-power data cache, we see a reduction in
energy consumption by as much as 35%.

Due to the problems with scaling current architectures,
we believe alignment techniques will become even more im-
portant in the future. Tomorrow’s designs will most likely
consist of clusters or tiles, in which memory is divided among
independent banks. In this approach, memory access time
typically depends on the distance to the referenced bank.
Alignment information will be crucial in providing the best
performance.

Acknowledgments

We would like to thank the members of the Commit group
who helped solidify and improve the ideas presented in this
paper. We are especially grateful to Matt Frank, Michael
Gordon, and Mark Stephenson.

This research was partially supported by NSF Grant
CCR-0073510 and DARPA PAC/C award F3060200-2-
0562.

References

[1] VAST-C/AltiVec Product Website. http://www.psrv.com.

[2] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger.
Clock Rate versus IPC: The End of the Road for Conven-
tional Microarchitectures. In Proceedings of the 27th Inter-
national Symposium on Computer Architecture, pages 248—
259, June 2000.

[3] J.R. Allen and K. Kennedy. Automatic Loop Interchange. In
Procedings of the SIGPLAN Symposium on Compiler Con-
struction, pages 233-246, Montreal, Quebec, June 1984.

[4] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Mem-
ory Bank Disambiguation using Modulo Unrolling for Raw
Machines. In Proceedings of the Fifth International Confer-
ence on High Performance Computing, Chennai, India, Dec
1998.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. MIT Press, Cambridge, MA, 1990.

[6] J. W. Davidson and S. Jinturkar. Memory Access Coalesc-
ing: A Technique for Eliminating Redundant Memory Ac-
cesses. In Proceedings of the SIGPLAN ’9 Conference on
Programming Language Design and Implementation, pages
186-195, Orlando, FL, June 1994.

[7] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures.
The MIT Press, Cambridge, Massachussetts, 1985.

[8] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nico-
lau. Parallel Processing: A Smart Compiler and a Dumb
Machine. In ACM SIGPLAN ’8} Symposium on Compiler
Construction, pages 37-47, June 1984.

[9] P. Havlak and K. Kennedy. An Implementation of Inter-
procedural Bounded Regular Section Analysis. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):350-360,
July 1991.

R. Ho, K. Mai, and M. Horowitz. The Future of Wires. In
Proceedings of the IEEE, pages 490-504, Apr 2001.

Intel Corporation. Intel Architecture Optimization Reference
Manual, 1999.

R. Krashinsky. Microprocessor Energy Characterization and
Optimization through Fast, Accurate, and Flexible Simula-
tion. Master’s thesis, Massachusetts Institute of Technology,
May 2001.

S. Larsen and S. Amarasinghe. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings
of the SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 145-156, June 2000.

(10]
(1]

(12]

10

[14] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diaBench: A Tool for Evaluating and Synthesizing Multi-
media and Communications Systems. In Proceedings of the
30th Annual International Symposium on Microarchitecture,
pages 330-335, Research Triangle Park, USA, Dec 1997.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz. Smart Memories: A Modular Reconfigurable
Architecture. In Proceedings of the 27th International Sym-
posium on Computer Architecture, pages 161-171, Vancou-
ver, Canada, 2000.

M. Taylor, J. Kim, J. Miller, F. Ghodrat, B. Greenwald,
P. Johnson, W. Lee, A. Ma, N. Shnidman, V. Strumpen,
D. Wentzlaff, M. Frank, S. Amarasinghe, and A. Agarwal.
The Raw Processor - A Scalable 32-bit Fabric for Embed-
ded and General Purpose Computing. In Proceedings of Hot
Chips XIII, Aug 2001.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amaras-
inghe, J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W.
Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF:
An Infrastructure for Research on Parallelizing and Optimiz-
ing Compilers. ACM SIGPLAN Notices, 29(12):31-37, Dec.
1994.

E. Witchel, S. Larsen, C. S. Ananian, and K. Asanovié. Di-
rect Address Caches for Reduced Power Consumption. In
Proceedings of the 34th Annual International Symposium on
Microarchitecture, Dec 2001.

M. Zhang and K. Asanovi¢. Highly-Associative Caches for
Low-Power Processors. Kool Chips Workshop, MICRO-33,
2000.

[15]

(18]

(19]

Appendix
A Transfer Functions

The dataflow elements in alignment detection are linear
equations of the form an + b, where n is a non-negative
integer and a and b are integer constants. These equations
describe sets of integer values that can be assigned to a vari-
able at a particular program point. In discussing the transfer
functions, we refer to the following two linear equations as
input:

ain+ b
asm + by

(1)
(2)

Our dataflow lattice also contains the special element, T,
which represents a value that has yet to be assigned. The
result of operating on T and any element e is simply e. The
transfer functions described below assume neither input is
T.

meet

Computing the meet of two elements corresponds to finding
the union of the sets described by their linear equations.
In some cases we will not be able to precisely characterize
the resulting set using the form an + b. Therefore, the new
linear equation may contain values that are not present in
the input sets.

To derive the equation for the stride a, we first assume
that b1 < ba. If this is true, then b; is the smallest value that
we need to include in the new set. We therefore start with
b1 as the offset. To this we add multiples of a to produce
the other values described in the input sets. In other words,
some multiple of a must be equal to all of the following:

a1,2a1,3a1,

bo —b1,2a2 + bs —b1,3a2+b2 —bl,...



The largest stride that matches this criteria is calculated
by finding the greatest common divisor of each of these val-
ues:

a = ged(a1,2a1, ..., b2 — b1, a2 + ba — b1,2a2 + ba — by, ...)
Using two theorems from number theory,
ged(z,zy) =
ged(z, z +y) = ged(z,y)
we simplify the calculation for the stride to:
a = ged(a1,az,b2 — b1)

This computes the stride accurately when b; < b2. We can
combine this result with the situation where by < b; by using
the difference between b; and bs:

a = ged(ai, az, by — ba))

Once we have determined the stride, we can now refine
the offset. Above, we used b; as the offset for the new linear
equation. In our representation, b is always be less than a.
This can be insured with:

b=b; moda
Using b2 in place of b1 gives the same result since b1 and b2
are separated by a multiple of a.
addition
Adding linear equations (1) and (2) yields:
ain +axm + b1 + b2

We need to approximate the set described by this equation
using an equation of the form an + b. The lowest value in
the set is b1 + b2, so we start with this as the offset. The
remaining values are produced by adding multiples of a; and
az. The largest number whose multiples equal these values
is again given by the gcd:

a = ged(a1,a2)

As with the meet transfer function, we now guarantee that
the offset is less than the stride:

b= (b1 +b2) mod a

subtraction
Subtracting (2) from (1) results in:
ain — azm + by — b
Here, we can use the same method we used for addition:
a = ged(ar, —asz)
From number theory, this is equivalent to:
a = ged(a1,a2)
The offset is given by:
b= (b1 —b2) mod a

At first glance, it may appear as though this could result
in a negative offset. However, the mod operation is defined
as follows:

zmody =z —ylz/y]
This will always result in a positive number when the mod-
ulus (a in this case) is positive.
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multiplication
Multiplying (1) and (2) gives:
airaznm + a1ban + azbim + b1bs

At this point, the pattern is clear. The strides aia2, a1b2,
and aqb; are all represented in the set. A single stride that
best approximates all three is given by:

a = ged(aiaz, arbs, azbr)

Since this could result in a value greater than the number
of columns, we saturate the stride by including the number
of columns in the calculation:

a = gcd(maz, (11b2, a2b1, C)
The offset is given by:
b=b1b2 moda

B Lattice Height

The maximum stride represented in the lattice must be
equal to the number of columns. It is clear the lattice must
be at least this high in order to distinguish aligned refer-
ences. However, it is not clear that this is the largest stride
needed. At first glance, it may seem that higher lattice ele-
ments could provide more precision, allowing us to find more
aligned references.

Given an alignment problem with C columns and one of
our transfer functions,

an+ b+ f(ain+bi,a2n + b2)

we want to know if it is possible to obtain @ > C when a2 <
C and a1 > C, but not when a1 = C. Careful inspection of
the transfer functions reveals this can not be the case. Since
the stride is always computed using the gcd, the new stride
is restrained by the lower of a1 and a2. Therefore, we will
not capture any more aligned references if we include strides
greater than C.

C Lattice Elements

The ultimate goal of alignment detection is to find mem-
ory references whose address is characterized by a linear
equation with a stride equal to the number of columns, C.
Given two dataflow elements where at least one of them has
a stride less than C, the only transfer function that can pro-
duce an element with a stride equal to C is multiplication.
Without multiplication, we would only need to distinguish
between two kinds of elements: those with strides of C, and
those without strides of C. With multiplication, however,
we need to include all strides that are a multiple of C. This
can be seen from the stride calculation for the multiplication
transfer function. Since the product aias is used in the gcd
calculation, we can achieve a stride of C when both a1 and
ay are factors of C. For this reason, the lattice for a partic-
ular application of alignment detection includes all strides
that are factors of C.



