
Efficient View-Dependent Sampling of Visual Hulls

Wojciech Matusik Chris Buehler Leonard McMillan
Computer Graphics Group

MIT Laboratory for Computer Science
Cambridge, MA 02141

Abstract

In this paper we present an efficient algorithm for sampling
visual hulls. Our algorithm computes exact points and nor-
mals on the surface of visual hull instead of a more tradi-
tional volumetric representation. The main feature that dis-
tinguishes our algorithm from previous ones is that it allows
for sampling along arbitrary viewing rays with no loss of
efficiency. Using this property, we adaptively sample visual
hulls to minimize the number of samples needed to attain a
given fidelity. In our experiments, the number of samples
can typically be reduced by an order of magnitude, result-
ing in a corresponding performance increase over previous
algorithms.

1. Introduction
Recently, shape-from-silhouettes techniques have been
used in real-time, shape-acquisition applications [5, 3].
Typically, shape-from-silhouettes techniques involve com-
puting a volume known as the visual hull, which is the max-
imal volume that reproduces the observed silhouettes. It has
been found that visual hulls can be computed very quickly,
and that the calculation is robust to the crude silhouettes
produced by real-time segmentation algorithms.

People commonly compute visual hulls in real-time us-
ing one of two approaches: voxel carving [6, 9] and view
ray sampling [3]. In voxel carving, a discrete grid of vox-
els is constructed around the volume of interest. Then,
each voxel in the grid is checked against the input sihou-
ettes, and any voxels that project outside the silhouettes
are removed from the volume. This procedure results in a
view-independent volumetric representation that may con-
tain quantization and aliasing artifacts due to the discrete
voxelization. Voxel carving can be accelerated using octree
representations.

In view ray sampling, a sampled representation of the
visual hull is constructed. The visual hull is sampled in
a view-dependent manner: for each viewing ray in some
desired view, the intersection points with all surfaces of the
visual hull are computed. This procedure removes much of
the quantization and aliasing artifacts of voxel carving, but

it does not produce a view-independent model. View ray
sampling can be accelerated by sampling the visual hull in
a regular pattern, such as in a regular grid of pixels.

In this paper, we present a new algorithm for computing
view ray sampling. Our algorithm is distinguished by the
fact that it allows for computing arbitrary patterns of sam-
ples with the same efficiency as previous algorithms. We
use our algorithm to accelerate visual hull construction by
adaptively sampling the visual hull. We adjust the density
of samples such that more samples are used in regions of
large depth variation and fewer samples are used in smooth
regions. Using this sampling procedure, we can reduce the
number of samples used to construct the visual hull by more
than 90% with almost no loss of fidelity. We also demon-
strate how to compute surface normals at each sample point.
Further, these normals can be used to direct the adaptive
sampling procedure.

1.1. Previous Work
Laurentini [2] originated the idea of the visual hull: the
maximal volume that reproduces all silhouettes of an ob-
ject. In this paper, visual hulls are constructed from a finite
number of silhouettes, so they are only guaranteed to re-
produce those particular silhouettes. A visual hull is essen-
tially a volume formed from the intersection of silhouette
cones. A silhouette cone is the volume that results from
extruding a silhouette out from its center of projection. It
may be a complicated, non-convex object, depending on the
complexity of the silhouette contours. We represent silhou-
ette contours with line segments, so the resulting silhouette
cones are facted.

Visual hulls are most often computed using voxel
carving[6, 9]. If the primary use for the visual hull is to
produce new renderings, then a view ray sampling approach
such as the image-based visual hull technique introduced
by [3] may be used. The advantage of view ray sampling
algorithms is that they do not suffer from the quantization
artifacts introduced by discrete volumetric representations.

A series of optimizations are discussed in [3] that reduce
the computational overhead of view ray sampling on aver-
age to a constant cost per sample. At the heart of these op-

1



Figure 1: Our algorithms compute a representation of the
visual hull that is sampled along viewing rays (left). This is
in contrast to a voxel–based representation (right).

timizations is a presorting of the silhouette edges about the
epipole of the desired image. This sorting allows samples
to be computed in constant time if the samples are arranged
in scanline order. This initial sorting also involves some
additional cost.

1.2. Contributions

In this paper, we present an improved algorithm that allows
the samples to be computed efficiently in any order. This
flexibility makes it easy to do hierarchical or adaptive sam-
pling of the visual hull. In addition this algorithm visits the
silhouettes in a “lazy” fashion, using only the portions of
the silhouettes necessary. We also describe how to compute
normals for the visual hull samples, which can be useful for
shading and surface reconstruction.

2. Visual Hull Sampling

One way to compute an exact sampling of a visual hull con-
sists of two steps: (1) compute a set of polygons that defines
the surface of a visual hull and (2) sample these polygons
along the sampling rays to produce exact visual hull sam-
ples. The first step consists of a 3D intersection of all the
extruded silhouette cones. The second step is also an inter-
section operation–an intersection of sampling rays with the
volume. The ray intersections result in a set of occupied
volume intervals along each sampling ray.

The algorithm in section 2 is conceptually simple. How-
ever, it is impractical to compute full 3D intersections be-
tween silhouette cones, especially when we are ultimately
interested in samples. We would like to compute the
same result without performing full volume–volume inter-
sections. To do this, we take advantage of the commutative
properties of the intersection operation. An intersection of
a ray with a visual hull is described mathematically as fol-

Figure 2: Instead of computing the intersection of the sam-
pling ray with extruded silhouette cones, we can project the
sampling ray onto the silhouette images, compute the inter-
sections of the projected sampling rays with the silhouette,
and lift back the resulting intervals to 3D.

lows:

V H(S) =

 \
s�S

cone(s)

!
\ ray3D (1)

This operation is equivalent to:

V H(S) =
\
s�S

(cone(s) \ ray3D) (2)

This means that we can first intersect each extruded silhou-
ette with the 3D ray separately. This results in a set of oc-
cupied intervals along the ray. Then we compute the in-
tersection of all these sets of intervals for all silhouettes. In
this process we exchanged volume-volume and volume-line
intersections for simpler volume-line and line-line intersec-
tions.

2.1. Image Space Intersections
We can further simplify the intersection process by exploit-
ing the fact that the cross–section of the extruded silhouette
remains fixed. This observation implies that instead of com-
puting the ray intersection with the extruded silhouette, we
can compute the intersection of the silhouette with the ray
projected onto the plane that defines the cross-section. We
can then backproject the results of the image space inter-
section onto the original 3D ray (see Figure 2). Effectively
we reduce the volume-line intersections to area-line inter-
sections. As we will see in the next section, this reduction
allows us to use simple 2D spatial partitioning for acceler-
ating ray intersections.

We can pick any plane that completely intersects the sil-
houette cone when we perform the area-line intersection.

2



However, it is simplest to perform the operation on the sil-
houette camera’s image plane because (1) the cross-section
is already defined for this plane (it is the silhouette) and (2)
we avoid any possible resampling artifacts.

3. Silhouette-Line Intersections

In this section, we describe an efficient technique for com-
puting the intersection of a set of 2D lines with silhouette
contours. We impose one constraint on the sampling rays:
we require that they all emanate from a single point in space,
the sampling camera. This limitation on our algorithm is
not too severe, as it is often desired to sample the visual
hull from the point-of-view of an arbitrary camera or one of
the silhouette cameras. Note that we do not constrain the
sampling rays to be on a regular grid or in any other struc-
tured organization. Also, the algorithm can work with a set
of parallel sampling rays. This case corresponds to an or-
thographic sampling camera with a center of projection at
infinity.

Our algorithm is based on a data structure called a
“Wedge-Cache.” The Wedge-Cache is used to store inter-
section information that can be re-used when computing
later intersections. The main idea behind the Wedge-Cache
algorithm is based on the epipolar geometry of two views.
An epipolar plane (i.e., a plane that passes through centers
of projections of both cameras) intersects the image planes
of both cameras in epipolar lines [1]. It is easy to see that
all rays from the first camera that lie in the epipolar plane
project to the exact same epipolar line in the second cam-
era (of course, the reverse is true too). Therefore, many
sampling rays will project to the same line in any given sil-
houette view. The Wedge-Cache algorithm takes advantage
of this fact to compute the fast line-silhouette intersections.
The basic idea is to compute and store the intersection re-
sults for each epipolar line the first time it is encountered.
Then, when the same epipolar line is encountered again, we
can simply look up previously computed results.

In practice (because of discretization), we rarely en-
counter the exact same epipolar line twice. Since we want
to reuse silhouette intersections with epipolar lines, we
compute and store the intersections of the silhouette with
wedges (i.e., sets of epipolar lines) rather than single lines.
Within each wedge, we store a list of silhouette edges that
individual lines within the wedge might intersect. Then,
when an epipolar line falls within a previously computed
wedge, we need only intersect that line with the silhouette
edges belonging to the wedge.

We discretize the silhouette image space into a set of
wedges such that each wedge has exactly one pixel width
at the image boundaries (see Figure 3). Depending on the
position of the epipole (shown as a dot) with respect to the
silhouette image, we distinguish nine possible cases of im-

Figure 3: The silhouette image is partitioned into a set of
wedges, which are the entries of the Wedge-Cache. In this
simple example, the silhouette image is 4 � 4 pixels and
there are eight Wedge-Cache entries.

age boundary parts that need to be used. These cases are
illustrated in Figure 4. There is only one special case that
needs to be handled: the case in which the epipolar lines
in a silhouette camera are parallel and do not converge at
the epipole (i.e., the epipole is at infinity). In this case, we
can modify the Wedge-Cache to use parallelogram-shaped
“wedges” (see Figure 5). In some applications, this case can
be avoided by a small perturbation in the orientation of the
sampling camera.

Execution of the Wedge-Cache algorithm proceeds as
follows. For each sampling ray we compute its epipolar
line. Then we determine into which wedge it falls. If sil-
houette edges that lie in this wedge have not been computed,
we use a Bresenham-like algorithm to traverse all the pixels
in the wedge and compute these edges. Then, we test which
of the computed edges in the wedge actually intersect the
given epipolar line. Later, when other epipolar lines fall into
this wedge we simply look up the edges contained in the
wedge and test for intersection with the epipolar line. Fig-
ure 6 illustrates a simple Wedge-Cache with two wedges.
The silhouette in this case is a square consisting of four
edges a; b; c; and d. Each wedge contains three edges as
shown in the figure. In this example, the epipolar line cor-
responding to some sampling ray is contained in wedge 1.
Checking against the three edges in wedge 1 reveals that the
line intersects two edges, a and d.

One nice property of the Wedge-Cache algorithm is that
it employs a lazy-computation strategy; we process pixels
and edges in the wedge only when we have an epipolar line
that lies in this wedge. The pseudocode for VHsample that
uses the Wedge-Cache Algorithm is shown in Figure 7.

3



VHsample (samplingRays R, silhouettes S)
for each silhouetteImage s in S

compute_silhouette_edges(s)
for each samplingRay s in R do
r.intervals = 0..inf

for each silhouetteImage s in S
clear(Cache)
for each samplingRay r in R

lineSegment2D l2 = project_3D_ray(r,s.camInfo)
integer index = compute_wedge_cache_index(l2)
if Cache[index] == EMPTY

silhouetteEdges E = trace_epipolar_wedge(index, s)
Cache[index] = E

intervals int2D = linesegment_isect_silhouette(l2,Cache[index])
intervals int3D = lift_up_to_3D(int2D,r.camInfo,ry3)
r.intervals = intervals_isect_intervals(r.intervals,int3D)

Figure 7: Pseudocode for Wedge-Cache algorithm.

a . b . c .

d . e . f .

g . h . g .

Figure 4: Depending on the position of the epipole with
respect to the silhouette image boundary, we decide which
parts of the silhouette image boundary (thick black lines)
need to be used for wedge indexing.

3.1. Using Valid Epipolar Line Segments

Some care must be taken when implementing the
calc2Dintervals subroutine. This is because some
portions of the epipolar line are not valid and should not be
considered. There are two constraints on the extent of the
epipolar line: (1) it must be in front of the sampling camera
and (2) it must be seen by the silhouette camera. The two
constraints result in four cases that are easily distinguished;
see [4] for details.

Figure 5: In the special case when the epipolar lines are all
parallel, the wedges become parallelograms.

3.2. Visual Hull Surface Normals

In this section we show how to compute visual hull surface
normals for each of the interval endpoints of the sampled
visual hull representation. The surface normal is useful to
reconstruct the surface of the visual hull, and we use nor-
mals in this manner to control the adaptive sampling proce-
dure described in Section 4. Of course, the normal of the
visual hull is not the same as the normal of the original ob-
ject. However, as the number of silhouettes increases, the
normals of the visual hull approach the normals of the ob-
ject in non-concave regions.

Normals are simple to compute with just a little extra
bookkeeping. For each interval endpoint we store a refer-

4



Figure 6: A simple Wedge-Cache example with a square
silhouette. The epipolar line is contained in wedge 1, so it
need only be compared to edges a; c; and d for intersection.
In fact, the line intersects only edges a and d.

ence to the silhouette edge and the silhouette image that de-
termine the interval endpoint. Each interval is then defined
as ((depthstart; edgei;m); (depthend; edgej;n)), where i

and j are the indices of the reference images and m and
n are the silhouette edge indices in the reference images.
The stored edges and the center of projection of the cor-
responding reference image determine a plane in 3D. The
normal of this plane is the same as the surface normal of the
point on the visual hull (see Figure 8). We can compute the
plane normal using the cross-product of the two vectors on
this plane. This leaves two choices of normals (differing in
sign); the proper normal can be chosen based on the direc-
tion of the sampling ray and the knowledge of whether the
sampling ray is entering or leaving the visual hull.

4 Adaptive Visual Hull Sampling

One advantage of the Wedge Cache algorithm is that it al-
lows for sampling along arbitrary viewing rays in any order.
We have used this property to implement an adaptive sam-
pling procedure that can drastically reduce the number of
samples required to construct an image of the visual hull
from a particular view.

First, we decide upon a minimum size N of features that
we expect to see in the visual hull. This choice determines
the smallest features of the visual hull that our algorithm
can resolve. Typically, we choose a minimum feature size
of N = 4, which means the algorithm can potentially miss
features smaller than 4� 4 pixels.

Next, we perform an initial sampling of the visual hull

Figure 8: A silhouette edge combined with the center of
projection define a plane. Visual hull interval endpoints de-
fined by that edge have the same normal as the plane.

by sampling every N th pixel in both the x and y directions.
This initial sampling results in a coarse grid of samples over
the image. For each square in the grid, we consider the sam-
ples at its four corners. If all four sample rays miss the vi-
sual hull, then we conclude that no rays within the square hit
the visual hull, and we mark that square as empty. If some
of the rays miss the visual hull and some of them do not,
then we conclude that a silhouette boundary passes through
this square. In this case, we sample the rest of the rays
within the square to resolve the silhouette edge accurately.

If all four sample rays hit the visual hull, then we decide
whether to sample further based on a simple estimate of the
surface continuity. Since we know the normals at each of
the four samples, we can construct a plane through one the
sample points on the visual hull. If this plane does not pre-
dict the other three sample points sufficiently well, then we
sample the rest of the rays within the square. Otherwise,
we approximate the depths of the samples within the square
using the planar estimate. We compare the prediction er-
ror against a global threshold to decide if more sampling is
necessary.

5. Results
In this section, we present some results of our adaptive sam-
pling algorithm. In Figure 9a, we show the depth map
of a visual hull sampled at every pixel. This visual hull
is computed from 108 input images, and it is sampled at
1024 � 1024 resolution (1048576 samples). In Figure 9b,
we have the same view of the visual hull, but this time it
is sampled with only about 9% of the samples. The mean
squared error between the two depth maps is 0.1 (the depth
maps are quantized to 8 bits). Figure 9c shows the sampling

5



(a) (b) (c)

Figure 9: Visual hull sampling results. (a) Shows the result of sampling every pixel. (b) Shows the result of adaptively
sampling only about 9% of the pixels. (c) Shows where the adaptive sampling procedure increased the sampling density.

(a) (b)

Figure 10: Wedge cache performance results. (a) Shows the percentage of samples that are computed using adaptive sam-
pling. (b) Shows wedge cache performance speedup as compared to the algorithm in [3].

pattern used for this view of the visual hull.

We have found that adaptive sampling of visual hulls is
fruitful on a wide variety of different objects. In Figure 10a
we have plotted the percentage of samples needed to render
a visual hull given a fixed threshold for evaluating surface
continuity.

We compared the runtime performance of our algorithm
to the algorithm described in [3]. The results are shown in
Figure 10b. When fully sampling every pixel in the image,
our wedge cache algorithm is slightly faster on all objects.
When we enable adaptive sampling, the speedup is more
dramatic. On average, there is a factor of five speedup,
which would directly result in increased framerates.

6. Conclusions

We have presented a new algorithm for efficiently sampling
visual hulls. Our algorithm computes exact samples of the
visual hull surface along with surface normals. The algo-
rithm computes these samples along an arbitrary set of sam-
pling rays that emanate from a common point, possibly at
infinity.

Using this algorithm, we have demonstrated a simple
way to adaptively sample depth maps of visual hulls from
virtual viewpoints. By using this adaptive sampling, the per-
formance of the algorithm is increased on average 5 times
with almost no loss in quality of the resulting depth maps.
In real-time systems, for which visual hull analysis has been
found useful, this performance increase translates directly
into faster framerates.

6



References

[1] Faugeras, O. Three-Dimensional Computer Vision. MIT
Press. 1993.

[2] Laurentini, A. “The Visual Hull Concept for Silhouette Based
Image Understanding.” IEEE PAMI 16,2 (1994), 150-162.

[3] Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMil-
lan, L. “Image-Based Visual Hulls,” SIGGRAPH 2000, July
23-28, 2000, 369-374.

[4] McMillan, L. “An Image-Based Approach to Three-
Dimensional Computer Graphics,” Ph.D. Thesis, University
of North Carolina at Chapel Hill, Dept. of Computer Science,
1997.

[5] Kanade, T., P. W. Rander, P. J. Narayanan. “Virtualized Re-
ality: Constructing Virtual Worlds from Real Scenes,” IEEE
Multimedia, 4, 1 (March 1997), pp. 34-47.

[6] Potmesil, M. ”Generating Octree Models of 3D Objects from
their Silhouettes in a Sequence of Images.” CVGIP 40 (1987),
1-29.

[7] Roth, S. D., “Ray Casting for Modeling Solids.” Computer
Graphics and Image Processsing, 18 (February 1982), 109-
144.

[8] Snow, D., Viola, P., and Zabih, R., “Exact Voxel Occupancy
with Graph Cuts,” Proceedings IEEE Conf. on Computer Vi-
sion and Pattern Recognition. 2000.

[9] Szeliski, R. “Rapid Octree Construction from Image Se-
quences.” CVGIP: Image Understanding 58, 1 (July 1993),
23-32.

7


