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ABSTRACT 
In this paper we describe an efficient algorithm for computing the 
visual hull of an object. This problem is equivalent to computing 
the intersection of generalized cones. The naïve visual hull 
computation algorithm requires intersecting 3D polyhedra. We 
exploit the special structure of generalized cone polyhedra and 
show how to reduce this computation to a set of intersections in 
2D. Moreover, we describe how the 2D intersections can be 
carried out efficiently. 
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1. INTRODUCTION 
Many researchers [7,10] have used silhouette information to 
distinguish regions of 3D space where an object is and is not 
present. Suppose that some original 3D object is viewed from a 
set of reference views R. Each reference view r∈R has the 
silhouette contour sr whose interior is covered by the object. For 
view r, one creates the cone-like volume vhr defined by all the 
rays starting at the image's center of projection pr and passing 
through the interior of the silhouette. It is guaranteed that the 
actual object must be contained in vhr. This statement is true for 
all r; thus, the object must be contained in the volume vhR = ∩r∈R 
vhr. As the size of R goes to infinity, and includes all possible 
views, vhR converges to a shape known as the visual hull vh∞ of 
the original geometry [5]. The visual hull is also commonly 
known as the line hull.  
The visual hull is not guaranteed to be the same as the original 
object since concave surface regions can never be distinguished 
using silhouette information alone. Moreover, in practice, one 
must construct approximate visual hulls using only a finite 
number of views. Given the set of views R, we would like to 
efficiently compute vhR – the intersection of all cones defined by 
all silhouettes in R. Computing visual hulls quickly has many 
potential applications including structure-from-silhouettes, 
gesture recognition, 3D photography, and real-time geometry 
capture. 

2. PREVIOUS WORK 
Typically visual hulls have been computed using volume carving 
methods. These methods remove unoccupied regions from an 
explicit volumetric representation. All voxels falling outside of 
the silhouette view are eliminated from the volume. This process 
is repeated for each reference image. The resulting volume is a 

quantized representation of the visual hull according to the given 
volumetric grid.   
There has been considerable work [4,8] on Boolean operations on 
the 3D polyhedra. Most the algorithms require decomposing the 
input polyhedra to convex polyhedra. Then, the operations are 
carried out on the convex polyhedra. 
It has been also shown that the exact sampling of the visual hull 
(i.e., an image of the visual hull) from arbitrary views can be 
computed efficiently at interactive frame rates [6]. However, this 
algorithm does not build the explicit polyhedral representation. 
Our algorithm is similar to that in [6], except that we achieve 
comparable speed while computing an explicit polyhedral model, 
which is more useful in some applications. 
The work in [9] also computes an explicit polyhedral model of the 
visual hull.  They use a slightly different 2D reduction of the 
problem, which appears to result in lower performance. 

3. Visual Hull Computation Algorithm 

3.1 Inputs 
For simplicity, we assume that each silhouette is specified by a set 
of convex or non-convex 2D polygons. These polygons can have 
holes. Each polygon consists of a set of consecutive vertices in its 
contours. We also assume that the degree of each vertex is equal 
to two. Moreover, for each silhouette we know the location of its 
image plane and the location of the center of projection – the apex 
of the each cone.  The image plane is the 2D plane that contains 
the silhouette polygons.  
Throughout this paper we use the following notations: we let k be 
the number of input silhouettes; we let n be the number of edges 
in each silhouette; and we let l be the maximum number of 
intersections of a projected line with a silhouette. 

3.2 Algorithm Outline 
In order to compute the visual hull with respect to the input 
silhouettes we need to compute the intersection of the cones 
defined by the input silhouettes. The resulting polyhedron is 
described by all its faces. The faces of this polyhedron can only lie 
on the faces of the original cones. The faces of the original cones 
are defined by the center of projections and the edges in the input 
silhouettes. The naïve algorithm for computing the visual hull 
would do the following: For each input silhouette si and for each 
edge e in the input silhouette si we compute the face of the cone. 
Then we intersect this face with the cones of all other input 
silhouettes. The result of these intersections is a set of polygons 



that define the surface of the visual hull. The pseudocode for the 
algorithm is given below. 

3.3 Reduction to 2D Intersections 
The intersection of a face of a cone with other cones is a 3D 
operation (these are polygon-polyhedron intersections). It was 
observed by [3,6,9] that these intersections can be reduced to 
simpler intersections in 2D. This is because each of the silhouette 
cones has a fixed scaled cross-section – it is defined by the 2D 
silhouette. Reduction to 2D also allows for less complex 2D data 
structures to accelerate the intersections. 

 
Figure 1: One face of the center cone is projected onto the 

image planes of two other silhouettes. 
To compute the intersection of a face f of a cone cone(si) with a 
cone cone(sj) we project f onto the image plane of silhouette sj 
(see Figure 1). Then we compute the intersection of projected face 
f with silhouette sj. Finally, we project back the resulting 
intersection onto the plane of face f. The pseudocode for the 
algorithm is given below. 

 

3.4  Efficient Projected Cone – Silhouette 
Intersection 
In this section we show how to compute the intersection of the 
projected cone ci with the silhouette sj of some other cone cj. 

3.4.1 Construction of the Edge-Bins 
In order to perform the intersections efficiently we use an Edge-
Bin data structure. First, we observe that in case of perspective 
projection all rays on the surface of the cone ci project to a pencil 
of lines sharing a common point p0  in the image plane of sj. We 
can parameterize all projected lines based on the slope α that 
these lines make with some reference line. Given this 
parameterization we partition the domain of α = (-∞, ∞) into 
ranges such that any projected line with the slope falling inside of 
the given range always intersects the same set of edges of the 
silhouette sj. We define a bin bi to be a three-tuple: the start αstart, 
the end αend of the range, and a corresponding set of edges Si, 
bi=(αstart, αend, Si). We note that each silhouette vertex 
corresponds to a line that defines a range boundary.  
In certain configurations, all rays project to a set of parallel lines 
in the image plane of sj. When this case occurs, we use a line 
p(s)= p0+dα to parameterize the lines, where p0 is some arbitrary 
point on the line p and d is a vector perpendicular to the direction 
of the projected rays. To define bins, we use the values of the 
parameter α at the intersection points of the line p with the lines 
in the direction of the lines passing through silhouette vertices. In 
this way we can describe the boundary of the bin using two values 
αstart and αend, where αstart, αend are the values of α for lines 
passing through two silhouette vertices that define the region. 
The edge-bin construction involves two steps. First, we sort the 
silhouette vertices based on the value of the parameter α. The 
lines that pass through the silhouette vertices define the bin 
boundaries. This step has a bound of O(n log n).  
Next, we observe that two consecutive slopes in the sorted list 
define αstart and αend for each bin. To compute a set of edges 
assigned to each bin we traverse the sorted list of silhouette 
vertices. At the same time we keep the list of edges in the current 
bin. When we visit a vertex of the silhouette we remove from the 
current bin an edge that ends at this vertex and we add an edge 
that starts at the vertex. A start of an edge is defined as the edge 
endpoint that has a smaller value of parameter α. In Figure 2 we 
show a simple silhouette, bins, and corresponding edges for each 
bin. The running time of the above algorithm is O(nl) – 
proportional to the total number of edges in all bins.  
The edges in each bin need to be sorted based on the increasing 
distance from the point p0 (or the distance from parameterization 
line p(s) in case of the parallel lines). The efficient algorithm first 
performs a partial ordering on all the edges in the silhouette such 
that the edges closer to the point p0 are first in the list. Then, when 
the bins are constructed the edges are inserted in the bins in the 
correct order. The time to construct the bins is O(n log n + nl) for 
one silhouette. 

VHISECT(Input Silhouettes S) 

(1)   PolygonSet VHFaces : = ∅ 
(2)   for each input silhouette si in S 
(3)      for each edge e in silhouette si 

(4)         for each reference silhouette sj in S\{si} 

(5)            PolygonSet facesj := ConeFace(e) ∩ Cone(sj)  

(6)         PolygonSet EdgeFaces := ∩ (facesm, m = 1..k, m≠i) 

(7)         VHFaces :=  VHFaces ∪ EdgeFaces 

VHISECT(Input Silhouettes S) 

(1)   PolygonSet VHFaces : = ∅ 
(2)   for each input silhouette si in S 
(3)      for each edge e in silhouette si 

(4)         for each reference silhouette sj in S\{si} 
(5)            Polygon p := project ConeFace(e)onto sj 

(6)            PolygonSet ps := p ∩ sj 
(5)            PolygonSet facesj := project ps onto ConeFace(e) 

(6)         PolygonSet EdgeFaces := ∩ (facesm, m = 1..k, m≠i) 

(7)         VHFaces :=  VHFaces ∪ EdgeFaces 
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Figure 2: Edge-Bins and corresponding edges. 

3.4.2 Efficient Intersection of the Projected Cone 
Faces with a Silhouette 
Using the edge bin data structure we can compute efficiently the 
intersection of the projected cone ci with the silhouette sj of some 
other cone cj. In order compute the intersection we process the 
consecutive faces of cone ci. We start by projecting the face f1 
onto the plane of silhouette sj. The projected face f1 is defined by 
its boundary lines with the values αp1 , αp2. First, we need to find 
a bin b = {αstart, αend, S} such that αp1 ∈ (αstart, αend). Then, we 
intersect the line αp1 with all the edges in S. Since the edges in S 
are sorted based on the increasing distance from the projected 
vertex of cone ci (or distance from line p(s) in case of parallel 
lines) we can immediately compute the edges of the resulting 
intersection that lie on line αp1. Next, we traverse the bins in the 
direction of the value αp2. As we move across the bins we build 
the intersection polygons by adding the vertices that define the 
bins. When we get to the bin b’ = {α’start, α’end, S’} such that αp2 
∈ (α’start, α’end) we intersect the line αp2 with all edges in S’ and 
compute the remaining edges of the resulting polygons. It is 
important to note that the next projected face f2 is defined by the 
boundary lines αp2, αp3. Therefore, we do not have to search for 
the bin αp2 falls into. In this manner we compute the intersection 
of all projected faces of cone ci with the silhouette sj. The running 
time of this intersection operation is optimal since it is O(m), 
where m is the number of vertices of the resulting cone 
intersection. Therefore, the total running time for intersecting two 
silhouette cones is O(n log n+nl +m), or O(n log n + nl) since m 
is bounded by nl. 

3.5 Calculating Visual Hull Faces 
In the previous section we described how to perform the 
intersection of two cones efficiently. Performing the pairwise 
intersection on all pairs of cones results in k-1 polygon sets for 
each face of each cone. The faces of the visual hull are the 
intersections of these polygon sets at each cone face. We perform 
the intersection of these polygon sets using standard algorithms 
for Boolean operations [1,2]. It is important to note that the 

polygons in these sets are possibly non-convex, have holes, and 
have no high-degree vertices. The time to intersect two polygon 
sets each with q vertices is O((q+a) log q), where a is the number 
of vertices in the resulting intersection. In our case we have k-1 
polygon sets for each cone face that we need to intersect. The 
intersection of the k-1 polygons each with q vertices can be 
implemented in O((kq +b)log kq) where b is the number of all 
intersections of polygon edges.  
Our resulting representation includes redundant copies of each 
vertex in the resulting polyhedron (in fact, the number of copies 
of each vertex is equal to the degree of the vertex divided by 2). 
To optionally eliminate the redundant copies, we simply merge 
identical vertices. This allows us to obtain a watertight model.  

3.6 Complexity Analysis 
We analyze the time complexity in terms of l.  Recall that l is 
defined to be the maximum number of intersections of a projected 
line with a silhouette. Note that l is always less than n, and in 
practice l is generally much smaller than n. 
In Section 3.4, it is shown that the complexity of intersecting two 
cones is O(n log n+nl). Thus, for all pairwise intersections 
between cones we have O(k2(n log n + nl)). 
The time to intersect k-1 polygons sets, each of them with at most 
n vertices, is O((kn+b) log kn), where b is the number of vertices 
in the intersection.  In the worst case, each of the k silhouettes has 
at most l faces with n vertices in each of the k-1 polygon sets. This 
is because the number of vertices in the intersection of two cones 
is bounded by O(nl). Therefore, the part of the algorithm 
described in Section 3.5 takes O(kl(kn+b) log kn). 
Combining the analyses of Sections 3.4 and 3.5, the complete 
time complexity is O(k2(n log n + nl) + kl(kn+b) log kn).  

4. Implementation and Results 
We have implemented and tested the algorithm on a variety of 
both synthetic and real silhouettes of objects. The silhouettes of 
the real objects are obtained using a system composed of a digital 
camera and a rotating platform. We can vary the complexity of the 
silhouettes by arbitrarily approximating their contours. The 
sample results of the visual hulls are shown in Figure 3. Table 1 
shows the running time of the algorithm depending on the number 
of input silhouettes. Table 2 shows the running time of the 
algorithm depending on the number of edges in the input 
silhouettes. All running times are measured on a 1GHz Pentium 
III machine with 1GB of RAM. 
These running times illustrate the performance of the algorithm in 
the common case, when l is small relative to n. We can see that 
the running times are nearly quadratic in the number of silhouettes 
and nearly linear in the number of edges. 
Table 1. Running Time vs Number of Cones   
 (100 edges per silhouette) 

Number of Cones Running Time (s) 
2 0.015 
3 0.031 
4 0.047 
5 0.078 
6 0.125 
8 0.235 

10 0.375 



continued from last page  
12 0.563 
16 0.984 
20 1.547 
24 2.187 
28 2.953 
32 3.828 
36 4.797 

Table 2. Running Time vs Edges in Silhouettes  
 (8 cones per visual hull) 

Edges per Silhouette Running Time (s) 
9 0.031 

15 0.047 
23 0.078 
35 0.094 
41 0.109 
55 0.141 
67 0.156 
74 0.174 
86 0.203 
99 0.234 

113 0.265 
135 0.313 
173 0.421 
241 0.609 
319 0.860 
459 1.344 
590 1.797 
641 2.000 

 

   

   

5. Conclusion 
In this paper we have presented an efficient algorithm for 
constructing polyhedral representation of the visual hull. To our 
knowledge, this is the first algorithm that is capable of computing 
the visual hull polyhedral representation in real time or at least at 
interactive frame rates. We believe it is well suited for a variety 
applications especially those in computer graphics and computer 
vision. 
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Figure 3: Shaded image of the visual hull and 6 out of 26 
 input silhouettes that generated it. 
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