
How to build scalableon-chip ILP networks for a
decentralizedarchitecture

Abstract

Theeraof billion transistors-on-a-chipis creatingacompletelydifferentsetof designconstraints,
forcing radically new microprocessorarchitecturedesigns.This paperexaminesa few of the pos-
sible microarchitecturesthat arecapableof obtainingscalableILP performance.First, we observe
that the network that interconnectsthe processingelementsis the critical designpoint in the mi-
croarchitecture.Next, we characterizefour fundamentalpropertiesthat have to be satisfiedby the
interconnectionnetwork. Next, we provide casestudiesof two differentnetworksthatsatisfythese
properties.Finally, a detailedevaluationof thesenetworks is presentedto highlight the scalability
andperformanceof thesemicroarchitectures.We show thatby usingcompiletime information,we
canbuild simplernetworksandusethemefficiently.

1 Intr oduction

Microprocessordesignhasbecomeincreasinglymarked by the desireto leverageincreasedtransistor
budgets,reduceverificationanddesigncosts,andto addressthecrumblingof electricalabstractions.A
numberof contemporaryarchitectureresearchprojects,includingIBM’ sBlueGene,Raw [11], SCALE,
andSmartMemories[8], have addressedthesedesires.All of theseprojectsexchangethe monolithic
VLIW or superscalarprocessorfor adistributed,decentralizedarrayof independent,replicatedcomput-
ing elements.Theseelementsareconnectedby a network with short,local wiresthatconnectonly near
neighbors.We referto thesearchitecturesas”decentralizedarchitectures.” Figure1 depictsa decentral-
izedarchitecture.

A key featureof thesearchitecturesis that they have propertiesthat scalevery well asymptotically
with respectto thenumberof transistors.TheBlue Geneprojectproposesanarchitecturewith literally
a million processingelements.Architectureson sucha scalewill becomeincreasinglycommonplacein
thenearfuture. Althoughasymptoticanalysishastraditionallybeeninappropriatefor microprocessors,
whereconstantstendto dominate

�
, it will becomean increasinglyvaluabletool aswe seelarger and

largerdesigns.

Decentralizedarchitectureshave anumberof asympoticadvantages:

First, themicro-architecturaldesignandverificationcostof thesedecentralizedarchitecturesis es-
sentiallyconstantwith respectto the numberof transistors.Whenthe designersgain accessto more
transistors,they simplyputdown morecomputingelements.

Second,thewire lengthof thesedesignsis alsoconstantin sizewith respectto thenumberof tran-
sistors.As a result,thewire delayandroutingcongestionof thedesign,a majorproblemfor monolithic
�
A factorof two in processormeansadifferencein billions of dollarsof revenuefor AMD!

1

local interconnect

ro� uting elements

comp� ute / memory elements

Figure1: A decentralizedarchitecture

architectures,doesnot changeswith thenumberof transistors.

Third, decentralizedarchitecturesalsoreduceclock complexity relative to transistorbudget. In the
first method,we relaxtheassumptionof a globalsynchronous,skewlessclock,andhave thecomputing
elementsperformtheappropriatehandshakingwhenthey exchangedata.Alternatively, thereis promis-
ing work [9] in onlineclock tuningalgorithmsthatcancorrectfor skews in distributedclocks. At the
very least,decentralizedarchitecturesoffer very precise,geometricclock boundariesratherthana large
three-dimensionalrat’s nestof wiresandtransistors.

Finally, thesearchitecturesmayoffer constantyieldsperunit siliconwith respectto transistorcount.
Processingelementswith point defectscouldbe left unusedby thesoftware. However, for particularly
nastycases,this problemmayrequirethata laserbeusedto isolatethecomputingelementelectrically
from its neighbors.Thecomponentscanthenbebinnedfor numberof inactive processingelements,just
asthey arefor clockspeedtoday.

Now thatwe have motivateddecentralizedarchitectures,we will describewhat it is we aregoingto
sayabouthow they aredesigned.

Models of Parallelism Any of the proposedarchitecturesneedto take advantageof parallelismin
order to scale. The microarchitecturecantarget differentparallelismmodelssuchas instructionlevel
parallelsim,pipelineparallelism,threadparallelism,or coarse-grainedparallelism. The advantageof
instructionlevel parallelism(ILP)is that it still givesgoodperformancefor both pipelineandcourse-
grainedparallelism,sincetheseformsof parallelismcanbeconvertedinto ILP.

In our previouswork, we have developa compilersystemthat is capableof obtainingscalableILP
performanceby performingbothspatialinstrucitonpartitioningaswell astraditionaltemporalinsturction
scheduling[7]. Thiscompilerdemonstratethatfor alargeclassof applications,scalableILP performence
is obtainable.

Manifest

2

Therearetwo key partsto designinga decentralizedarchitecture:the network andthe computing
element.Thispaperfocuseson thenetwork.

The computingelementsarethe part of the architecturethat areresponsiblefor performingactual
computation. Theseelementscan look like in-order processors,small-scaleout-of-orderprocessors,
FPGAlogic, clustersof ALUs, or evensinglefunctionalunits.

The “network” is the entiresystemthat is responsiblefor routing valuesin a correctfashion(i.e.,
respectingprogramdependences)betweenthecomputingelements.In a traditional5-stagepipeline,the
“network” would consistof thebypassinglogic andthebypasspaths.

Pleasenotethat whenwe refer to an ILP network, we arenot strictly implying a monolithic piece
of hardware.As RISCprinciplesandprincipalshave taughtus,thedividing line betweenhardwareand
softwareis very flexible. Somepartsof the ILP network may in fact be implementedin softwareand
with compilerinformation(aswe will demonstratein thedatasectionof thispaper.)

Wefurthershow thatthecompileris oftenessentialin reducingthecostor improve theperformance
of theseILP networks.

This paperstartsby describingthe communicationpatternsusedby programswith generalILP. It
continuesby proposinga setof fundamentalpropertiesthat a network needsin orderto facilitateILP,
independentof whetherthe computingelementsareFPGA logic, a clusterof ALUs, smartmemories,
or processors.It narrows its focuson a computationmodelwherethe computationon eachcomputa-
tion elementis totally ordered,andit studiestwo ILP network implementationsin this domain,with an
emphasisonhow they fulfill our fundamentalnetwork properties.Thepapercontinuesby giving perfor-
manceresultsfor thetwo networksonprogramscompiledby aparallelizingC/Fortrancompiler, andfor
somehand-codedapplications.It finalizesby characterizingtheusageof our ILP network design,andit
suggestssomeimprovements.

Thispapermakesthreecontributions.First, it identifiesthefundamentalfunctionalrequirementsfor
building ascalableILP network for adecentralizedarchitecture.Second,it presentstwo implementations
of ILP networks.Finally, it offerssomeinsightsinto how anILP network canbeimplementedefficiently.

Therestof this paperis organizedasfollows. Section2 characterizesthe ILP computationandthe
communicationthatarisesfrom it. Section3 describesthefundamentalrequirementsof anILP network.
Section4 describestwo ILP networks. Section5 shows theperformanceof theILP networks. Section6
concludes.

2 ILP Computation

Thissectioncharacterizesthethenatureof computationswith instructionlevel parallelism.

Thecomputationsaretypically expressedasadataflow graph.A dataflow graphis alogicalnetwork,
whichconsistsof nodesandarcs.Thenodesrepresenttheoperationsin thedataflow graph,andthearcs
representdatavaluesflowing from theoutputof oneoperationto theinput of thenext. Theexistenceof
anarcbetweenoperationsimplicatesasequentialorderingbetweentheexecutionof thetwo operations.

Memory operationsfall into a specialcase.In this case,if the compilercannotdeterminethat the
memoryoperationswill notconflict,thenthereareprobabilisticread-after-write andwrite-after-write de-
pendencesexistingbetweentheoperations.Shortof usingaspeculation(optimisticconcurrency control)
scheme,theapplicationmustsequentializetheseoperations.

3

ld
�

 a

ld b

+ >> 3

*

st b

i
�

q

sr

t
�

ld b
�
st b

+

>> *

ld a

(some PEs were removed for clar ity)

i = a[j]

q = b[i]

r = q + j

s = q >> 3

t =
�

 r * 3

b[
�

i] = t

Figure2: Dataflow GraphsandOperationAssignment

In Figure 2, the memory accessesto b[i] have a possibledependence,which createsa non-
deterministicdependencebetweenthe nodes.The computationis almostentirely sequential;only the
addandshift operationscanbeperformedin parallel.

Typically, thesedataflow graphsareenclosedin somesortof controlstructure:if-statements,loops,
etc. ILP compilersincreasetheamountof parallelismby playingtrickswith loopingstructuresto enlarge
thesizeof thedataflow graphandfind morethingsthatcanexecutein parallel. Thetwo mostcommon
techniquesareloop unrolling [3, 4] andpipelining[6].

Toexecuteacomputationonanetwork of processingelements(PEs),oneneedsto findanassignment
from the nodesof the dataflow graphto the nodesof the network of processingelements,and route
the intermediatevaluesbetweenthesePEs. This assignmentof operationscan be performedat run-
time or compile-time.Superscalarandearlydynamicdataflow [1] areexamplesof run-timeassignment
architectures,while TTA [5], VLIW, or Raw [11] areexamplesof compile-timeassignmentarchitectures.
If thearchitectureis a compile-timeassignmentarchitecture,thechoiceof thepaththat thevaluestake
betweenthePEscanbedoneeitherat compile-timeor run-time.TTA architecturesandRaw choosethe
routingpathat compile-time,while VLIW architecturestypically do it at runtime. In Section4 we will
give two examplesof systemswheretheassignmentproblemis handledatcompiletime.

Thefigureshows a sampleassignment.Notethattheloadandstoreto thearrayb arelocatedon the
samenode.This is by necessity, becausethey bothneedto accessthesamepieceof memory.

Thereisaclassictensionin theassignmentproblem.Ononehand,wewanttospreadthecomputation
asfarout into spaceaspossibleto maximizetheamountof PEsthatcanbeusedsimultaneously(andthus
maximizetheparallelism).Ontheotherhand,wedonotwantto haveoperationsperformedtoofaraway,
becausethe travel time over thenetworkswill addup andimpacttheserialperformance.For instance,
in the diagram,if it takesa cycle to traversea network link, andthe opsall only took onecycle, then
it would have beenmoreeffective to allocateall of theoperationsto oneprocessingelement(assuming
thatprocessingelementsupportedthis.)

4

With anintuition of thestructureof ILP programs,andhow they aremappedto processingelements,
we cannow discussthestructureof theILP networks.

3 ILP Network

Whentheoriginal ILP networks (i.e. thebypassnetworks) for VLIW andSuperscalarprocessorswere
created,thefunctionalitywasso implicitly encodedin thestructureof thenetworksthat it wasdifficult
or perhapsoverly obviousto evenmentionwhatthefundamentalrequirementsof thenetworkswere.As
westretchandscaleandexplorethesenetworks,wefind suddenlythatdesignspaceis somurky thatwe
have to definewhatexactly thesesortsof networksneedto be. Certainpropertiesthatwereoncetrivial
to attainsuddenlybecomevery difficult.

The initial ILP networks thatwe designedfailedratherspectacularlybecausetheir scalable,decen-
tralizedimplementationswerenot capableof providing us with propertiesthat we took for grantedin
their lessscalablecousins.

Thepropertieswhichwe discoveredfollow:

1. The ILP network must be implementedasa distributed process.

This meansthat therecanbeno globalwires,global repositoriesfor information,serialoperations,
unified look-up tables,logic which incorporatesstatefrom all of the processingelements,etc, etc, ad
infinitum. Theview thatneedsto betakenis thatof a numberof processingelements,runningindepen-
dentstate-machinesthatareisolatedfrom their non-neighbors.A time costneedsto beassignedfor any
transferranceof informationbetweennon-neighbors.

2. The ILP network must provide operation/operandmatching.

This propertyhighlightsthat fact that, in orderto compute,we needtheoperandsandtheoperation
to meetat somepoint in spaceto performthecomputation.

Run−time

Run−time

Compile−time

Assignment

Ordering

Superscalar Monsoon

Compile−time

Raw, TTA, VLIW

Figure3: OperationOrderingandAssignment

Thereis aninterestingtaxonomyin thewayin whicharchitecturesperformoperation/operandmatch-
ing. Therearetwo distinction:whetheroperationsareassignedto PEsat compile-timeor run-time,and
whetherthe order in which operationson a given PE are executedis determinedat compile-timeor
run-time.Figure 3 depictsshows amatrixwhichclassifiesseveralarchitecturesin thismanner.

In compile-timeassignmentarchitectures,thecompilerassignseachoperationto a processingele-
ment.In atraditionalbus-basedVLIW, valuesarestoredin acentralrepository(theregisterfile), andthe
instructionssnoopthebusesinto this repositoryto make surethey have thelatestversionsto sendto the
operators.

5

Whenwemoveto ascaleablecompile-timeassignmentarchitecture,weneedto getrid of thecentral
repository. Themosteffective methodof doingthis is to routetheresultof a givenoperationdirectly on
to thenext operationthatusesthatresult.Thisefficient techniquecouldnotbeperformedif theoperands
hadnotbeencompile-time.TheRaw architectureusesexactly this technique.

In run-timeassignmentarchitectures,both theoperationsandoperandscanmove aroundin thear-
chitecture,so therehasto besomesortof directoryschemewhich allows themto find eachother. In a
traditionalsuperscalar, this directoryschemeis implementedthroughglobalbusesandreservation sta-
tions.Unfortunately, theseapproachesarenot scaleable.

Theearly, seminalwork on large-scalerun-timeassignmentarchitecturesis thestaticanddynamic
dataflow machines.They discoveredvery quickly that the scaleabilityissuesraisedby this approach
werevery challenging.The solved theseproblemsmostly with the useof pipelinedsortingnetworks.
Onecould also imagineusing a home-locationscheme,not unlike directory-baseddistributed shared
memoryprotocols. Theseapproacheswereplaguedby state-explosion(differentpartsof the program
would executefar aheadof the others,filling up all of the machine’s executionstorage)anddeadlock
issues.Perhapsmostimportantly, thelatency of operationsweregreatlymultiplied,soserialperformance
suffered.

Run-timeassignmentis especiallyattractive becauseit effectively performsrun-timeloadbalancing
of processingelements,which is very usefulfor adjustingto variablelatenciesin thecomputation.

Ultimately, somedataflow work switchedto ahybridassignmentmodel,whichhadrun-timeassigned
threads,composedof compile-timeassignedoperations.Thesethreadsarecreatedandcommunication
throughexplicit instructions,ratherthanasanautomaticfunctionof the ILP network. In a sense,they
moved the run-timeassignmentpartup to thecompilerandos level, out of thehardware. The latency
costof this run-timethreadassignmentweremitigatedbecausethecommunicationat thethreadlevel is
morecourse.

In theMonsoondataflow project,a givenfunctioncouldbedynamicallyassignedto a givenPE,but
all of theoperationsinsidethefunctionwouldbecompile-timeassignedto thesameprocessingelement.
They creditedthisapproachwith providing themwith improvedlocality.

In compile-timeoperationordering,thecompilerdeterminestheorderin which operationswill exe-
cuteon agivenprocessingelement.Both Raw andVLIWs employ compile-timeoperationordering.

In run-timeoperationordering,theorderingof instructionson a givenprocessingelementis deter-
minedby the arrival of the operands.Superscalarsemploy run-timeoperationordering. Interestingly,
Monsoonperformscompile-timeassignmentbut run-timeordering. Run-timeorderinghelpstolerate
memoryaccesslatency andothereventswith unpredictabletiming.

3. The ILP network must gauranteefinite arri val time.

This propertyhighlightsthefact that the ILP network hasto gauranteedelivery of operandsto pro-
cessingelementsso that thecomputationis robust. Currently, our architecturesstill have the luxury of
assumingphysicallyreliability (althoughthat changeswith theBlue Genemachine!).However, it has
becomea difficult questionto determineif a ILP network is logically reliable.

Theoriginal ILP architecturesusedbusesto communicatevaluesbetweenprocessingelements,and
hadacentralizedway in whichoperandscouldbeflowedcontrolledsothatthebuseswouldnotbeover-
committed.Whenweswitchto adecentralizedarchitecture,suchglobalknowledgebecomesimpossible.
As a result,controllingtheoccupancy of thenetwork becomesvery difficult. If theprocessingelements

6

independentlyproducemorevaluesthanthe network hasstoragespace,theneitherdata-lossor dead-
lock mustoccur. This is a frighteningprospect;somethingthatthenon-scaleableILP network designers
seldomhadto worry about.

In particular, if dynamicnetworks arebeingemployed in the chip, very carefulmeasureshave to
be exertedin order to gauranteethat deadlockcannothappen,or that if it doeshappen,that it canbe
recovery from. The early dataflow machinepapersdemonstratedthat they had tremondousproblems
with theovercommitmentof storageanddeadlock.

4. The ILP network must beable to tolerate timing variations.

This propertyrecognizesthe fact that computationsoften have timing characteristicsthat can be
unpredictableat compile time. Their timing or cachebehaviour may vary with the input dataset,or
synchronizationwith anexternaldevice (like an interrupt)maychangethetiming behaviour of a given
processingelement. If the ILP network cannottoleratetiming variation, it will either fail or severely
reducethesortsof computationsthatcanbeperformed.

In earlymachines,it waspossibleto runaglobalstallsignalacrossthechip in orderto keepprocess-
ing elementssynchronizedwhena timing variationeventoccurred.This is clearlynotanalternative in a
scaleablemachine.As a result,a moredistributedmechanismfor handlingtiming variationneedsto be
developed.

Notethatthis timing variation,like all of theconceptsin ILP networks,doesnot needto behandled
strictly in hardware. The PEs,for instance,could handletiming variationthroughthe useof periodic
handshakes in software. Given this note, a numberof researchprojectsstartedwith software timing
variation tolerancy and moved it in to hardware for performanceandsystem-complexity reasons.In
particular, both Raw andWarp startedwith cycle-countednon-flow-controlledinterconnectsbetween
processingelementsandswitchedto distributedflow-controlledversions.

In thenext section,wewill describeour implementationof apairof ILP networks,andshow it meets
thepropertiesthatwe describedin this section.

4 Two casestudies

This sectionpresentstwo casestudiesof ILP networks. The casestudiesareperformedon the Raw
microprocessor, a distributedmicroprocessorwith compile-timeoperationorderingandassignmenton
eachof its computingelements.The Raw microprocessoris an interestingplatform for our purpose
becauseit containsboth a generaldynamicnetwork and a static network that provide register level
communication.We considerhow bothnetworks cansupportILP computation.For eachnetwork, we
discusshow it supportsvariationtolerance,operation/operandmatching,andreliabledelivery.

4.1 Compilation framework

Compilersupportfor exploiting ILP on theRaw microprocessoris providedby Rawcc. Rawcc extracts
ILP out of sequentialprogramsandorchestratesit acrossthe independentprocessingnodesof theRaw
microprocessor. It performsloop unrolling andcontrol flow localizationto expandthescopein which
it looks for parallelism[7]. For convenience,we refer to this scopeasa basic block, even thoughit
technicallycanspanmore than onebasicblock. Orchestrationof parallelismis donein two phases:

7

instructionpartitioning and cross-tileinstructionscheduling. Instructionpartitioning statically maps
eachinstructionto a processingnode. The compilerenablesa memoryinstructionto be mappedto a
singleprocessingnodeby ensuringthat theportionof memoryit canpotentiallyaccessis mappedonto
asingleprocessingnode.[2]. Cross-tileinstructionschedulingprovidesatotalorderingof computations
on eachprocessingnodewhile takinginto accounttheeffectsof inter-nodecommunicationlatencies.

4.2 Supporting ILP communicationon the Raw dynamic network

TheRaw dynamicnetwork is a generaldynamicnetwork supportingmulti-word messages.Eachmes-
sageon the dynamicnetwork is precededby a headerthat containsthe lengthanddestinationof the
message.Routingdecisionsaremadeasfollows. Whenamessageheaderarrivesat aswitch,theswitch
interpretsit to determinehow thatmessageshouldberouted.Thelatency for routingawordusuallyone
cycle perswitch. Becauseof theinterpretationcost,themessageheaderincursanextra cycle of latency
whenit makesa turn.

Thedynamicswitchemploys dimensionorderedrouting to avoid network level deadlocks.Worm-
holeroutingallows theheadof a messageto beroutedto thenext nodebeforetheendof a messagehas
beenreceived. Routingresourcesareallocatedon a first-come,first-serve basis;if two messagesarrive
simultaneously, arbitrationis resolvedarbitrarily. Thenetwork hasblockingsemantics:a switchblocks
andwaits if it tries to routefrom an emptyinput port or routeto a full outputport. Messagescanbe
receivedvia eitherinterruptor polling.

The dynamicnetwork provides naturalsupportfor variation tolerance,becausemessagescan be
arbitrarily delayedwithout effectingits routability. This flexibility, however, leadsto uncertainty, which
in turncomplicatesdestinationmessageordering(theactof creatinganorderingof valuescorresponding
to the compile-timeoperationordering)andreliabledelivery. We discusseachissuein detail. Unless
explicitly statedotherwise,thediscussionapplieswhethermessagesarereceivedvia interruptor polling.

Destinationmessageordering

A generalway to handlepotentiallyout of ordermessagesin a totally orderedcomputationmodel
is as follows. The network containsan associative buffer into which messagesare received, which
we term a demultiplexing buffer. Eachelementof the associative buffer hasa full-empty bit. Every
messagein thissystemis taggedwith anid. This id is known apriori to boththesenderandthereceiver.
Whena nodereceivesa message,it usesthe id to index into the associative buffer, storethe message
in the correspondingelement,andsetthe corredpondingfull bit. It is an error to write to a full buffer
element.Themaincomputationprocessthesemessagesin its statictotal order, resetttingthefull-empty
bit whenever it no longerneedsa message.This mechanismdecouplesmessagereceive from message
processing,allowing messagesto arrive in a different order than the processorexpects. We call this
schemethebuffer demultiplexing scheme.

In theRaw dynamicprotocol,boththeassociative buffer andits full-empty bits areimplementedin
memory.

We defineseveral termsconcerningthe buffer demultiplexing scheme. A messageis said to be
retired whenits buffer elementcanbereused;a buffer elementis saidto be free if all messageswritten
to it hasbeenretired.Messageretirementneedsnot,andusuallydoesnot,correspondto thepoint when
amessageis originally received.

Normally, therearemoremessagesin theprogramsthantherearenumberof elementsin thedemul-

8

tiplexing buffer. Thusthebuffers needto besharedamongmany messages.This requirementleadsto
two issues:theassignmentof messagesto buffer elementsandbuffer reusesynchronization.Thelatter
is neededto ensurethattwo messagesdestinedfor thesamebuffer elementdo not clobbereachother.

Buffer assignment Theprimarygoalin assigningmessagesto buffer elementsis to minimizetheamount
of buffer reusesynchronizationrequired. This goal, in turn, suggeststhat messagesreusingthe same
buffer shouldbe asfar away aspossible. Here is onepossibleassignmentmechanism.The compiler
assignsa distinct virtual buffer elementto eachmessagein a basicblock. A messagegetsits virtual
buffer elementfrom thoseon its destinationnode,and the pools of virtual buffers on eachnodeare
distinct. Basicblocksthatcontainmorevirtual buffer elementsthantherearephysicalbuffer elements
needto bedividedinto smallerbasicblocksbeforeassignment.

Fromthesevirtual buffer assignments,physicalbufferscanbedeterminedeitherstaticallyor dynam-
ically. In staticallocation,eachvirtual buffer is simply mappeddirectly to a physicalbuffer. Dynamic
allocationworksanalogousto thewaystackallocationisperformed.Oneachnode,abuffer pointerkeeps
trackof thefirst buffer elementthathasnot beenused.At thebeginningof a basicblock, thepointeris
incrementedby themaximumnumberof messagesthatcanbesentto any onenodein thatbasicblock.	
If thebuffer hasoverflowed,all thenodessynchronizeandthebuffer pointeris resetandreincremented.
Regardless,a physicalbuffer numberis determinedby subtractingthe virtual buffer numberfrom the
buffer pointer.

The tradeoff betweenstaticanddynamicallocationareas follows. Dynamicallocationonly per-
formsbuffer reusesynchronizationwhenthedemultiplexing buffer runsout of space,but it payssome
overheadin buffer pointermanipulationandbookkeeping. Staticallocation,on the otherhand,avoids
theoverheadsof thebuffer pointer, but it mustperformbuffer reusesynchronizationbetweeneverybasic
block. In general,dynamicallocationfavors largedemultiplexing buffers,while staticallocationfavors
smallones.

Buffer reuse synchronization Beforea sendercansenda message,it needsto know thatthereceiver has
retiredall previousmessagesmappedto thesamebuffer element.In ourenvironment,thisconditioncan
beenforcedasfollows. Let
���
 � and
�� betwo consecutive messagesthatusethesameid � duringthe
executionof a program.For correctness,theprotocolneedsto guaranteethat thereexistsa sequenceof
messagesfrom thereceiver to thesenderthatoccursbetweentheretirementof
���
 � andthesendingof
message
�� .

It would beprohibitly expensive to explicitly synchronizeeachpair of consecutive messagesdesig-
natedfor thesamebuffer element.Instead,a compilercanoptimizethebuffer reusesynchronizationin
several ways. Synchronizationcanbe piggy-backed onto existing communicationwith zerooverhead.
Whenexplicit synchronizationis needed,selective placementof asinglemessagemaybeableto satisfy
thesynchronizationrequirementsof multiple messageids.

We proposetwo mechanismsthatcanberun at thebeginningof a basicblock to allow buffer reuse
for eitherourstaticor dynamicallocationscheme.A simplemechanismis abarrier. Thisschemewould
besufficient for systemswith efficientbarriersupport,or if thereareenoughbuffersto tolerateinfrequent
synchronization.

If synchronizationis frequenton a systemwithout efficient barriersupport,however, the following
mechanism,which we term explicit batch synchronization, can be more efficient. In this scheme,a
�
Thispointerupdatemechanismlosessomebuffer spacedueto non-uniformdistributionof messagesacrossthedestination

nodes,but it keepstheoverheadof thethepointerbookkeepingtolerable.

9

receivenodereservesabuffer elementwith eachpotentialsenderfor synchronizationpurposes.For each
processingnode � , thecompilerexaminesthe list of messagesto besentandreceived in theorderthey
arescheduled.It keepstrackof nodesfrom which � hasreceivedaswell asthenodesto which � hassent.
Whenit encountersa message
 with sourcenode � anddestinationnode � , it checkswhetherthere
existsaprecedingmessagebetweenthetwo nodes,eitherform � to � or viceversa.If thismessagedoes
not exist, a synchronizationmessageis insertedfrom � to � before
 . The synchronizationmessages
insertedby thisalgorithmensuresthatourconditionfor buffer reuseis satisfied.Note,however, thatthis
algorithmscalesquadraticallywith thenumberof pairsof communicatingnode,so that if many nodes
communicatewith eachother, asoftwarebarriercouldstill bemoreefficient.

Optimizing the fast path with polling Buffer demultiplexing throughmemoryhasa large overheadand
decreasesthe benefitsof having a registermappedcommunicationnetwork. We can,however, design
a fastpath for messagehandlingthat writes the messagevaluedirectly into a register. The ideais to
takeadvantageof compile-timeinformationto insertpolling codeatplaceswherethecompilerexpectsa
messageto bereceived. Includedin thepolling codeis a fastpaththatis optimizedfor themessagethat
thecompilerpredictsthe receive nodewill receive. The fastpathis inlined alongsidethecomputation
codesothatit getsgoodregisterallocationanddoesnot incur any proceduraloverhead.If theexpected
messageis processedby its optimizedpolling code,its valueis written directly into a registerandthe
correspondingbuffer elementcanbeimmediatelyretired.

Reliably delivery The Raw dynamicnetwork doesnot drop messages.Therefore,reliabledelivery
reducesto theability to handledeadlocks.Deadlocksoccursif all thereceiversareblockedon message
sendsthatcannotcompletedueto blockagein thenetwork.

Therearetwo generalapproachesto dealwith deadlocks.Deadlockavoidanceavoidsdeadlocksat
all times;deadlockrecovery allows transientdeadlocksthateventuallytriggera recovery system.This
sectionwill only discussdeadlockavoidancemechanisms.

The specificsof a deadlockavoidancemechanismdependson the way in which messagesarere-
ceived. Thereare threeways in which messagescanbe received on the dynamicnetwork: dedicated
receive hardware,interrupt,or polling.

A simpleway to avoid deadlocksis to beableto guaranteethatall receive nodesarealwayssinking
messages.Oneway to provide this guaranteeis to provide hardwaresupportfor a receive mechanism
that runsindependentlyof theprocessingnode. Similarly, if a processingnodereceivesa messagevia
interrupt,deadlockscanbe avoidedby alwayskeepingthe interrupton. In thegeneralcase,interrupts
needto be turnedoff during messagesends,becausean interrupt handleritself may needto senda
messagethat would interferewith any partially constructedmessages.If we assumethat a network is
usedexclusively for ILP communication,however, theinterruptfor thatnetwork needsnotbeturnedoff
becausewe know its interrupthandlersdo not needto sendmessages.This approachcanalsobeused
with ahybridprotocolthatusesinterruptfor theslow pathandpolling for fastpath.

Deadlockavoidancefor a protocol that relies exclusively on polling is more complicated. Here,
theuncertaintyof messagearrival is not very compatiblewith thecertaintyof polling. Onecorrectbut
conservative schemeoperateasfollows. Beforeasendingnodesendsamessage,it checksthatits output
buffer hasenoughroom for it to completethe messagesendwithout blocking. If the querysucceeds,
the messageis sent. Otherwise,the sendingnodestartssinking any incomingmessagesuntil its send
buffer freesup enoughspace.Compileranalysiscanreducetheamountof polling codethatneedsto be
inserted.For example,if the compilercanprove that no messagecanarrive at a nodethat is trying to

10

sendamessage,thatnodeneedsnot checktheoutputbuffer beforesendingamessage.

Interrupt vs polling Thetradeoff betweeninterruptandpolling is asfollows. Polling is advantageous
becauseits codecan be inlined and register allocated. Interrupt is advantageousbecauseit simplies
deadlockavoidance.A goodreceive mechanismis to usea combinationof both– polling for a fastpath
thatusescompilerinformationto predictwhenandwhatmessagewill arrive; interruptfor theslow path
thatguaranteestheabsenceof deadlock.

4.3 Supporting ILP communicationon the Raw static network

TheRaw staticnetwork is anetwork whoseroutinginformationresideswith theswitchratherthanwith
eachmessage.Eachswitch hasits own instructionmemory;routing decisionsaremadebasedon the
switchinstructions.Theswitchis pipelinedto allow wordsto beroutedin a singlecycle; near-neighbor
communicationlatency is threecycles.Switchinstructionsaregeneratedby thecompilerduringglobal
instructionscheduling.Eachswitchallowsany numberof sourcesto routeto any numberof destinations,
aslong aseachdestinationis specifiedby at mostonesource.This schemesupportsmulticasts(single
sourceto multiple destination)aswell asmulti-routes(multiple independentmessagesto multiple des-
tination). Theswitchhave blockingsemantics:it blocksif its routinginstructionspecifiesaninput port
that is emptyor an outputport that is full. The processorinterfacesto the network throughregisters;
accessesto thoseregisterslikewisehave blockingsemantics.

In additionto routing instructions,theswitch instructionsetalsocontainscontrolflow instructions.
For ourpurpose,however, theconditionsfor thosecontrolflow instructionswill alwaysbegeneratedby
theits processor, sothat its flow of controltracksthatof theprocessor. In theglobalview, all processor
andswitchcooperateto exploit theparallelismin abasicblock,

TheRaw staticnetwork maintainsaninterestingcontractwith thecompilerin orderto supportvari-
ation tolerance,destinationmessageordering,andreliabledelivery. For eachbasicblock, thecompiler
orchestratesa static communicationschedulebasedon its compile-timeknowledgeaboutthe depen-
dencesandlatenciesof operations.It guaranteesthat the scheduleis correctanddeadlockfree given
thoselatencies.At run-time,however, dynamiceventssuchascachemissesandinterruptscancausethe
timingsof operationsto bedifferentfrom thatof thestaticschedule.Throughtheblockingsementicsof
theswitches,however, thestaticnetwork guaranteesthattheorder of eventsoneachprocessorandswitch
remainsasspecifiedby thestaticschedule.Thus,theorderof messagearrival on eachprocessingnode
to remainconsistentwith thatexpectedby theprocessor. In addition,theorderof resourceallocationon
theswitchesremainsconsistentwith thatspecifiedby thecompilerschedule.Thus,thepropertythatthe
scheduleis deadlockis invariantover timing variations. In summary, the Raw staticnetwork provides
thefollowing guaranteewithin a basicblock: it ensuresa statictotal orderingof communicationevents
on every processorandevery switch. This property, in turn, providesdestinationmessageorderingand
reliabledelivery without any protocoloverhead.

5 Results

This sectionpresentsthe ILP performanceon both the static and the dynamicnetworks of the Raw
microprocessor. We presentdataon thecommunicationpatterngeneratedby theRaw compilerto help
understandtheusefulnessof variousnetwork featuresin thiscommunicationspace.

11

Benchmark Source Lines Seq.RT Description
of code (cycles)

Cholesky Nasa7:Spec92 126 34.3M Cholesky Decomposition/Substitution
Fpppp-kernel Spec92 735 8.98K ElectronInterval Derivatives
Jacobi Rawbench 59 2.38M JacobiRelaxation
Life Rawbench 118 2.44M Conway’s Gameof Life
Vpenta Nasa7:Spec92 157 21.0M Inverts3 PentadiagonalsSimultaneously
Moldyn CHAOS 805 63M MolecularDynamics
Unstructured CHAOS 850 150M ComputationalFluid Dynamics

Table1: Benchmarkcharacteristics.ColumnSeq. RT shows therun-timefor theuniprocessorcodegeneratedby
theMachsuifMIPScompiler.

5.1 ILP Performanceon Raw

Experimental setup Our experimentsareperformedon beetle,a cycle accuratesimulatorfor theRaw
microprocessor[10]. Beetlecontainsbothastaticandadynamicnetwork thatprovidecommunicationat
theregisterlevel. Integeroperationlatenciesareonecycle for simpleoperations,two-cycle integermul-
tiplies,36-cycle integerdivides,singlecyclestores,three-cycle loads.Floatingpoint operationlatencies
arethree-cycle addsandsubtracts,three-cycle multiplies,ten-cycle divides,andthree-cycle converts.A
branchhasasingledelayslot. In thisstudy, we assumethatall memoryaccessesarecachehits.

Compilersupportedis providedby Rawcc,asdescribedin Section4. In orderto stressthecommu-
nicationnetwork for thisstudy, weuseanon-zerobut smallcommunicationcostwhendeterminingwhat
granularityof parallelismto partitionup. Therealcostof communicationis thenusedduringinstruction
scheduling.

For thepurposeof contrastingILP performanceon thestaticanddynamicnetwork, we selectsev-
eralmicro-benchmarksthat have enoughparallelismto profitably exploit 32 tiles. For communication
characterization,we addtwo lessparallelapplications.Table1 describesthesebenchmarks.

Our protocolfor performingILP communicationon the Raw dynamicnetwork is asfollows. The
mechanismperformsstaticbuffer assignmentin every basicblock. For buffer reusesynchronizationat
thebeginningof a basicblock, theprocessingnodeseitherperforma globaltreebarrieron thedynamic
network or anexplicit batchsynchronization,whichever is cheaper. Messagesarereceivedvia polling,
with a fastpaththatoptimizesfor correctcompile-timepredictionof theidentificationof thenext mes-
sage.Deadlocksareavoidedby checkingtheconditionof theoutputbuffer beforesendinga message,
andsinkingoutstandingmessagesif theoutputbuffer hasinsufficient spacefor thesend.

Thestaticprotocolfor ILP communicationis exactlyasdescribedin Section4.

Performanceresults

Table2 andTable3 show theend-to-endperformancefor thedynamicandstaticprotocol,respec-
tively. Thedynamicprotocolis only ableto achieve modestspeedupfor severalapplicationson32 tiles.
Thestaticprotocol,however, is ableto attainspeedupfor all theapplications.For 32 tiles, theperfor-
mancedifferencerangesfrom afactorof four for fpppp-kernelto a factorof tenfor jacobi.Theseresults
show thata network requiresmorethanregisterlevel communicationin orderto efficiently exploit ILP.

Table4 considersthe end-to-endoverheadof variouscomponentsof our dynamicprotocol. Static
is thestaticperformance,with single-cycle sendsandreceives,three-cycle latenciesbetweenneighbors,

12

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

jacobi 1.0 0.52 0.60 0.79 1.03 1.65
life 1.0 0.41 0.60 0.84 1.84 2.47
cholesky 1.0 0.52 0.62 0.55
vpenta 1.0 1.38 1.41 1.17
fpppp-kernel 1.0 1.12 0.54 0.94 1.46 1.48

Table2: ILP performanceon dynamicnetwork. Eachentryis speedupwith respectto onetile.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

jacobi 1.0 1.39 2.95 5.37 10.33 16.85
life 1.0 1.61 2.90 4.93 9.67 19.22
cholesky 1.0 1.53 2.81 4.62 6.37 7.22
vpenta 1.0 1.98 2.80 3.32
fpppp-kernel 1.0 1.64 2.66 4.46 6.90 5.96

Table3: ILP performanceon staticnetwork. Eachentryis speedupwith respectto onetile.

andzerooverheadfor destinationmessageorderingandreliabledelivery. Theremainingrowsarevarious
dynamicimplementations,in increasingorderof functionality. Dyn-ordered is thedynamicperformance
whenwe includeonly theprotocolcostof messagesends,receives,anddestinationmessageordering.
+Expl-batch-sync addstheoverheadof explicit batchsynchronizationbetweenbuffer reuses.+Smart-
reuse-sync usesa more intelligent synchronizationschemethat determinesthe cost of explicit batch
synchronizationversustreebarrierat compile-time,andselectstheonethat is thecheapest.+Reliable
takes+smart-reuse-sync andaddstheoverheadof deadlockavoidance.

Resultssuggestthat the basecostof our dynamicnetwork implementationcontributesmostto the
overheadandwill benefitmost from additionalhardwaresupport. No component,however, is cheap
enoughto beoverlooked.

5.2 Communication characterization

This sectioncharacterizesthe communicationpatternextractedby the compiler, in order to help us
evaluatethecostsandbenefitsof thevariousnetwork features.

Table5 shows somebenchmarkcommunicationstatisticswhenRawcc targetsan8x4Raw machine.
Thestatisticsarecollectedfrom theversionof Rawcc targetingthestaticnetwork, but the timing inde-
pendentstatisticsapply to the dynamicversionalso. Thesedatasuggestthe following. The relatively
small numberroute per cycle acrossthe machinesuggeststhat in the absenceof spatialor temporal
hotspots,thenetwork hassufficient communicationbandwidth.Thenon-unitRec/Send suggeststhatthe
communicationhasmodestfanout.Route/Send reflectsroutingdistance,andit indicatesa largeamount
of non-near-neighborcommunication.The maximumnumberof receives per basicblock is a useful
guidelinewhendetermininghardwaresupportfor buffer demultiplexing in thedynamicprotocol.

Table6 shows the usefulnessof multicaston the Raw staticnetwork. Five of the applicationsuse
multicastsover 10%of thetime,with amaximumof over 40%for cholesky.

13

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

static 1.0 1.38 2.95 5.37 10.32 16.85
dyn+ordered 1.0 0.80 1.06 1.56 3.02 3.64

+expl-batch-sync 1.0 0.73 0.86 1.08 1.05 0.84
+smart-reuse-sync 1.0 0.73 0.86 1.08 1.46 2.63
+reliable 1.0 0.52 0.61 0.81 1.05 1.69

Table4: Jacobiperformancebreakdown. Eachentryis speedupwith respectto onetile.

Benchmark Cycle Send/Cycle Rec/Cycle Route/Cycle Rec/Send Route/Send Max Rec/BB

jacobi 483660 0.84 1.38 3.26 1.64 3.89 34
life 256361 0.96 1.47 3.30 1.53 3.45 33
fpppp-kernel 321 0.57 1.14 3.52 2.00 6.17 36
cholesky 646464 0.07 0.52 0.83 7.37 11.86 68
vpenta 975848 0.14 0.37 1.04 2.56 7.25 25
moldyn 26535036 0.32 0.46 1.78 1.43 5.49 256
unstructured 9602683 0.51 0.65 2.82 1.26 5.51 258

Table5: BenchmarkcommunicationstatisticswhenRawcctargetsan8x4Raw machine.Thestatisticsareexecu-
tion countsfrom thestaticnetwork. BB standsfor basicblock.

Rawcc currentlydoesnot take advantageof multi-routes.However, therearetwo reasonswhy we
believe multi-routesarenot performancecritical. First, the low utilization of thenetwork suggeststhat
routecrossingsareinfrequent.Second,unlike multicasts,the lack of multi-routedoesnot increasethe
processoroccupancy costof communication.

6 Conclusion

This paperexaminesthe generalproblemof providing a scalableinterconnectfor exploiting ILP on a
decentralizedarchitecture.We introducea classificationof executionmodel that is basedon whether
instructionassignmentandinstructionorderingareperformedat compile-timeor run-time. We present
thefundamentalrequirementsthata network hasto satisfyin orderto exploit ILP in this broaddomain.
We narrow our focus on compile-timeassignmentand orderingof instructions,and we presenttwo
ILP network implementationsin this domainin the context of the Raw architecture,a decentralized
architecture.

We draw several insightsfrom this exercise.First, we areableto leveragecompile-timeknowledge
aboutinstructionassignmentandoperandorderingto improve eitherthe performanceor the hardware
requirementof our protocols.Examplesof this principle includethesimplificationof instructionissue
logic througha total orderingof instructionson eachprocessingnode,optimizingbuffer reusesynchro-
nizationon thedynamicnetwork, andproviding a fastpathfor messagereceiveson a generaldynamic
ILP network thatreliesonthecompiler’s ability to predictthenext incomingmessage.Second,weshow
thattheRaw staticnetwork is ableto satisfythefundamentalsof anILP network by guaranteeingastatic
orderingof communicationeventson every processorandswitch, with little protocoloverheadat the
costof somerun-timeroutingflexibility.

14

Benchmark 1 2 3 4

life 0.876 0.093 0.031 0.000
jacobi 0.880 0.086 0.025 0.010
moldyn 0.934 0.057 0.007 0.002
vpenta 0.841 0.116 0.030 0.013
cholesky 0.569 0.327 0.101 0.003
fpppp-kernel 0.855 0.128 0.017 0.000
unstructured 0.963 0.029 0.007 0.001

Table6: Distributionof thenumberof outputportsaccessedby a routeinstructionfor an8x4Raw machine.

References

[1] Arvind andS.Brobst. Theevolution of dataflow archiectruesfrom staticdataflow to p-risc. In Proceedings
of Workshop on Massive Parallelism: Hardware, Programming, and Applications, 1990.

[2] R. Barua,W. Lee,S.Amarasinghe,andA. Agarwal. Maps:A Compiler-ManagedMemorySystemfor Raw
Machines.In Proceedings of the 26th International Symposium on Computer Architecture, Atlanta,GA, May
1999.

[3] J. A. Fisher. Tracescheduling:A techniquefor global microcodecompaction. IEEE Trans. Comput., C-
30(7):478–490,July1981.

[4] J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, andA. Nicolau. Parallelprocessing:A smartcompileranda dumb
machine. In Proceedings fo the ACM SIGPLAN 84 on Compiler Construction, SIGPLAN Notices, pages
37–47.ACM, June1984.Vol. 19,No. 6.

[5] J. Janssenand H. Corporaal. Partitionedregister file for ttas. In Proceedings of the 28th International
Symposium on Microarchitecture, pages303–312,1996.

[6] M. Lam. Softwarepipelining:An effectiveschedulingtechniquefor VLIW machines.In Proceedings of the
SIGPLAN ’88 Conference on Programming Language Design and Implementation, pages318–328,Atlanta,
Georgia,June22–24,1988.

[7] W. Lee,R. Barua,M. Frank,D. Srikrishna,J.Babb,V. Sarkar, andS.Amarasinghe.Space-TimeScheduling
of Instruction-Level Parallelismon a Raw Machine. In Architectural Support for Programming Languages
and Operating Systems, pages46–57,SanJose,CA, Oct.1998.

[8] K. Mai, T. Paaske, N. Jayasena,R. Ho, W. Dally, andM. Horowitz. Smartmemories:A modularreconfig-
urablearchitecture.In Proceedings of the 27th International Symposium on Computer Architecture, 2000.

[9] G. PrattandJ.Nguyen.”DistributedSynchronousClocking. IEEE Transactions on Parallel and Distributed
Systems, pages314–328,Mar. 1995.

[10] M. Taylor. DesignDecisionsin the Implementationof a Raw ArchitectureWorkstation. Master’s thesis,
MIT, Departmentof ElectricalEngineeringandComputerScience,September1999.

[11] E. Waingold,M. Taylor, D. Srikrishna,V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,P. Finch, R. Barua,
J. Babb,S. Amarasinghe,andA. Agarwal. Baring It All to Software: Raw Machines. IEEE Computer,
30(9):86–93,Sept.1997.Also availableasMIT-LCS-TR-709.

15

