Secure ExecutionVia Program Shepherding

Vladimir Kiriansky, DerekBruening,SamanmAmarasinghe
Laboratoryfor ComputerScience
Massachusettsstituteof Technology
CambridgeMA 02139

{vlk,iye, saman}@cs. nit. edu

Abstract

We introduceprogram shepherding, a methodfor
monitoring control flow transfersduring program
executionto enforcea securitypolicy. Shepherding
ensureghat maliciouscode masqueradin@gs data
is never executedthwartingalargeclassof security
attacks.Shepherdinganalsoenforceentry points
astheonly wayto executesharedibrary code.Fur-
thermore,shepherdingguaranteeshat sandboxing
checksaroundary type of programoperationwill
never bebypassedWe have implementedheseca-
pabilitiesefficiently in aruntimesystemwith mini-
mal or no performanceenalties This systemoper
atesonunmodifiednative binaries requiresno spe-
cial hardwareor operatingsystemsupportandruns
onexisting IA-32 machines.

1 Intr oduction

Thegoalof mostsecurityattackds to gainunautho-
rizedacces$o acomputersystenby takingcontrol
of avulnerableprivilegedprogram.Thisis doneby
exploiting bugsthat allow overwriting storedpro-
gram addressesvith pointersto malicious code.
Todays most prevalent attackstarget buffer over
flow andformat string vulnerabilities. However, it
is very difficult to prevent all exploits that allow
addressoverwrites, as they are as varied as pro-

This researchwas supportedn part by the DefenseAd-
vancedResearctProjectsAgengy underGrantF29601-01-2-
0166.

gram bugsthemseles. It is also unreasonabl¢o

try to stopmalesolentwritesto memorycontaining
programaddressediecausaddressearestoredin

mary differentplacesandarelegitimately manipu-
latedby the application.

Securityattackscannotbe thwartedby simply in-
serting checksaround application code that may
causesystem-widehangesA maliciousentity that
gainscontrolcansimply injectits own codeto per
form ary operationthatthe overall applicationhas
permissionto do. Hijacking trustedapplications
suchaswebseners,mail transferagentsandlogin
seners, which are typically run with mary global
permissionsgivesfull accesso machineresources.

Ratherthan attemptto stop a multitude of attack
paths,wherethe protectionis only as powerful as
thewealestlink, our approachs to preventthe ex-
ecution of malicious code. We presentprogram
shepherding — monitoring control flow transfers
to enforcea securitypolicy. Programshepherding
prevents execution of data or modified code and
ensureghat libraries are enteredonly throughex-
portedentry points. Insteadof focusingon prevent-
ing memorycorruption,we preventthefinal stepof
anattack thetransferof controlto malesolentcode.
This allows thwarting a broadrangeof securityex-
ploits with a simple centralsystemthat can itself
be easilymadesecure. Programshepherdingalso
provides sandboxinghat cannotbe circumvented,
allowing constructionof customizedsecuritypoli-
cies.

Program shepherding requires verifying every
branchinstruction,which canbe costlywhendone

via instrumentatioror in an interpreter In order
to reducethis overheadwve performsecuritychecks
onceandplacetheresultingtrustedcodein acache,
whereit canbe executedoverhead-fredn the fu-
ture. Our implementatiomaturallyfits within the
RIOinfrastructureadynamicoptimizerbuilt onthe
IA-32 version[3] of Dynamo[2]. Our systemim-
posesminimal or no performanceoverhead,oper
ateson unmodifiednative binaries,andrequiresno
specialhardware or operatingsystemsupport. Al-
thoughRIO is implementedor bothWindows and
Linux, this paperfocuseson Linux only. We plan
to extendour work to Windows.

In Section2 we classify the typesof security ex-
ploits thatarepreventedby programshepherding
threetechniqueswhich aredescribedn Section3.
Sectiond discussesnethodsof implementingpro-
gram shepherdingefficiently, and Section5 de-
scribeghedetailsof ourimplementationSection6
discussehow to preventattackdirectedatour sys-
temitself. We presenexperimentakesultsandthe
performancef our systemin Section?.

2 Security Exploits

This section provides some backgroundon the

typesof securityexploits we aretamgeting. We clas-

sify security exploits basedon three characteris-
tics: the programvulnerability beingexploited, the

storedprogramaddresseing overwritten,andthe

maliciouscodethatis thenexecuted.

2.1 Program Vulnerabilities

Thetwo most-&ploitedclasse®f programbugsin-
volve buffer overflows and format strings. Buffer
overflow vulnerabilitiesare presentwhen a buffer
with weakor noboundscheckingis populatedvith
user supplieddata. A trivial exampleis unsafe
useof the C library functionsstr cpy or get s.
This allows an attacler to corrupt adjacentstruc-
turescontainingprogramaddressesnostoftenre-
turn addresseg&ept on the stack[q]. Buffer over

flows affecting a regular datapointer can actually
have amoredisastrougffectby allowing amemory
write to anarbitrarylocationon asubsequeniseof
thatdatapointer Oneparticularattackcorruptsthe
fields of a double-linled freelist keptin mal | oc
headerd16]. On a subsequentall to f r ee, the
list updateoperation

t hi s->prev->next = this->next
will modify an arbitrarylocationwith an arbitrary
value.

Formatstringvulnerabilitiesalsoallow attaclersto
modify arbitrary memorylocationswith arbitrary
valuesand often out-rank buffer overflows in re-
centsecuritybulletins[6, 19]. A formatstringvul-
nerability occursif the format string to a function
from theprintf family ({,f, s, sn}printf,
sysl og) is provided or constructedfrom data
from an outside source. The most common
caseis whenprintf(str) is usedinsteadof
printf("\9", str). Thefirst problemis that
attaclersmay be ableto readthe memorycontents
of the process. The real danger however, comes
from the % corversionspecifierthat writes back
to the agumentthe numberof charactergprinted
sofar. The locationandthe value of this number
can easily be controlledby an attacler with type
andwidth specifiersandmorethanonewrite of an
arbitrary valueto an arbitrary addresscan be per
formedin asingleintrusion.

In this paperwe assumethat attaclers can exploit
avulnerabilitythatgivesthemrandomwrite access
to arbitraryaddressem theprogramaddresspace.
Thisability canbeusedto overwriteary storedpro-
gram addresdo transfercontrol of the processto
theattacler.

2.2 Stored Program Addresses

Many entitiesparticipatein transferringcontrolin

a programexecution. Compilers,linkers, loaders,
runtime systems and hand-craftedassemblycode
all have legitimatereasongo transfercontrol. Pro-
gram addresseare credibly manipulatecby most
of theseentities,e.g. dynamicloaderspatchshared

objectfunctions,dynamiclinkersupdaterelocation
tables; and languageruntime systemsmodify dy-
namic dispatchtables. Generally theseprogram
addresseareintermingledwith andindistinguish-
ablefrom data.In suchanervironment,preventing
a controltransferto maliciouscodeby stoppingil-

legitimate memorywritesis next to impossible. It

requiresthe cooperationof numeroustrustedand
untrustecentitiesthatneedto checkmary different
conditionsand understandhigh-level semanticsn

acomple ervironment.Theresultingprotectionis

only aspowerful asthewealestlink.

Securityexploits have attaclked programaddresses
storedin mary different places. Buffer overflow
attackstarget addresseadjacentto the vulnerable
buffer. Stackallocatedouffersallow the classicre-
turn addressattackanda local function pointerat-
tack. Heapbuffer overflows alsoallow globalfunc-
tion pointer attacksand a set j np structureat-
tack. Simple datapointerbuffer overflows, mal -

| oc overflow attacks,and % format string at-
tacks are able to modify ary storedprogramad-
dressin the vulnerableapplication— in addition
to the aforementionedddressegheseattackstar
getentriesin theat exi t list, . dt or s destructor
routines,andin the GlobalOffsetTable(GOT) [12]
of sharedbbjectentries.

2.3 Malicious Code

An attacler cancausaedamagawvith injectionof new
malicious code or by malicious reuseof already
presentcode. Usually the first approachis taken
andthe attackcodeis implementedas nen native
codethatis injectedin the programaddresspace
asdata[20]. New codecan be injectedinto var
ious areasof the addressspace:in a stackbuffer,
heapbuffer, staticdatasegment,nearheap,or even
the Global Offset Table. Sincenormally thereis
no distinctionbetweernreadandexecuteprivileges
for memorypages(this is the casefor 1A-32), the
only requirements thatthe pagesarewritable dur
ing the injection phase.Pointingary codepointer
to the beginning of theintroducedcodewill trigger
intrusionwhenthatpointeris used.

It is alsopossibleto reuseexisting codeby chang-
ing a code pointer and constructingan activation
recordwith suitablearguments.A simplebut pow-

erful attack reusesexisting code by changinga
functionpointerto the C library functionsyst em

and arrangeghe first agumentto be an arbitrary
shellcommando berun.

An attacler may be ableto form higherlevel ma-
licious codeby introducingdatacarefullyarranged
as a chain of actvation records,so that on return
from eachfunction executioncontinuesn the next
one[18]. A jump into the middle of an instruc-
tion (onlA-32 instructionsarevariable-sizedgould
causeexecutionof a maliciousinstructionstream,
althoughthis attackmay be of very limited use.

3 Program Shepherding

The programshepherdingapproachto preventing
executionof maliciouscodeis to monitorall control
transferso ensurethat eachsatisfiesa given secu-
rity policy. This allows usto ignorethe complei-
tiesof variousvulnerabilitiesandthe difficultiesin
preventingillegitimatewritesto storedprogramad-
dresseslnsteadwe cancatchalarge classof secu-
rity attacksby preventing executionof malesolent
code. We do this by employing threetechniques:
restrictedcodeorigins, restrictedcontrol transfers,
andun-circumentablesandboxing.

3.1 Restricted CodeOrigins

In monitoring all codethat is executed,eachin-

structions origins are checled againsta security
policy to seeif it shouldbe given execute privi-

leges. For example,a policy couldallow execution
of codeonly if it is from the original application
or library imageon disk andis unmodified. The
policy couldallow dynamicallygenerated¢ode,but

requirethat it executewithin a layer of sandbox-
ing. We describein Section5.1 how to distinguish
original codefrom modifiedandpossiblymalicious
code.

Restrictedcodeorigins alonecanstopall security
exploits thatinject codemasqueradingsdatainto
a program. This coversa majority of currentlyde-
ployed securityattacks,including the classicstack
buffer overflow attack.

A hardwvare execute flag for memory pagescan
provide similar featuresto our restrictedcodeori-
gins. However, it cannotby itself duplicateprogram
shepherding featureshecausét cannotstopinad-
vertentor maliciouschangeo protectionflags. Pro-
gram shepherdinguses un-circumentable sand-
boxing, describedin Section 3.3, to prevent this
from happening.

3.2 Restricted Control Transfers

Programshepherdingnablesecuritypoliciessuch
as enforcingthe calling corvention by preventing
return instructionsfrom targeting non-call sites.
Controlling returntargetscan severely restrict ex-
ploitsthatoverwritereturnaddressegswell asop-
portunitiesfor stitchingtogethefragmentof exist-
ing codein anattack.

Anotherusefulpolicy is restrictingtransitionsfrom
onesegmentto anothere.g. from applicationcode
to a sharedlibrary, or from one sharedlibrary to
another We canpreventmalevolentjumpsinto the
middle of library routinesby restrictingtamgetsof
callsandjumpsto beonthelibrary’s exportlist and
thesources importlist.

3.3 Un-Circumventable Sandboxing

Sandboxingallows building customizedsecurity
policiesfor differenttypesof code. For example,
checkscanbe addedbeforeloadsandstoresto en-
surethatonly certainmemoryregionsareaccessed
by applicationcode.

With the ability to monitor all transfersof control,

programshepherdings ableto guarante¢hatsand-
boxing checkscannotbe bypassed. Sandboxing
withoutthis guaranteeannever provide true secu-

rity — if anattackcangaincontrolof theexecution,
it canjump straightto thesandbord operationpy-
passinghechecks.

Sandboxingcan provide detectionof attacksthat
get pastboth restrictedcodeorigins andrestricted
controltransfers.For example,an attackthatover
writes a codepointerin orderto call thesyst em
routinewill not be stoppedif syst emis allowed
by the export andimport lists. Programshepherd-
ing’s guaranteedandboxingcanbe usedfor intru-
siondetectionfor this andotherattacks.The secu-
rity policy mustdecidewhatto checkfor (for exam-
ple, suspiciouscallsto systemcallslike execve)
and what to do whenan intrusionis actually de-
tected. Theseissuesare beyond the scopeof this
paper but have beendiscusse@lsavhere[15, 17].

4 Efficient Implementation of Program
Shepherding

Our goalwasto build an efficient systemfor mon-
itoring control flow thatrunson existing hardware
andrequiresno modificationto applicationsource
codeor binaries. One possibility is instrumenta-
tion of applicationandlibrary codeprior to execu-
tion to addsecuritychecksaroundevery branchin-
struction.However, thisimposessignificantperfor
mancepenalties Furthermoreanattacler awareof
theinstrumentatiorcould designan attackto over
write or bypasghechecks.

Anotherpossibilityis to useaninterpreter Interpre-
tation is a naturalway to monitor programexecu-
tion becausevery applicationoperationis carried
out by a centralsystemin which security checks
canbeplaced.Interpretatiorvia emulationis slow,

especiallyonanarchitecturdike 1A-32 with acom-
plex instructionset. To reducethe emulationover

head,interpretergypically cachethe native trans-
lations of frequentlyexecutedcodesothey canbe
directly executedin the future. By usinga code
cache,we can perform securitychecksonly once,
whenwe copy the codeto the cache. If the code
caches protectedrom maliciousmodification,fu-

basic block builder

trace selector

;

A
Y

dispatch . —mm o -

A
|
|
|
|
|
|
|

context switch

-

BASIC BLOCK CACHE .

TRACE CACHE

non-control—flow
instructions

indirect branch lookup

non-control—flow indirect branch

stays on trace?

instructions

A ?

Figurel: Flow chartof theRIO systeninfrastructure Dark shadingndicatesapplicationcode.Notethatthe context
switchis simply betweenthe codecacheandRIO; applicationcodeandRIO codeall runsin the sameprocessand

addresspace.

ture executionsof the trustedcachedcodeproceed
with no securityor emulationoverhead.

4.1 Dynamic Optimization

A dynamic optimization systemalso utilizes this
code cachedesign. We decidedto build our pro-
gramshepherdingystemasan extensionto a dy-
namicoptimizercalledRIO. RIO is built on top of
the IA-32 version[3] of Dynamo[2]. RIO’s op-
timizationsarestill underdevelopment. However,
this is not a hindrancefor our security purposes,
asits performances alreadyreasonablgseeSec-
tion 7.5). RIO is implementedor bothIA-32 Win-
dows and Linux, andis capableof running large
desktopapplications.

A flow chartshaving theoperatiorof RIO is shavn
in Figurel. Thefigure concentratesn the flow of
controlin andout of the codecache,which is the
bottom portion of the figure. The copiedapplica-
tion codelooks just like the original codewith the
exceptionof its controltransferinstructionswhich
areshovn with arrons in thefigure.

Below we give anoverviewn of RIO’s operationfo-

cusingontheaspectshatarerelevantto ourimple-
mentationof programshepherding.

4.2 RIO: Runtime Intr ospection and Opti-
mization

RIO copiesbasic blocks (sequencesf instructions
endingwith a single control transferinstruction)
into acodecacheandexecuteghemnatively. At the
end of eachblock the applications machinestate
mustbe saved and control returnedto RIO (a con-

text switch) to copy the next basicblock. If atamget
basicblockis alreadypresentn thecodecacheand
is targetedvia a direct branch,RIO links the two

blockstogetherwith a directjump. This avoidsthe
costof asubsequentontet switch.

Indirectbrancheannotbelinkedin the sameway
becausdheir taigetsmay vary. To maintaintrans-
pareng, original programaddressesustbe used
wherever the applicationstoresindirectbranchtar-
gets (for example, return addressedor function
calls). Theseaddressesnust be translatedinto
their correspondingode cacheaddresses order
to jump to the target code. This translationis per
formedas a fast hashtabldookup. Unfortunately

indirectbranchperformancevill never equalthatof
the original code,because singleinstruction(the
indirectbranch)in the original executionhasbeen
expandedo multiple instructions.

To improve the efficieng of indirectbranchesand
to achieve bettercodelayout, basicblocksthatare
frequently executedin sequenceare stitched to-
getherinto a unit calleda trace. When connect-
ing beyond a basicblock that endsin an indirect
branch,a checkis insertedto ensurethat the ac-
tual tagetof the branchwill keepexecutiononthe
trace. This checkis muchfasterthanthe hashtable
lookup,butif thecheckfailsthefull lookupmustbe
performed.Thesuperiorcodelayoutof tracesgoes
along way toward amortizingthe overheadof cre-
atingthemandoftenspeedsipthe program[2, 23).

5 Implementation Details

This sectiondiscusseghe implementationof the
componentf programshepherdingliscussedn
Section3. Most monitoring operationsonly need
to be performedonce,allowing usto achie/e good
performancen the steady-statef the program.In
our implementation,a performance-criticainner
loop will executewithout a single additional in-
structionbeyondthe original applicationcode.

5.1 Restricted CodeOrigins

Theoriginsof abasicblock areeasilymonitoredby

addingchecksatthe point wherethe systemcopies
a basicblock into the code cache. Thesechecks
needbe executedonly oncefor eachbasicblock.

Codeorigins often requireknowing whethercode
hasbeenmodifiedfrom its original imageon disk,
orwhetheirit is dynamicallygeneratedThisis done
by write-protectingall pagesthat are declaredas
containingcode on programstart-up. In normal
ELF[12] binariescodepagesareseparatérom data
pagesandarewrite-protectecby default. Dynami-
cally generatedodeis easilydetectedvhentheap-

plicationtriesto executecodefrom awritablepage,
while self-modifyingcodeis detectedoy monitor
ing callsthatun-protectcodepages.

If codeand dataare allowed to sharea page,we
make a copy of the page,which we write-protect,
andthenunprotectthe original page. The copy is
then usedas the sourcefor basicblocks. If self-
modifying codemustbe allowed, RIO keepstrack
of the origins of every block in the codecache,n-
validatingablock whenits sourcepageis modified.
The original pagemustbe kept write-protectedo
detectevery modificationto it. The performance
overheadof this dependson how often writes are
madeto codepagesbut we expectself-modifying
codeto berare.

We handlenew or modified code as specifiedby
the security policy. We ervision a seriesof pro-
tection levels, where original unmodifiedcode is
more trusted,and dynamically generatedr mod-
ified codeis lesstrusted requiringadditionalsand-
boxing. Legitimatedynamically-generatecodeis
usually usedfor performancefor example, mary
high-level languagesemploy just-in-time compila-
tion [1, 11] to generateoptimized piecesof code
that will be executednatvely rather than inter
preted. This codealmostalways doesnot contain
systemcalls or other potentially dangeroustems.
For this reason,imposinga strict security policy
on dynamically-generatecode (for example,dis-
allowing the execve systemcall) is a reasonable
approach.

5.2 Restricted Control Transfers

The dynamic optimization infrastructure makes
monitoring control flow transfersvery simple. For

directbranchesary desiredsecuritycheckscanbe
performedat the point of basicblock linking. If a
transitionbetweerntwo blocksis disalloved by the
security policy, they are not linked together In-

stead,the direct branchis linked to a routine that
announce®r handleghe securityviolation. These
checksneedonly be performedoncefor eachpo-

tentiallink. A link thatis allowedbecomes direct

jumpwith no overhead.

For an indirect branch,the hashtabldookup rou-
tine translateshetamget programaddressnto a ba-
sicblockentryaddressTransitionshetweerblocks
using indirect branchesare controlled by censor
ing the hashtable. We only place tagetsin the
hashtablethat are allowed by the security policy.
A separatdashtableanbeusedfor returninstruc-
tionsto ensurethatthey only target call sites. This
separatiorhasno effect on performance.

To requirethat all calls and jumps betweenseag-
ments satisfy the import and export lists, we
can match tamgets againstentry points of PLT-
defined[12] or dynamicallyresohed symbols.

Securitychecksfor indirect brancheghatonly ex-
amine their tamgets have little performanceover
head. However, examiningthe sourceandthe tar
gethasthe potentialto slow dowvn execution. This
must be done either by addingexplicit checksin
the hashtablelookup routine, or by indexing the
hashtabldothby sourceandtamget.

5.3 Un-Circumventable Sandboxing

Whenrequiredby the securitypolicy, RIO inserts
sandboxingnto a basicblock whenit is copiedto

the codecache.In normalsandboxingan attacler
canjumpto themiddleof ablockandbypasghein-

sertedchecks.RIO only allows controlflow trans-
fersto thetop of basicblocksor tracesin the code
cachepreventingthis.

An indirect branchthat tagets the middle of an
existing block will miss in the indirect branch
hashtabléookup,gobackto RIO, andendup copy-
ing a new basicblock into the codecachethatwill
duplicatethebottomhalf of theexisting block. The
necessarygheckswill be addedto the new block,
andtheblockwill only beenteredrom thetop, en-
suringwe follow the securitypolicy.

Restrictedcode cacheentry points are crucial not
just for building customsecuritypolicieswith un-

PageType RIO mode | Applicationmode
Applicationcode R R

Applicationdata RwW RwW
RIO codecache RwW R (E)
RIO code R (E) R
RIO data RwW R

Table 1: Privilegesof eachtype of memorypagebe-
longingto theapplicationprocessR standfor Read W
for Write, andE for execute.We separat&xecuteprivi-
legeshereto make it clearwhatcodeis allowedby RIO
to execute.

circumentablesandboxinghut alsofor enforcing
the other shepherdindgeaturesby protectingRIO.
Thisis discussedn the next section.

6 ProtectingRIO

Programshepherdingould be defeatedoy attack-
ing RIO’s own datastructuresjncluding the code
cache,which arein the sameaddresspaceasthe
application. This sectiondiscusse$iow to prevent
attacksonRI0. Sincethecoreof RIO is arelatively
smallpieceof code,we believe we cansecurat and
leave noloopholesfor exploitation.

6.1 Memory Protection

To protect RIO we write-protectRIO’s data and
the codecachewhile controlis in applicationcode.
We divide executiontime into two modes: RIO
mode and application mode. RIO mode corre-
spondsto the top half of Figure 1. Application
modecorrespondgo the bottom half of Figure 1,
the codecacheandthe RIO routinesthat are exe-
cutedwithout performinga context switch backto
RIO. We give eachtype of memorypagethe privi-
legesshavn in Tablel. RIO dataincludestheindi-
rectbranchhashtablendotherdatastructures.

Initially, all applicationand RIO code pagesare
write-protected. When we enter RIO mode we
unprotectthe code cache and RIO data pages.

If a basic block copiedto the code cachecon-
tains a systemcall that may changepage priv-
ileges, the call is sandbord to prevent changes
that violate Table 1. Programshepherding un-
circumwentable sandboxingguaranteeghat these
systemcall checksare executed. When we enter
applicationmodewe write-protectthe codecache
pagesandRIO datapages.Becausave do not al-
low applicationcodeto changetheseprotections,
we guaranteg¢hatRIO’s statecannotbe corrupted.

We protectRIO’s Global Offset Table (GOT) [12]
by bindingall symbolson programstartupandthen
write-protectinghe GOT.

6.2 Multiple Application Threads

RIO’s datastructuresand code cacheare thread-
private. Eachthreadhasits own uniquecodecache
anddatastructures.Systemcalls that modify page
privilegesarechecled againsthe datapagesof all
threads WhenathreadentersRIO mode,only that
threads RIO datapagesand codecachepagesare
unprotected.

A potentialattackcouldoccurwhile onethreads in
RIO modeandanotherthreadin applicationmode
modifiesthefirstthreads RIO datapagesWecould
solve this problem by forcing all threadsto exit
applicationmodewhenary onethreadentersRIO
mode.Theperformanceostof this solutionwould
be minimal on a single processopr on a multipro-
cessorwhen every threadis spendingmost of its
time executingin the code cache. However, the
performancecostwould be unreasonablen mul-
tiprocessomwhenthreadsare continuouslycontext
switching.We arestill working on alternatve solu-
tions.

6.3 Interaction with Dynamic Optimization

We will maintain our security implementationas
RIO is enhancedwvith classiccompiler optimiza-
tionsto improve performanceSomeproposepti-
mizationsmaintainstatewhile in applicationmode,

requiringwrite permissionon pagessuchthatRIO
cannotguaranteesecurity We planto be involved
in the designof future optimizationsso that they
canbeincorporatedsecurelyinto RIO.

7 Experimental Results

Ourprogramshepherdingmplementations ableto
detectandprevent a wide rangeof known security
attacks.This sectionpresents testsuiteof exploits
andthenshaws the performanceof our systemand
the performancempactof our securitytechniques.

7.1 TestSuite

We constructedseveral programsexhibiting a full

spectrumof buffer overflov andformat string vul-

nerabilities.Our experimentsalsoincludedthefol-

lowing applicationswith recentlyreportedsecurity
vulnerabilities:

stunnel-3.21 CAN-2002-0002[8 A format string
vulnerability in st unnel (SSL tunnel) al-
lows remotemalicioussenersto executearbi-
trary codebecausesereralf dpri nt f (acus-
tomfile descriptomwrapperoff pri nt f) calls
have noformatamgument.

groff-1.16 CAN-2002-0003[3 The preprocessor
of the gr of f formatting systemhasan ex-
ploitablebuffer overflon which allows remote
attaclers to gain privileges via | pd in the
LPRng printing system. The pi ¢ picture
compilerfrom the gr of f packagealsohasa
formatstring vulnerability[21].

ssh-1.2.31CVE-2001-0144[8 An integer
overflow bug in the CRC32 compensation
attackdetectioncodecauseshe SSHdaemon
(run typically asroot) to createa hashtable
with sizezeroin responséo long input. Later
attemptsto write valuesinto the hashtable
provide attaclerswith randomwrite accesgo
memory

sudo-1.6.1CVE-2001-0279[8 sudo (superuser
do) allows local usersto gainroot privileges.
The vulnerability is triggeredby long com-
mandline agumentsandis causedoy anout
of boundaccesslueto incompleteendof loop
conditions.An exploit basedonmal | oc cor
ruptionhasbeenpublished16].

Attack codeis usuallyusedto immediatelygive the
attacler a root shell or to preparethe systemfor

easytakeover by modifying systemfiles. Hence,
the exploits in our teststried to eitherstarta shell
with the privilege of the runningprocesstypically
root,or to addarootentryintothe/ et ¢/ passwd

file. We basedour exploits on several “cookbook”
andproof-of-concepivorks[4, 26, 16, 21] to inject
new code[20], reuseexisting codein asinglecall,

orreusecodein achainof multiple calls[18]. Stan-
dardC library functionswereusedfor existingcode
attacks. Chainedcalls were arrangedby injecting
carefully constructedactivation records.On return
from onefunction,executioncontinuesn codein a
functionepiloguethatshiftsthe stackpointerto the
following activationrecordandcontinuesxecution
in the next functionof thechain.

Our testsuite exploits were ableto get control by
modifyingawide varietyof codepointersincluding
returnaddressedocal andglobalfunctionpointers;
set | np structures;andat exit, . dtors, and
GOT [12] entries. We investigatedattacksagainst
RIO itself, e.g. overwriting RIO’s GOT entry to
allow maliciouscodeto runin RIO mode,but could
not comeup with an attackthat could bypassthe
protectionmechanismgresentedn Section6.

All vulnerable programs were successfully ex-
ploited whenrun on a standardRedHat7.2 Linux
installation. Executionof the vulnerablebinaries
under RIO without security checksalso allowed
successfulintrusions. Although RIO interfered
with afew of the exploits dueto changedaddresses
in thetamets,it wastrivial to modify theexploitsto
work underRIO.

Table 2 summarizeghe contrikution of eachpro-
gramshepherdingechniquetoward stoppingthese

attacks We now describeheseresultsin detail.

7.2 Restricted CodeOrigins

Enablingthe codeorigin checksof RIO disalloved
executionfrom addresgangesother than the text
pageof thebinaryandall mappedsharedibraries.
All exploits that introduceexternal codewere de-
tectedandstopped.

A majority of currently deployed security attacks
would be preventedby this techniquealone. How-

ever, codeorigin checksareinsuficient to thwart
attacksthatchangeatargetaddresgointerto point
to existing codein the programaddresspace.

7.3 Restricted Control Transfers

We have evaluatedwhich attackswould have been
preventedby controltransfermrestrictionswhichwe
arein the procesf implementing.

Most of our vulnerableprogramsdid not have ary

applicationcodewhich could be maliciouslyused
by anattacler. However, all of themhadthe stan-
dardC library mappednto theiraddresspace Fur-

thermore mary of the large programsmportedall

of thelibrary routinesthatourattacksneededsore-
strictionson cross-sgmenttransitionswould only
stopafew of theseattacks.

Requiringthat return instructionstarget only call
sites would thwart our chainedcall attack, even
whenthe neededunctionsare explicitly imported
and allowed by cross-sgment restrictions. The
chainingtechniguewould be counterecbecausef
its relianceonreturninstructions:onceto gaincon-
trol at the end of eachexisting function, andonce
in the codeto shift to the activation recordfor the
next functioncall.

Notethatif existing codeusedanindirectjumpin-
structionto returninsteadof an actualreturn in-
struction, our specialreturn handlingwould be of
no help. Suchcodewill probablynot be presenin

Attack Type H CodeOrigins | Restrictedrl ransfers‘ Sandboxing
) ReturnAddress stopsall policy
InjectedCode - stopsall
OtherPointer dependent
ReturnAddress stopsmostf
[) Imported -
B | Singlecall OtherPointer stopsexecve i
(é, Not Imported stopsall
b olic
2 | ChainedCalls stopsall poey
w dependent

Table2: Capabilitiesof programshepherdinggainstifferentattackclasses.
1: Only codeatareturnpointcanberun.
1. Sinceonly asinglecall canbeexecuted sandboxingexecve shouldpreventintrusion.

mostapplications— it will certainlynot be gener
atedby compilerssinceit breaksimportanthard-
wareoptimizationsn modernlA-32 processors.

7.4 Un-Circumventable Sandboxing

Single maliciousfunction calls to an imported|i-
brary routine are still possibleby modification of
a function pointer asarethe simplerdata-onlyat-
tacksthatonly modify theargumentof anotherwise
valid functioncall.

We considerthe readily availableexecve system
call to bethe mostvulnerablepointin a single-call
attack.However, it is possibleto constructanintru-
siondetectionpredicateto distinguishattacksfrom
valid execve calls,andeitherterminatethe appli-
cationor drop privilegesto limit theexposure.

7.5 Performance

Figure 2 shaws the performanceof RIO with and
without programshepherdindeatures. The figure
shawvs normalizedexecutiontime on Linux for the
SPEC2000benchmarkg24] (compiled- 3 and
run with unlimited code cachespace). The first
bar givesthe performanceof RIO by itself. RIO’s
codelayout optimizationsenableit to speedup a
numberof the benchmarksThe secondbar shavs

RIO’s performancevhenit checkscodeoriginsto
ensurethat only unmodified, original codeis ex-
ecuted. This overheadis negligible, asit occurs
only at the point where basic blocks are copied
into the codecache. The third bar givesthe over
headof write-protectingRIO memorypageson ev-
ery contet switch. This overheadis againmini-
mal, within thenoisein our measurementf®r most
benchmarks.Only gcc hassignificantslondown
dueto pageprotection,becauset consistsof sev-
eralshortrunswith little codere-use We arework-
ing on improving our pageprotectionschemeand
completingimplementatiorof the schemesor pro-
tecting RIO mentionedin Section6 for multiple
threads.

We are confidentthat the checksthat are involved
in restrictionson transitionsbetweermemoryseay-
mentsandon returntargetswill produceneggligible
overheadsaswith the codeorigin checkingthatwe
have shavn. We have implementedsandboxingf
systemcalls, which introducesno noticeableover
head.

8 RelatedWork

Reflectingthe significanceandpopularityof buffer
overflow andformatstring attackstherehave been
seseral otherworksthatattemptedo provide auto-

1.7

1.6

15

1.4

1.3

1.2
1.1

1.0 1
0.9 1
0.8 7
0.7 1
0.6 7
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1
0.0 -

Normalized Execution Time

o
@
(=]

[S]
(8]
(o]

2 G
5y E

Benchmark

apsi
art
eon

>
Y £
N 8
o o

o
£
IS
©

applu
equake
mesa

BRIO
@ RIO + origins

ORIO + origins +
protection

T T T T T T T 1
mgrid [——
T T T T T T T 1

parser
perlbmk
N I
sixtrack [
N I
swim
twolf
vortex
wupwise

Figure2: Normalizedprogramexecutiontime for our system(the ratio of our executiontime to native execution
time) on the SPEC200enchmarkg24] (excluding FORTRAN 90). The first bar is for RIO with no program
shepherdingmplementation.The middle bar shavs the overheadf checkingcodeorigins. Theright barshawvs the
overheadf performingpageprotectioncallsto preventattacksagainsthe systemitself.

matic protectionanddetectionof thesevulnerabili-
ties. We will shortly summarizehe moresuccess-
ful ones.

StackGuard7] is a compiler patchthat modifies
function prologuesto place“canaries”’adjacento
thereturnaddresspointer A stackbuffer overflov
will modify the “canary” while overwriting there-
turn pointer anda checkin the function epilogue
candetecthatcondition. Thistechniques success-
ful only againstsequentiabverwritesand protects
only thereturnaddress.

StackGhost[14] is an example of hardware-
facilitatedreturnaddressgointerprotection. It is a
kernelmodificationof OpenBSDthatusesa Sparc
architecturdrap whena registerwindow hasto be
written to or read from the stack, so it performs
transparenbperationon thereturnaddresdefore
it is writtento thestackonfunctionentryandbefore
controltransferon function exit.

Techniquedor stacksmashingorotectionby keep-
ing copiesof theactualreturnaddresses anarea
unaccessiblgo the application,are also proposed

in the kernelmadificationin [14], andin thecom-
piler patch StackShield[25] suffer from various
complicationsin multi-threadingervironmentand
from deviations from a strict calling convention
by set j np() andexceptions. Unlessthe mem-
ory areasareunreadableo the applicationthereis
no hardguarantedhat an attacktamgetedagainsta
givenprotectionschemecanbefoiled. Ontheother
hand,if the returnstackcopy is protectedfor the
durationof a function execution, it hasto be un-
protectedon eachcall andthatcanbe prohibitively
expensve (nmpr ot ect on Linux on x86 is 60—70
timesmoreexpensve thananemptyfunctioncall).
Techniquedor write-protectionof stackpaged7]

have alsoshavn significantperformanceenalties.

FormatGuard®6] is a library patchfor eliminating

format string vulnerabilities. It provideswrappers
for thepri nt f functionsthatcountthe numberof

argumentsand matchthemto the specifiers. It is

applicableonly to functionsthat usethe standard
library functionsdirectly, andit requiresrecompi-
lation.

Enforcing non-executablepermissionson the IA-

32 via kernelpatchesvasmadefor the stackpages
in [10] andon all datapageswith PaX [22]. Both
provide no protectionagainsiattacksusingexisting
code. Furthermorepur systemprovides execution
protectionfrom usermodeandachieresbetterper
formancefor protectingall datapages.

The systeminfrastructureitself is a dynamicopti-
mizationsystembasedon the IA-32 version[3] of
Dynamo([2]. Other software dynamicoptimizers
areWiggins/Redston§9], which emplo/s program
countersamplingto form traceshatarespecialized
for the particularAlpha machinethey arerunning
on, andMojo [5], which targetsWindowvs NT run-
ning on IA-32. None of thesehasbeenusedfor
arything otherthanoptimization.

9 Conclusions

This paperintroducegprogramshepherdingwhich
employs the techniquesof restrictedcode origins,
restrictedcontrol transfersand un-circumentable

sandboxingto provide strongsecurity guarantees.

We have implementedbrogramshepherdingn the
RIO runtimesystemandhave shavn thatit success-
fully preventsawide rangeof securityattackseffi-
ciently.

RIO doesnot rely on hardware, operatingsystem,
orcompilersupportandoperate®nunmodifiedoi-

narieson a genericLinux I1A-32 platform. By per

forming security checksonceand cachingtrusted
code our programshepherdingmplementatiorhas
minimal overhead.

We are expandingthe list of security checksthat
shepherdingcan provide without loss of perfor
mance We arealsomaintainingour securityimple-
mentationwith updatego RIO thatimprove perfor
mance.

Programshepherdingllows operatingsystemser
vicesto be moved to more efficient userlevel li-
braries.For example,in the exokernel[13] operat-
ing systemtheusualoperatingsystemabstractions

are provided by unprvileged libraries, giving effi-
cientcontrolof systenresourceso usercode.Pro-
gramshepherdingan enforceuniqueentry points
in thesdlibraries,enablingthe exokernelto provide
its betterperformancevithout sacrificingsecurity

We believe thatprogramshepherdingvill beanin-
tegral partof futuresecuritysystemslt is relatively
simple to implement,haslittle or no performance
penalty andcancoexist with existingoperatingsys-
tems,applications,and hardware. Marny other se-
curity componentsan be built on top of the un-
circumentablesandboxingprovided by program
shepherding. Programshepherdingrovides use-
ful securityguaranteeshatdrasticallyreduceshe
potentialdamagdrom attacks.

References

[1] Matthev Arnold, StephenFink, David Grove, Michael
Hind, and PeterF. Sweeng. Adaptive optimizationin
the Jalap@o JVM. In 2000 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA' 00), October2000.

[2] VasanthBala, Evelyn Duestervald, and Sanjeg Baner
jia. Dynamo: A transparentuntime optimizationsys-
tem. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’00), June2000.

[3] DerekBruening,Evelyn Duestenald, andSamanmAma-
rasinghe.Designandimplementatiorof a dynamicop-
timization frameawvork for Windows. In 4th ACM Work-
shop on Feedback-Directed and Dynamic Optimization
(FDDO-4), DecembeR000.

[4] Bulba and Kil3r. BypassingStackGuardand Stack-
Shield. Phrack, 5(56),May 2000.

[5] Wen-Ke Chen, Sorin Lerner Ronnie Chaiken, and
David M. Gillies. Mojo: A dynamicoptimizationsys-
tem. In 3rd ACM Wbrkshop on Feedback-Directed and
Dynamic Optimization (FDDO-3), Decembe2000.

[6] C. Cowan, M. Barringer S. Beattie, and G. Kroah-
Hartman. FormatGuard: Automatic protection from
printf format string vulnerabilities, 2001. In 10th
USENIX Security Symposium,Washington,D.C., Au-
gust2001.

[7] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, PeatBakke, Steve Beattie,Aaron Grier, Perry
Wagle, Qian Zhang,and HeatherHinton. StackGuard:
Automatic adaptve detectionand prevention of buffer-
overflow attacks.In Proc. 7th USENIX Security Sympo-
sium, pages$3—78,SanAntonio, Texas,Januaryl 998.

[8] Commonvulnerabilitiesandexposures. MITRE Corpo- [25] Vendicator Stackshield:A “stack smashingtechnique
ration.http://cve.mtre.org/. protectiontool for linux.

[9] D. Deaver, R. Gorton,andN. Rubin. Wiggins/Restone: http://wuv angel fire. conf sk/stackshield/.

An on-line programspecializer In Proceedings of Hot [26] Rafal Wojtczuk.Defeatingsolardesignenon-eecutable
Chips 11, August1999. stackpatch.

[10] SolarDesigner Non-executableuserstack. http://ww. securityfocus. conlarchive/ 1/ 8470.

http://ww. openwal | . com | i nux/ .

[11] L. PeterDeutschand Allan M. Schifman. Efficient
implementationof the Smalltalk-80system. In ACM
Symposium on Principles of Programming Languages
(POPL ' 84), Januaryl984.

[12] Executableand Linking Format(ELF). Tool Interface
Standard€ommittee May 1995.

[13] Dawson R. Engler M. Frans Kaashoek,and James
O'Toole. Exokernel: An operatingsystemarchitecture
for application-leel r esourcemanagementin Sympo-
sium on Operating Systems Principles, pages251-266,
1995.

[14] M. FrantzerandM. Shug. StackghostHardwarefacil-
itated stackprotection. In Proc. 10th USENIX Security
Symposium, WashingtonD.C., August2001.

[15] lanGoldbeg, David WagnerRandiThomasandEric A.
Brewer. A secureervironmentfor untrustechelperappli-
cations. In Proceedings of the 6th Usenix Security Sym-
posium, SanJoseCa.,1996.

[16] Michel Kaempf. Vudo - an object superstitiouslybe-
lievedto embodymagicalpowers.Phrack, 8(57),August
2001.

[17] Calvin Ko, Timothy Fraser Lee Badger and Douglas
Kilpatrick. Detectingand counteringsystemintrusions
usingsoftwarewrappers.ln Proc. 9th USENIX Security
Symposium, Derver, Colorado,August2000.

[18] Nemal. Theadwancedeturn-into-lib(c)exploits. Phrack,
4(58),Decembe001.

[19] Tim Newsham. Formatstring attacks. Guardent,nc.,
SeptembeR000.
http://ww. guardent. com docs/ Format St ri ng. PDF.

[20] Aleph One. Smashingthe stack for fun and profit.
Phrack, 7(49),Novemberl1996.

[21] Zenith Parsec. Remotelinux groff exploitation via Ipd
vulnerability
http://ww. securityfocus. conm bi d/ 3103.

[22] PaXTeam.Nonexecutabledatapages.
http:// pageexec. virtual ave. net/ pageexec. t xt.

[23] Eric Rotenbeg, Steve Bennett,andJ. E. Smith. Trace
cache: A low lateny approachto high bandwidthin-
structionfetching. In 29th Annual International Sym-
posium on Microarchitecture (MICRO '96), December
1996.

[24] SPECCPU200Menchmarlsuite.StandardPerformance
EvaluationCorporation.
http://ww. spec. or g/ osg/ cpu2000/ .

