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Abstract

We present a proof that in a fat-tree network with n processing nodes m < n messages with
randomly chosen, distinct sources and independently and randomly chosen destinations are
delivered within O(lgm) delivery rounds with high probability. More succinctly, we establish
that m messages are delivered in O(lgm +In 1/€) delivery rounds with probability 1 — e for any
small € > 0. Unlike previously applied proof methods, we use an approximating model for the
collision behavior of the network amenable to concise yet simple theoretical analysis. We justify
the accuracy of the approximation by means of behavioral simulations based on a gate-level
implementation of a fat-tree network.

1 Introduction

Fat-tree networks are established as area-universal communication networks due to the seminal
work of Charles E. Leiserson [8, 3], culminating in the implementation of the Connection Machine
CM-5 at Thinking Machines Corporation [9]. Today, advances in semiconductor technology enable
us to integrate multiprocessor machines on a single chip, as explored in the Raw project [12], for
example. As the number of processors on a chip increases, employing one or more fat-tree networks
as interconnection medium is an attractive design alternative.

The theoretical properties of fat-tree networks constitute a compelling reason to consider them
for single-chip multiprocessors. In this article, we reevaluate the theoretical performance of a
fat-tree network with respect to delivery times of messages. We present a proof that m < n
messages with randomly chosen sources and destinations can be delivered in a fat-tree network
with n processing nodes within O(lgm) delivery rounds with high probability. Our result improves
on previously published bounds based on the number of processing nodes n rather than the number
of messages m. Leiserson [8] derived a bound using the load factor X of a set of messages. He has
shown that the number of delivery rounds required to deliver a set of messages, where the sources
and destinations are known in advance, is O(Algn). Greenberg and Leiserson [3] have derived a
bound O(X + lgnlglgn) for the number of delivery rounds when the sources and destinations of
messages are unknown, assuming that the probability of congesting a channel follows the binomial
distribution, however.

Empirical evidence shows that these bounds are conservative. To prove our tighter bound,
we develop a model for the collision behavior of messages. Since this model merely approximates
the actual occurrence of collisions, we present empirical evidence that it reflects reality accurately



enough to justify our time bound. We have developed a gate-level implementation of the fat-tree
network and a behavioral simulator that permits us to scale our simulations up to large numbers
of processing nodes. Our simulations show that O(lgm) is not only an upper bound for randomly
chosen message sources and destinations, but for many regular communication patterns as well.

Our goal is to derive a suitable model of the collision behavior of a fat tree that approximates
reality with sufficient accuracy and permits a concise yet simple theoretical analysis at the same
time. Previous work, such as [3, 1, 4, 5, 6, 7, 10], suggests that an exact analysis requires significant
theoretical armory. While most of this work tackles more general routing problems, we are not aware
of any approaches with a goal similar to ours.

2 Proof Outline

Our proof is based on the structural analysis of a particular fat-tree network architecture, which
results in the average probability Pr[C5] of a collision of two messages with randomly chosen sources
and destinations. This probability embodies the structure of the fat tree.

We then model the collision behavior of m > 2 messages by means of an approximating balls-
and-bins game. The simple balls-and-bins game neglects probabilistic dependencies. Nevertheless,
in Section 5 we show empirically that neglecting dependencies due to the random selection of
message destinations affects the result by a small constant factor only. We calibrate the number
of collision bins to reflect the probability Pr[C5]. Messages correspond to balls tossed into collision
bins. A message may be rejected or delivered depending on the outcome of the collision toss.
Rejected messages must be retried, leading to a model of subsequent delivery rounds that correspond
to a sequence of collision tosses.

We prove the result in two phases, depending on whether the number of messages m is larger
than the number of collision bins b or not. We assume that all messages rejected in one delivery
round are retried during the subsequent delivery round. In phase I we prove that the number of
messages delivered per delivery round for m > b is larger than a constant amount with at least
constant probability. In phase IT we prove that the fraction of messages delivered per delivery round
for m < b is larger than a constant amount with at least constant probability. In both phases,
the expected number of delivery rounds is O(lgm). Finally, we use a Chernoff bound to establish
the high-probability result for each phase that m messages are delivered within O(lgm + In1/e)
delivery rounds with probability 1 — € for any small € > 0.

3 Fat-Tree Architecture

Our proof is restricted to the architecture of the fat-tree network shown in Figure 1 with the router
design described below.! Whether our proof methodology is applicable to leaner trees or even
entirely different network architectures remains an open question.

We introduce the following design decisions. The network shall be circut-switched, where
messages reserve a path from the source to the destination on their way through the network.
In contrast to packet routing, this design is particularly suited for pipelining streams of data
through an array of processors with register-mapped networks. Applications such as digital signal
processing would be a primary beneficiary of this design choice. In a circuit-switched network, an

!The fat-tree network under investigation is similar, yet different from a back-to-back butterfly or Benes network,
because of its connections between the downstream ports. The fat-tree network is relatively easy to implement and
realizable with today’s and future micro-technology, which offers six or more levels of metal.



Figure 1: Structure of fat-tree network with 16 processing nodes.

explicit acknowledgment signal is used to release the resources of the reserved path. Consequently,
no buffering is needed at the router nodes other than a small, constant number of pipeline registers.
Furthermore, each processing node may have at most one message transmission and one, potentially
simultaneous message reception in progress. Each of the links in Figure 1 is a bidirectional link,
or full-duplex link, consisting of two sets of wires, each responsible for transmitting signals in one
direction. Each router of the network has four ports a, b, ¢, and d, and each port has an incoming
and an outgoing set of wires, as shown in Figure 2. We call ports a and b the downstream ports,
and ports ¢ and d the upstream ports as obvious from Figure 1.
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Figure 2: Router design of a full-duplex fat tree.

Each router is designed to transmit and reject messages according to the following behavior.
Upstream messages arrive on one of the downstream ports a or b, and are transmitted through
one of the upstream ports ¢ or d at random. This upstream port selection is the only source of
randomness in the routing process. If one upstream port is in use when a second upstream mes-
sage arrives, the available port is assigned to the second message deterministically. Downstream
messages are transmitted through one of the downstream ports a or b. Since the downstream
ports have only one set of outgoing wires, a, and b, respectively, contention may occur if more
than one message shall be transmitted through one of theses downstream ports. For example, if
two downstream messages arrive on ports ¢ and d, and both shall be transmitted through port a,
only one of them may use wire a,. The other message will be rejected, that is a collision signal will
be sent to the sender for notification. The sender is responsible for initiating a retry.

The collision behavior of our router design obeys the simple message rejection rule: all
but one of the downstream messages with the same outgoing port are rejected. Messages can
collide only while traveling downstream. There exist two characteristic collision scenarios. (1) Two
downstream messages arrive at the upstream ports to be transmitted through the same downstream
port. (2) One downstream message arrives at one of the downstream ports, another downstream
message at one of the upstream ports, and both shall be transmitted through the same downstream



port. In both scenarios, one message is rejected, and the other passes successfully. If both scenarios
happen simultaneously, that is three downstream messages arrive on one downstream port and both
upstream ports, then two messages are rejected, and one passes through the router.

Noteworthy is that messages cannot collide while traveling upstream, because the network
architecture doubles the amount of wires at each level of router nodes from the leaves towards
the root. Therefore, we do not have to be concerned about contention on the upstream paths of
messages, even if each processing node injects a message into the tree.

We introduce the following naming scheme for the network routers. We denote a router at level [
in the tree a level-l router or Li;-router. An Ly-router is a leaf node of the tree, connecting two
processing nodes. A router node at level [ in the fat tree consists of 2! individual L;-routers. In
Figure 1, a router node is shown as a rectangle if it comprises more than one router. Furthermore,
we have annotated one router node at each level in the tree with the corresponding levels Lg, Ly,
LQ, and L3.

4 Structural Analysis

We analyze the collision behavior of a fat-tree network to compute the probability of a collision
between two messages.

Lemma 1 (2-MESSAGE COLLISION PROBABILITY) Two messages with randomly chosen, distinct
sources and independently and randomly chosen destinations collide on average with probability

Pr[Cy] = ﬁ (”2 Glg" - g) * g)

o)

in the fat tree with n processing nodes described in Section 3. Moreover, Pr[Cs] can be bound as
follows for n > 0:

Proof: We employ an accounting argument of basic collision events covering the entire sample
space of possible collisions. We fix the sender of message my at node 0 of the fat tree without
loss of generality. This gives us a choice of n — 1 destinations for m;, n — 1 possible sources of
message ma, and n — 1 possible destinations for mso. Hence, our sample space comprises (n — 1)3
distinct elementary events.

We utilize the symmetry of the fat tree to account for entire subtrees at a time. In particular,
we consider v-subtrees with 2” nodes and denote as Pr[k, i, j] the probability that m; with source
node 0 and its destination node in the i-subtree collides with ms9 with its source node in the k-
subtree and its destination node in the j-subtree. The subtrees are uniquely specified such that
all nodes in a v-subtree have the same dilation 2(v + 1), counted in number of links, from the
respective reference node.

The destination subtrees of mq are the i-subtrees. Since the source of m; is fixed at node 0,
we can easily identify the i-subtrees with respect to node 0. For ¢ = 0, the only node with dilation
2(0 + 1) = 2 is node 1; cf. Figure 1. Thus, the (i = 0)-subtree is {1}. For ¢ = 1, the nodes
with dilation 2(1 4 1) = 4 are 2 and 3. Therefore, the (i = 1)-subtree is {2,3}. Analogously, the
(i = 2)-subtree is {4,5,6,7}, the (i = 3)-subtree is {8,...,15}, etc. We observe that, in general,
the (i = v)-subtree is the set of nodes {27,...,2""1 —1}.



The k-subtrees contain the possible source nodes of mgy with respect to source node 0 of m;.
Therefore, the k-subtrees are identical to the i-subtrees. The j-subtrees contain the possible desti-
nation nodes of mqy with respect to its source node. The j-subtrees depend on the particular choice
of the source node of msy. For example, consider node 10 as the source of ms. The (j = 0)-subtree
is {11}, the (j = 1)-subtree {8,9}, the (j = 2)-subtree {12,13,14,15}, the (j = 3)-subtree is
{0,...,7}, and so on. With respect to source node 0 of message m1, node 10 is an element of the
(k = 3)-subtree {8,...,15}.

We can compute Pr[Cs] by summing up the individual probabilities Pr[k, 4, j], presuming that
Pr[k, i, j] accounts for the average probability of a collision for all source nodes of ms in the k-subtree,
all destination nodes of my in the i-subtree, and all destination nodes of mq in the j-subtree. Since
for a fat tree with n processing nodes the largest subtree contains n/2 processing nodes, we obtain
for Pr[Cs]:

lgn—1 lgn—1 lgn—1

Pr[Cy] = ﬁ kzzjo 2k ; 2! ]2:% 2 Prlk, i, j]. (1)

A structural analysis based on a particular choice of k allows us to determine Pr[k,1,j] for
all 7 and j. This analysis results in the following matrix of probabilities for a particular k, for
0<i<lgn—1,and for 0 < j <lIgn —1:

0 - j=k - Igt
0 :
| 0 i
Pr[kaiaj] = — | +2 0 (2)
=k 27,;';1 0
lg 5

We can derive Equation 2 by means of a case-by-case analysis depending on the relationship
between i, j, and k. For the sake of clarity, we discuss each case in detail. Although this results in
a lengthy analysis, it is nothing but a straightforward accounting of elementary events:

1 < kA j < k: First, consider the example 7 = 2, k = 3, and j = 1. The destination subtree of m;
is the (i = 2)-subtree {4,5,6,7}. The source node of my is in the (k = 3)-subtree {8,...15}.
The destination subtree of my is the (j = 1)-subtree with respect to the source node of ms.
It can be one of the four subtrees {8,9}, {10,11}, {12,13}, or {14, 15} only. For any choice of
the source of my, this subtree is contained in the k-subtree. Thus messages m; and mgy travel
through disjoint subtrees, and cannot collide. In general, the destination subtree of m; is the
i-subtree {2°,...,2*1 — 1}. The source node of my is in the k-subtree {2%,... 2kl — 1},
which is disjoint from the i-subtree for ¢ < k. Finally, for ;7 < k, the j-subtree is a proper
subset of the k-subtree, and therefore disjoint from the ¢-subtree as well. As a consequence,
Pr[k,i,j]=0fori < kAj <k.

i = k = j: Consider the case i = k = j = 2. The i-subtree and the k-subtree are {4,5,6,7}.
The j-subtree is {0, 1,2, 3}, independent of the particular source of mg within the k-subtree.



Message my travels from node 0 to one of the nodes in the ¢-subtree, and mo from one of
the nodes in the k-subtree to one of the nodes in the j-subtree. Both messages traverse in
opposite directions through one of the Lo-routers in Figure 1, potentially the same router.
Since all links are bidirectional, the tree supports this criss-crossing message pattern without
collisions, even if the messages traverse through the same router. We can easily generalize
this case and see that Pr[k,i,j] =0 for all i = k = j.

i>k>jori<k< j: Consider the example i = 3, k = 2, and j = 1. The i-subtree is {8,...,15}
and the k-subtree is {4,5,6,7}. For any choice of the source of mso in the k-subtree, its
destination is in the (j = 1)-subtree, which must be either {4,5} or {6,7}, and is a proper
subset of the k-subtree. Thus, message mo is confined to the k-subtree, whereas m; travels
through the tree to the i-subtree without traversing any of the routers connecting the nodes
of the k-subtree. The fact that messages m; and mgy never traverse the same router is easily
generalized for ¢ > k > j. The case i < k < j is symmetric. Therefore, Pr[k,i,j] = 0 for
1>k>j7andi <k <j.

i >7>korj>i>k: Consider i =3, j =2, and £k = 1. The i-subtree is {8,...,15} and
the k-subtree is {2,3}. There exists exactly one j-subtree for all choices of the source of mo
in the k-subtree, which is the j-subtree {4,5,6,7}. The key observation here is that both
messages m1 and msy travel upstream, partially in parallel, until they reach a router where m;
travels further upstream towards the i-subtree whereas ms turns downstream towards the j-
subtree. In the example, this happens at one of the Lo-routers in Figure 1. Since collisions
cannot happen on the upstream paths of two messages, m; and ms do not collide. The case
where j > ¢ > k is similar, except that mo travels further upstream than m;. We find that
Pr[k,i,j]=0foralli > j > k and all j > i > k.

j <1 =kori < j=k: These cases correspond to the non-zero elements in row 7+ = k and
column j = k of the matrix in Equation 2, respectively. We discuss the case j < i = k.
Case ¢ < j = k holds by symmetry. The destination node of m; with source node 0 is in the
1-subtree {2i, co, 20 1}. Since i = k, the k-subtree equals the i-subtree, and the source
node of my is a node of the i-subtree. Without loss of generality, we consider node 2¢ = 2¥ to
be the source node of ms. The destination of my is in the j-subtree, which is a proper subset
of the k-subtree, because j < k. For example, for 2 = k = 2 and j = 1 both the i-subtree and
k-subtree are {4,5,6,7}. If we pick the source of my to be node 22 = 4, the (j = 1)-subtree
containing the potential destinations of mg is {6,7}. In general, we find that the destination
of mo must be in the j-subtree {2% +27 ... 2% 4 27+1 — 1} if the source of my is node 2*.

Let us study the possible collision scenarios for messages m and meo by means of the preceding
example. If m; has destination 4 or 5, my may travel to destination 6 or 7 simultaneously
without collision. If both m; and ms have the same destination, which may be node 6 or
node 7, the messages will collide with probability 1. This collision may happen either at the
Ly-router connecting the destination node, or at one of the Lj-routers connecting subtrees
{4,5} and {6,7} if both messages attempt to traverse the same router. In case that the
destinations of my and mo are different, say m; is destined for node 6 and ms for node 7,
a collision may occur at one of the L;-routers connecting subtrees {4,5} and {6,7} if both
messages attempt to traverse the same router. If m; and my travel though different L;-
routers, they can travel collision-free through the Ly-router to their destinations.

We can generalize the observations from this example assuming that the source of my is 2%



and the destination of ms is 2¥ 4+-27. We dissect the j-subtree {2¥ 427, ... 2% +2/+1 1} into
r-subtrees {2F +27 427 ... 28427 4 271 1} for 0 < r < j. For example, with i = k = 3 and
j = 2, the source of my is node 8, the destination of mg is node 12, and the (j = 2)-subtree
is {12,13,14,15}. Then, the (r = 0)-subtree is {13} and the (r = 1)-subtree is {14, 15}.

We observe that if the destination of m is in the r-subtree, then mq and mo cannot collide at
any of the L,-routers for 0 < v < r. Thus, collisions may occur only at routers at level r» + 1
or higher in the j-subtree. We account for the collisions of m; and ms due to all routers at
level » + 1 and higher by counting all paths of m; and mg that reach a router node at level
r 4+ 1 and traverse the same L, i-router. The message paths are determined randomly due
to the port selections on the upstream paths. Since the upstream paths of m; and mo are
disjoint for j < ¢ = k, the random selections are independent. Due to this independence, and
since there are 2"+ L., -routers on the downstream paths of m; and mgy, the probability
that mq or my traverse a particular L, i-router is 1/2"+1, respectively. Thus, the probability
that the paths of both mq and mo traverse the same router of a router node at level r 41 is
2rtl.p/2r+l . 1/2r+1 = 1/27+1, Consequently, the probability of a collision of m; and my at
a router node at level r + 1 or higher is 1/27+1.

To compute probability Pr[k, 1, j], we sum up the probabilities of the independent collision
scenarios that may occur for m; and meo. We fix the source of mo at 2k and the destination
at 2¥ 4+ 27, By renumbering the nodes in the k-subtree, we find that the collision probability
for all possible sources and destinations of ms is equal to this particular choice. Therefore,
it is sufficient to account for all destinations of mi in the i-subtree with a fixed source and
destination of my to compute the average collision probability. The collision probability is 1,
if m; chooses the same destination 2¥ + 2/ as ms. This happens with probability 1 / 2% since
there are 2° possible destinations for mq. If the destination of m; is outside of the j-subtree,
the collision probability is 0. Otherwise, message m; may choose one of the 2" destination
nodes in the r-subtree, which is a proper subset of the j-subtree. The 2" destinations may
be chosen by m; with probability 2"/2¢, each of which has the collision probability 1/2"+!
derived above. We need to sum up the probabilities over the disjoint r-subtrees for 0 < r < j.
Therefore, we obtain:

.1 Itor 1 42
r=0

Since we are considering the case i = k, we have Pr[k,4,5] = (j + 2)/2t! for j < i = k,
yielding the elements in the matrix of Equation 2 for row ¢ = k. The column elements for
1 < j = k follow by symmetry.

1 = j > k: This case corresponds to the non-zero elements on the main diagonal of the matrix in
Equation 2. The i-subtree is equal to the j-subtree {2/,...,2/%1 —1}. Similar to the previous
case, we fix the destination of my at node 27, and dissect the j-subtree {27,...,2/*! — 1} into
r-subtrees {2j 427, .., 20 4ot 1} for 0 < r < j. Now, the accounting of collisions depends
on k rather than j, because the source of ms determines the routers on the downstream paths
of m1 and mo at which collisions can occur.

Let us consider an example first. Assume that ¢ = j = 3, that is the (1 = j = 3)-subtree is
{8,...,15}, and the destination of ms is node 2/ = 8. For k = 0, the (k = 0)-subtree is {1}.
The only possible source of mo is node 1. Recall that we fix the source of m; to be node 0.



Inspection of the tree in Figure 1 reveals that m; and meo cannot collide except when the
destinations of my and mso coincide at node 8, because the upstream-port selections are not
independent. Note that no collision occurs even for node 9 as the destination of m;. We may
argue that the Ly-router connecting subtrees {0} and {1} guarantees that m; and mq travel
collision-free through the tree such that they arrive at different L;-routers of the router node
connecting subtrees {8,9} and {10,11}. From there, m; and mg can travel through different
upstream ports of the Lg-router connecting nodes 8 and 9 to their destinations.

For k = 1, the k-subtree is {2,3}. We may choose node 2 as the source of my. The destination
of mo remains fixed at node 8. If the destination of m; is node 9, a collision occurs if mq
and mgy arrive at the same Lj-router connecting subtrees {8,9} and {10,11}. Such a path
is possible due to the independent upstream-port selections of the Lg-routers at the source
nodes 0 and 2. If these Ly-routers select upstream ports such that mq and mo arrive at the
same Lj-router connecting the Ly-routers, both messages will arrive at the same L;-router
connecting subtrees {8,9} and {10,11}, leading to a collision.

The situation is similar for £ = 2. In this case, collisions may occur at the L or Lo-routers on
the downstream paths of mq and mo. The dissection of the destinations of my into r-subtrees
restricts the number of message paths of m; such that there exists only one out of 27+!
upstream paths that causes a collision on the downstream path. For r = 0, the destination
of my is node 9. There are 2°T! = 2 possible upstream paths of m; depending on the path
selection of the Lg-router at source node 0 of mq. One of the two upstream paths leads to a
collision at an Lj-router or Lo-router on the downstream path. The other upstream path is
collision-free. For r = 1, one out of 22 = 4 upstream paths leads to a collision at an Lo-router
on the downstream path.

In general, we find that collisions may occur for a particular k£ at router nodes at level r+1 or
higher for 0 < r < k. The probability that the messages collide can be derived by considering
their upstream paths. Due to the symmetry of the tree, a collision occurs on the downstream
path at level » 4+ 1 or higher due to independent path selections of the upstream routers at
levels below r + 1. Assuming that the path of ms is fixed, there are 2" ! possible upstream
paths for mq, only one of which can lead to a collision on the downstream path. Since the
random upstream-path selections are independent below router level r 4+ 1, the probability
that my chooses the collision path is 1/27+1.

Using the same accounting argument for the paths of my and mo as in case j < ¢ = k, we
find that

k—1
1 2" 1 k+2
Prlk,i,jl = 5 -1+ Z 9i 9rfl  9ifl

This result coincides with the elements on the diagonal of the matrix in Equation 2 for
i=73>k.
We now turn to computing Pr[C5] from Equation 1. The sums over ¢ and j can be computed

as a function of k£ from Equation 2 by adding up the row elements for « = k and 0 < j < k, the
column elements for j = k and 0 <7 < k, and the diagonal elements for : = j and k <1 <lgn — 1:

lgn—1 lgn-—1 k—1 k—1 lgn—1
Z 2 Z 27Pr[k,2,j] - ZT 9k+1 +Z2J 2k+1 + Z 21/2V+1
j = i=0 §=0 v=k+1
k—1 lgn—1 k
+2
= D (+2) 2+ 3} ——2
1=0 v=k+1



= k-2k+¥(n—2k“).

Finally, we compute the sum over & to obtain Pr[Cy]:
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Proving the upper and lower bounds for Pr[C5] is trivial and is left to the reader. [

We can now reap the benefits from the simple yet laborious chore of proving Lemma 1, and
apply Lemma 1 to the case where more than two messages enter the network.

5 The Balls-and-Bins Model

We now consider m > 2 messages. We assume that m distinct message sources are chosen randomly;,
and that m potentially identical destinations are chosen independently and at random. Since each
source can transmit only one message at a time, n is an upper bound for m, and we have 2 < m < n.
Lemma, 1 enables us to model the collision behavior of /m messages by means of a classical balls-and-
bins game. A message transmission corresponds to a ball that is tossed randomly and independent
of other tosses into a colliston bin. Two messages collide, if the corresponding balls land in
the same collision bin. The only piece of information that we supply to the balls-and-bins game is
probability Pr[Cs] according to Lemma 1. The number of collision bins shall reflect this probability,
and is therefore chosen as follows.

Corollary 1 (BIN CALIBRATION) The number of bins b of the balls-and-bins game modeling the
collision probability in the full-duplez fat tree is 2n/lgn.

Proof: We toss two balls independently and at random into b collision bins. The probability
that both balls land in the same bin is 1/b. This probability shall be equal to the average collision
probability of two messages Pr[Cs]. Consequently, choosing

2n 1

b=—<
lgn — Pr[Cy]

yields a conservative analysis, but does not affect our complexity result, because b differs by a small
constant factor from the actual value only. |

Recall that Pr[Cy] is the average probability across all possible distinct sources and potentially
identical destinations. Therefore, when considering m > 2 messages, more than two balls may land
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Figure 3: Simulations of Model I including a destination toss and Model II without the destination
toss for m = n/8 (left) and m = n (right). The number of delivery rounds due to the two models
differ by a small constant factor only.

in a particular collision bin. All of the corresponding messages shall collide in the network. Our
key approximation of the collision behavior is that only one of these messages shall survive the
collisions. Hence, all but one ball in a collision bin correspond to rejected messages, and one ball
corresponds to a delivered message. We call the tossing of balls into collision bins a collision toss
and its equivalent with respect to message transmissions a delivery round. All messages rejected
during one delivery round are retried in a subsequent delivery round. The number of delivery
rounds needed to deliver all messages determines the performance of the network.

The model of the collision behavior by means of the balls-and-bins game described above de-
serves further discussion. In fact, this model may appear to be unacceptably crude, because it
ignores a variety of dependencies, most notably those dependencies imposed by the distribution
of message destinations. We argue, however, that we may neglect these dependencies safely. We
provide empirical evidence in Section 7 that the balls-and-bins model reflects reality at the level of
end-to-end performance with sufficient accuracy, indeed.

As an aside, let us show that the dependencies due to the distribution of message destinations
affect the number of delivery rounds by a constant factor only compared to neglecting them. To
account for the distribution of message destinations, we may construct a model of two balls-and-bins
games. The first game consists of a single toss, the destination toss, of m balls into n destination
bins representing the random choice of message destinations. The second game consists of repeated
collision tosses into 1/ Pr[C5] collision bins representing delivery rounds. During the collision
game we may toss all of the balls representing a single destination into the same collision bin.
This construction would express the fact that if there were no messages other than those with
the same destination, these messages will surely collide with each other. The destination bin with
the maximum number of balls constitutes a critical path across the delivery rounds. For m = n
messages, the critical-path length is O(logn/loglogn) with high probability. Note that, like our
original model, this more realistic model is merely an approximation as well, because it treats the
collision behavior by means of the average collision probability Pr[Cy].

Let us call the model with the destination toss Model I and our original, simpler balls-and-bins
game Model II. Simulations show that the number of delivery rounds due to these two models
differ by a constant factor only. Figure 3 shows the number of delivery rounds for 2* < n < 220
processing nodes and for the number of messages m = n/8 and m = n. Both graphs show the
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minimum, average, and maximum number of delivery rounds as error bars. In addition, we show
the ratio of the average number of delivery rounds for Model I and Model II, the ratio of the
maximum number of delivery rounds, as well as their mean values over n. The mean values are
horizontal lines and are consequently independent of n. Since the data points deviate only slightly
from the mean values, we conclude that the number of delivery rounds due to Model I and Model I1
differ by a small constant factor only.

Using the potential method [2], we can construct a proof that considers the dependencies of
the destination distribution expressed by Model 1. This proof yields the claimed result that the
number of delivery rounds is bound by O(lgm). Although the potential method is an elegant proof
technique, we feel that using Model IT results in an even simpler, straightforward proof, and it
exposes the inherent problem structure clearly. In the following, we are therefore concerned with
the analysis of Model II only.

We now turn our attention to results from basic probability theory about the balls-and-bins
game underlying Model I1. A delivery round corresponds to tossing m balls into b collision bins. We
calculate the number of delivered and rejected messages as follows. After tossing m balls, there will
be b, empty bins and b, = b — b, nonempty bins. The number of delivered messages corresponds
to the number of nonempty bins b,,, because each nonempty bin contains at least one ball. The
number of rejected messages corresponds to the number of balls in the nonempty bins minus one
ball per nonempty bin which corresponds to a delivered message. Hence, the number of rejected
messages is m — by,.

The expected number of empty bins in the balls-and-bins game can be calculated as follows.
The probability that a bin remains empty after tossing m balls is

1m
(“5) se

since 1 +z < e” for all z. Let X; be an indicator variable with value 1 if bin ¢ is empty and with
value 0 otherwise. Then, E[X;] = (1 — 1/b)™. By linearity of expectation, the expected number of
empty bins is

n-ls

b m
Eb] = E[X;]=b (1 —~ %) <be . (3)

=1

By linearity of expectation, the expected number of delivered messages is
E[D] = b-Eb]=b (1 - <1 - %>m>
> b(1-e7), (4)
and the expected number of rejected messages is
E[R]=m-ED] <m-b(1-e 7). (5)

The rejected messages of one delivery round are subject to retry in the subsequent delivery round.

6 Proof of Time Bound

We model the fat-tree network with n processing nodes and the architecture and collision behavior
described in Section 3 by means of Model II developed in Section 5. Each of the m < n messages
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corresponds to a ball. The collision bins are used to capture the collision behavior of the network.
We will establish the following statement:

Theorem 1 (BOUND OF DELIVERY ROUNDS) In balls-and-bins model II of a fat-tree network with
n processing nodes, m < n messages with randomly chosen, distinct sources and independently and
randomly chosen destinations are delivered within O(lgm +1n1/e€) delivery rounds with probability
1 —€ for any e > 0.

Our proof consists of two phases. In phase I we prove that the number of messages m > 2n/lgn
is reduced to 2n/lgn messages within O(lgm + In1/€) rounds with probability 1 — e. In phase II
we prove that m < 2n/lgn messages are delivered within O(lgm + In1/¢€) rounds with probability
1 — e. Together, phases I and II yield the claimed bound.

To facilitate the analysis, we assume that the retry strategy of the network interfaces of the
processing nodes is such that the delivery rounds do not overlap. Thus, all network interfaces
wait until all messages transmitted at the beginning of one delivery round are either delivered or
rejected.

6.1 Analysis of Phase I

The analysis of phase I for m > 2n/lgn messages is based on the observation that tossing m >
2n/lgn balls into b = 2n/lgn collision bins will inevitably result in more than one ball landing
in one or more bins. For m < n, the number of balls landing in each bin will be relatively large,
corresponding to a large number of collisions during that round.

The distribution of m balls over b bins follows the binomial distribution. A well-known result,
that we may apply to this distribution, is the Markov Inequality [11]. It states that for a
non-negative random variable X and any positive real ¢ we have

Pr[X > ] < @

Since the number of empty bins b, after a collision toss is a random variable, we may apply the
Markov Inequality to b.. During phase I, we have m > 2n/lgn = b. Thus, the expected number of
empty bins when tossing m balls is according to Equation 3

m

Elbe] <be v < b for m > b.
e

We choose t = 2b/e, and obtain from the Markov Inequality

Efbe]

1
Pr[b, > 2b/e] < =
ez 2b/el < 00 = 3

Equivalently, the probability that the number of empty bins b, is less than 2b/e is greater than 1/2.

We define a delivery round to be a successful delivery round if less than 2b/e collision
bins remain empty. Correspondingly, more than b — 2b/e = b(1 — 2/e) messages are delivered in
a successful round. Amongst all delivery rounds, a successful delivery round occurs at least with
probability 1/2 according to the Markov Inequality. By definition, for each delivery round of phase I
we have m > b. Therefore, in each successful delivery round of phase I, a constant number of at
least b(1 — 2/e) messages is delivered. Considering successful delivery rounds only, phase I ends
after S successful delivery rounds when the number of remaining messages is reduced to b messages.
Therefore, phase I is subject to the boundary condition:

m—S-b<1—2>:b.

e
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Solving for S, we obtain:

S = w5

G —12/6) (mzlin B 1) (6)

| 1
S 0=z (§lgm_1> ®
= O(lgm),

since m/lgm < n/lgn for 2 < m < n. Thus, we have established that the number of messages
m > 2n/lgn is reduced to 2n/lgn messages within O(lgm) successful delivery rounds during
phase I.

It remains to be shown that the number of ordinary delivery rounds R containing S successful
delivery rounds is of order O(lgm) with high probability. To that end we may assume that deliv-
ery rounds are independent Bernoulli trials, and apply another well known result, the Chernoff
Inequality [11]: For a random variable X defined by Pr[X = 1] = p of n Bernoulli trials with
probability p of success, p = E[X]| = np, and 0 < § < 1, we have

2
PriX < (1—0)u] < e 5.

For convenience we use symbol p; = 1/2 to denote the lower bound for the probability of the
occurrence of a successful delivery round. We assume that the number of ordinary delivery rounds R
is

R = i(2S—4Llne)
Ps
2 1
< R (e _ _
< 2<(1_2/e) (21gm 1> 4lne>
= O(lgm —In¢)

for a small value e. This magic construction of R is justified below due to the fact that the proba-
bilities following from the Chernoff bound yield the desired result. According to basic probability
theory, the expected number of successful delivery rounds within R rounds is at least

s = R-ps =25 —4lne,

because a successful round occurs at least with probability ps. We use a slight modification of the
Chernoff bound

_ (aps )2

Pr[X < ps —aps] < e 2ms (8)

where 0 < aps < ug, and choose

1
a=—(S5 —4lne).
ps( )

Note that the condition aps < g holds for any €, since aps = S—41lne < 25—4Ine = pg & § < 285.
We can express i as a function of « as follows:

s = 2aps + 4lne.
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Now, let X be a random variable denoting the number of successful delivery rounds. We apply
the Chernoff bound of Equation 8 to X and obtain:

_ (aps)?

Pr[Xs < ps — aps] < e 2ws

& PriX; <25 —4lne—S+4lne] < ef4a§aaspf§?ne
= Pr[X, < 8] < e %
o~ S/+ne
< €
& PriX, >8] > 1-e

Hence, the probability that the number of successful delivery rounds X within R = O (lgm + In(1/¢))
delivery rounds exceeds the required number of successful delivery rounds S is greater than or equal
to 1 — e. Therefore, the number of delivery rounds needed to deliver m > 2n/lgn messages with
2n/lgn messages remaining is O (Igm + In(1/¢€)) with probability at least 1 — € for any € > 0. We
have consequently established the proof for phase I. |

6.2 Analysis of Phase II

During phase II we inject m < 2n/lgn messages into the network. Correspondingly, in our balls-
and-bins model, we toss m < 2n/lgn balls into b = 2n/lgn collision bins. Since the number of
balls is less than or equal to the number of bins, we can expect to make progress by delivering a
constant fraction of the messages in each delivery round. In contrast, we have shown in Section 6.1
that a constant number of messages is delivered per delivery round in phase I.

We apply the Markov Inequality to the number of rejected messages in a delivery round as
follows. According to Equation 5, the expected number of rejected messages is E[R] = m — E[D] <
m—2>b (1 - ef%). Choosing t = (1 — a)m with 0 < @ < 1, we express that the fraction (1 — «)
of the m balls tossed during the delivery round corresponds to rejected messages. Applying the
Markov Inequality to the number of rejected messages R, we obtain for 2 < m < b:

Pr[R > (1 — a)m)]

= (1 —a)m

1 _m
< m(m—b(l—e b))

(1-a)e

Note that f(z) = z(1 —e~/*) > 1 —e~! for £ > 1, because df /dz decreases monotonically towards
0 for z — oo and df /dz(1) =1 —2/e > 0. To be meaningful, probability 1/((1 — a)e) must be less
than 1, providing us with the condition ov < 1 — e~
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Since the number of delivered messages is D = m — R, we have:
R>(1—-am < D<m-(1-am=am.

We substitute this term in the Markov Inequality to obtain:

Pr[R > (1 —a)m] < ﬁ
& Pr[D <am] < ﬁ
& Pr[lD>am] > 1- ﬁ.

We have therefore established that at least a constant fraction o of m messages is delivered with
probability at least 1 —1/(1 — a)e within a single delivery round. We define a successful delivery
round for phase II to be a delivery round in which at least am messages are delivered. A successful
delivery round occurs with probability at least 1 — 1/(1 — «)e amongst the delivery rounds.

Considering successful delivery rounds only, we know that at most (1 — a)m messages are
rejected and must be retried in the subsequent round. Hence, after & successful delivery rounds, at
most (1 —a)®m messages remain to be delivered. Since the last remaining message will be delivered
without any collisions, we have the boundary condition:

(1—a)m =1.
Choosing a = 1/2, we obtain the number of successful delivery rounds
S=Ilgm

and the probability for the occurrence of a successful delivery round is 1 — 2/e.

It remains to be shown that the number of ordinary delivery rounds R is of order lgm with high
probability. Analogous to phase I, we construct a Chernoff bound argument. With the probability
for a successful delivery round ps; = 1 — 2/e, we assume that the number of delivery rounds is

1
R=—(2lgm —4lne).
Ps
The expected number of successful delivery rounds is then at least

ps =R-ps =21gm —4lne.

We choose 1
a=—(lgm —4lne)

S
and apply the Chernoff bound to random variable X, which denotes the number of successful
delivery rounds:

_ (aps)?

PriXs < ps —aps] < e 2us
& PriXs <2lgm —4lne—Igm +41ne]

(aps )2

< e Tapstsne
= PriX; <lgm] < e 1
o S +Hne
< €
& PrX; >1gm] > 1—e
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Figure 4: Comparison of balls-and-bins model II with round-based fat-tree simulations for m = n/8
and m = n. These graphs are representative for other values of 0 < m < n. Model II differs from
the round-based fat-tree simulations by a small constant factor only. The normalized performance
of a real fat tree with immediate retry is shown in clock cycles with respect to the transmission
time of one message across the diameter of an n-node fat tree.

We have established that the number of successful delivery rounds X within R = O (Igm + In(1/¢))
delivery rounds is larger than lgm with probability at least 1 — €. Because it takes at most lgm
successful delivery rounds to deliver m messages, the number of delivery rounds needed to deliver
m < 2n/lgn messages is O (lgm + In(1/€)) with probability at least 1 — e for any ¢ > 0. This
argument completes the proof for phase II. ]

7 Discussion of Result

To bound the number of delivery rounds in a fat-tree network, we have resorted to a proof method-
ology where we developed an approximating model of the collision behavior of messages that is
amenable to rigorous probabilistic analysis. Our balls-and-bins model is not powerful enough to
derive statements about the micro behavior of the network, for example about the number of col-
lisions at a particular router. However, we may claim the validity of our proof if we can show that
our model reflects reality at the level of delivery rounds. To that end, we provide empirical evidence
that the simple balls-and-bins model II does capture the collision behavior with sufficient accuracy,
indeed.

Figure 4 compares three data sets of simulation results for the number of messages m = n/8
on the left-hand side and for m = n on the right-hand side. These graphs are representative for a
large number of values of m that we have simulated. Comparison of the number of delivery rounds
according to Model 1T with those for round-based fat-tree simulations demonstrates the validity
of Model II. For the maximum number of messages m = n that can be in transit during a single
round, Model II shows the largest deviation from the fat-tree simulations. However, the number
of delivery rounds predicted by Model II and the round-based fat-tree simulation differ by a small
constant factor only, analogous to our observation in Figure 3.

In addition to the round-based simulation results, we show the normalized number of clock cycles
for delivering m messages on a fat tree in Figure 4. These results represent the true performance
of our fat-tree design under the assumption that the transmission of m = n/8 or m = n messages
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Figure 5: Comparison of balls-and-bins model II with round-based fat-tree simulations for n = 64
and n = 22°. These graphs are representative for other values of n < 22°.

starts at the same clock cycle, and that the network interfaces initiate a retransmission of a rejected
message one clock cycle after sensing a collision. Thus, these simulations drop the simplifying
assumption that retransmission occurs in rounds on all network interfaces simultaneously. For a
direct comparison with the round-based simulations, we normalize the number of clock cycles with
respect to the transmission time of a single message across the diameter of an n-node fat tree
measured in clock cycles. We conclude from these results that our O(lgm) bound holds for the
scenario with immediate retry as well. Our round-based model and simulations are conservative
by a constant factor of about two on average. We report that immediate retry delivers the highest
performance on our fat-tree architecture compared to other retry strategies, including exponential
back-off.

We have developed the fat-tree simulator as a behavioral model of a gate-level implementation
in order to scale up to 220 processing nodes. Our router design has a latency of two clock cycles for
an advancing message, which includes the path reservation, and one clock cycle for a collision and
acknowledgment signal to release and traverse the path in the opposite direction, respectively. We
have implemented various retry strategies in our network interfaces, including round-based retry,
where all messages transmitted during one delivery round are either delivered or rejected before the
rejected messages are retransmitted in the subsequent delivery round. This retry strategy requires a
global synchronization capability, and is not expected to be implemented in real systems. However,
it allows for a direct comparison with the simulation results of the balls-and-bins model.

Whereas Figure 4 shows the number of delivery rounds as a function of n for fixed m, Figure 5
provides a view on the number of delivery rounds as a function of m for fixed n. Like the graphs
in Figure 4, these graphs are representative for a large number of experiments for different values
of n. To avoid clutter, we omit the normalized transmission times for the immediate retry strategy.
The graphs in Figure 5 exhibit a number of behavioral details of the fat-tree network that deserve
further discussion:

1. The balls-and-bins model matches the number of delivery rounds due to the fat-tree simulation
accurately, in accordance with the results presented in Figure 4.

2. The error bars in the plots show the variation of the number of delivery rounds due to the
randomized routing strategy in the fat tree. The fact that the variation is relatively small

17



validates our high-probability result.

3. Our bound O(lgm) = ¢ -1gm + co appears as a straight line in the semi-logarithmic plots of
Figure 5 for ¢; =1 and ¢y = 0. At the first glance, even this bound seems to be conservative,
although it is significantly tighter than O(lgn).

4. The vertical lines in the plots of Figure 5 represent the boundary between phase I and phase 11
of our proof at m = 2n/lIgn.

5. Recall that the number of delivery rounds in phase II is O(lgm) for m < 2n/lgn. Indeed, we
observe this behavior to the left of the vertical line at m = 2n/lgn. The constant factor ¢;
in O(lgm) = ¢1 lgm + ¢z is obviously much smaller than 1, as a comparison with the straight
line for 1gm reveals.

6. During phase I of our proof for m > 2n/lgn, we made use of the inequality m/lgm < n/lgn
for 2 < m < n to bound the number of successful delivery rounds in Equations 6 and 7 of
Section 6.1. In fact, both Model II and the fat-tree simulations exhibit the behavior of the
tighter bound mlgn/n < lgm for the number of delivery rounds, as we observe to the right
of the vertical line at m = 2n/lgn.

7. Figure 5 includes an ad-hoc curve fit of the number of delivery rounds as a superposition of the
models for phase I and phase II. For phase I, we use mlgn/2n, and lgm/10 + 1 for phase II.
The sum of both phases yields the curve displayed in Figure 5: 1lgm /10 + mlgn/2n + 1.

The simulation results in Figure 5 suggest that O(lgm) is in fact the optimal bound for phase II.
For phase I, O(lgm) is an upper bound of the observed behavior which follows the tighter bound
O(mlgn/n). Consequently, the simulation results provide experimental evidence for our claim that
balls-and-bins model II reflects reality with sufficient accuracy, and that the upper bound for the
number of delivery rounds is indeed O(lgm), independent of number of processing nodes n of the
fat tree, and independent of the operational phase determined by the number of messages m.

We have limited our proof of the time bound to the communication scenario, where distinct
message sources are chosen randomly and destinations are chosen randomly and independently.
The rationale behind this choice has been the feasibility of probabilistic analysis. In practice,
many communication patterns can be approximated by this assumption. For other communication
patterns this choice appears to be unreasonable. For example, assume that each of m sources sends
one message to a single destination node p. Since p may receive one message at a time only, a lower
bound for the number of delivery rounds is m. Because the fat-tree architecture guarantees that
one message will be delivered during a round, m is also the upper bound. This extreme case leads
us to the following conjecture about the number of delivery rounds of any communication pattern
on a fat tree. Assume that m = mq + m,, where m is the number of messages to be transmitted
or delivered sequentially, and m, is the number of messages whose sources and destinations can be
approximated by a random distribution. Then, the number of delivery rounds is bound by

O(m1 + lgm,).

In the extreme case where m = mq, the number of delivery rounds is bound by O(m;). In the
other extreme case where m = m,, the number of delivery rounds is bound by O(lgm,) as we
have proved in Section 6. We may view any case between these extremes as a superposition of a
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Figure 6: Comparison of the number of delivery rounds for randomly chosen sources and desti-
nations according to Model II (cf. Figure 4), a transpose permutation (left), and a bit-reversal
permutation (right) with m = n messages. Our simulations show that the number of delivery
rounds for the permutations with m = n are strictly larger than for smaller numbers of messages
m < n. The normalized clock-cycle counts show the real behavior of a fat tree with immediate
message retry.

sequential component consisting of m; messages and a parallel component consisting of m, messages
with bound O(m; + 1gm,) for the number of delivery rounds.

We also ran experiments to evaluate the performance of the fat-tree for several regular commu-
nication patterns that are frequently studied in the routing literature [6]. Let p; ...pyg, denote the
binary representation of node p.

Cyclic-shift permutation: For a given shift k, node p sends one message to node ¢ = (p+ k) %n.
This pattern arises for example in stencil computations over a grid.

Transpose permutation: The node with binary representation pi...pagn)/2P0gn)/2+1 - - Plgn
sends one message to node pagp)/241---PlgnP1---Pgn)/2- The primary application using
this pattern is a matrix transposition.

Bit-reversal permutation: Node p; ... py, sends one message to node pigy, ... p1. This pattern,
as well as the transpose permutation, is considered traditionally a worst-case routing problem.

Our simulations indicate that the average number of delivery rounds for each of these commu-
nication patterns is bounded by O(lgm) for 0 < m < n. Figures 6 and 7 show the simulation
results for m = n messages. Although we do not present the corresponding graphs, we report that
the number of delivery rounds of the permutations for m < n is strictly less than those shown in
the figures. For the transpose permutation on the left-hand side of Figure 6, we generated data
points only for those cases where the number of processing nodes n is a square. The normalized
clock-cycle counts show the behavior of a fat-tree network with immediate message retry after a
collision. The real performance of a fat tree is on average about a factor of two faster than predicted
by the round-based model.

The results of the cyclic-shift permutation in Figure 7 are more comprehensive than those in
Figure 6. Since the number of delivery rounds depends on the shift parameter k, we present as the
average number of delivery rounds the average of the delivery rounds of the average over a range of
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Figure 7: Comparison of the number of delivery rounds for randomly chosen sources and destina-
tions according to Model IT and a cyclic-shift permutation with m = n messages. Our simulations
show that the number of delivery rounds for the cyclic-shift permutation with m = n are strictly
larger than for smaller numbers of messages m < n. The normalized clock-cycle counts show the
real behavior of a fat tree with immediate message retry.

shift parameters 0 < k < n. The minimum and maximum number of delivery rounds of each error
bar represent the corresponding values for all values of k.

For all three communication patterns, the number of delivery rounds is strictly less than the
average number of rounds required when destination nodes are chosen randomly. These simula-
tion results suggest that O(lgm) is the optimal bound not only for randomly chosen sources and
destinations but for many different communication patterns on the fat-tree network.

8 Conclusion

We have shown that m < n messages with randomly chosen, distinct sources and independently
and randomly chosen destinations are delivered in a fat-tree network with n processing nodes
within O(lgm) delivery rounds with high probability. Our proof methodology is based on an
approximating collision model of the messages transmitted into the network. This model constitutes
a tradeoff between simplicity and accuracy. It facilitates a relatively simple probabilistic analysis
and reflects reality with sufficient accuracy at the same time. We have presented empirical evidence
to validate our claim that O(lgm) is a tight upper bound for the delivery of messages not only
under the simplifying assumptions that enable our analysis, but also for practical implementations
and communication scenarios on a fat-tree network.
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