pStore: A Secure Peer-to-Peer Backup System*

Christopher Batten, Kenneth Barr, Arvind Saraf, Stanley Trepetin
{cbatten|kbarr|arvind s|stanleyt}@mit.edu

Abstract

In an effort to combine research in peer-to-peer
systems with techniques for incremental backup
systems, we propose pStore: a secure distributed
backup system based on an adaptive peer-to-peer
network. pStore exploits unused personal hard
drive space attached to the Internet to provide the
distributed redundancy needed for reliable and ef-
fective data backup. FEzxperiments on a 30 node
network show that 95% of the files in a 18 MB
dataset can be retrieved even when 7 of the nodes
have failed. On top of this reliability, pStore in-
cludes support for file encryption, versioning, and
secure sharing. Its custom versioning system per-
mits arbitrary version retrieval similar to CVS.
pStore provides this functionality at less than 10%
of the network bandwidth and requires 85% less
storage capacity than simpler local tape backup
schemes for a representative workload.

1 Introduction

Current backup systems for personal and
small-office computer users usually rely on sec-
ondary on-site storage of their data. Although
these on-site backups provide data redundancy,
they are wvulnerable to localized catastrophe.
More sophisticated off-site backups are possible
but are usually expensive, difficult to manage,
and are still a centralized form of redundancy.
Independent from backup systems, current peer-
to-peer systems focus on file-sharing, distributed
archiving, distributed file systems, and anony-
mous publishing. Motivated by the strengths
and weaknesses of current peer-to-peer systems,
as well as the specific desires of users needing to
backup personal data, we propose pStore: a se-
cure peer-to-peer backup system.

pStore provides a user with the ability to se-
curely backup files in, and restore files from, a
distributed network of untrusted peers. Insert,

*pStore was developed October-December 2001 as a
project for MIT 6.824: Distributed Computer Systems.

update, retrieve, and delete commands may be in-
voked by various user interfaces (e.g., a command
line, file system, or GUI) according to a user’s
needs. pStore maintains snapshots for each file
allowing a user to restore any snapshot at a later
date. This low-level versioning primitive per-
mits several usage models. For example, works
in progress may be backed up hourly so that a
user can revert to a last-known-good copy, or an
entire directory tree can be stored to recover from
a disk crash.

pStore has three primary design goals: relia-
bility, security, and resource efficiency. pStore
provides reliability through replication; copies are
available on several servers in case some of these
servers are malicious or unavailable. Since a
client’s data is replicated on nodes beyond his
control, pStore strives to provide reasonable se-
curity: private data is readable only by its owner;
data can be remotely deleted only by its owner;
and any unwanted changes to data can be easily
detected. Finally, since backups can be frequent
and large, pStore aims to reduce resource-usage
by sharing stored data and exchanging data only
when necessary.

Section 2 discusses related systems. pStore
draws from their strengths while discarding func-
tionality which adds overhead or complexity in
the application-specific domain of data backup.
Section 3 outlines the pStore architecture, and
Section 4 presents our implementation. Section 5
evaluates the design in terms of the goals stated
above, and Section 6 concludes.

2 Related Work

A peer-to-peer backup system has two ma-
jor components: the underlying peer-to-peer
network and the backup/versioning framework.
While much work has been done in the two fields
individually, there is little literature integrating
the two.

2.1 Distributed Storage Systems

There has been a wealth of recent work on dis-
tributed storage systems. Peer-to-peer file shar-
ing systems, such as Napster [15] and Gnutella
[12], are in wide use and provide a mechanism for
file search and retrieval among a large group of
users. Napster handles searches through a cen-
tralized index server, while Gnutella uses broad-
cast queries. Both systems focus more on infor-
mation retrieval than on publishing.

Freenet provides anonymous publication and
retrieval of data in an adaptive peer-to-peer net-
work [5]. Anonymity is provided through sev-
eral means including: encrypted search keys, data
caching along lookup paths, source-node spoof-
ing, and probabilistic time-to-live values. Freenet
deletes data which is infrequently accessed to
make room for more recent insertions.

Eternity proposes redundancy and information
dispersal (secret sharing) to replicate data, and
adds anonymity mechanisms to prevent selective
denial of service attacks [1]. Document queries
are broadcast, and delivery is achieved through
anonymous remailers. Free Haven, Publius and
Mojo Nation also use secret sharing to achieve
reliability and author anonymity [9, 22, 13].

SFSRO is a content distribution system pro-
viding secure and authenticated access to read-
only data via a replicated database [11]. Like SF-
SRO, CFS aims to achieve high performance and
redundancy, without compromising on integrity
in a read-only file system [8]. Unlike complete
database replication in SFSRO, CFS inserts file
system blocks into a distributed storage system
and uses Chord as a distributed lookup mecha-
nism [7]. The PAST system takes a similar lay-
ered approach, but uses Pastry as its distributed
lookup mechanism [10]. Lookups using Chord
and Pastry scale as O(log(n)) with the number
of nodes in the system. Farsite is similar to CFS
in that it provides a distributed file system among
cooperative peers [2], but uses digital signatures
to allow delete operations on the file data.

Several systems have proposed schemes to en-
force storage quotas over a distributed storage
system. Mojo Nation relies on a trusted third
party to increase a user’s quota when he con-
tributes storage, network, and/or CPU resources

to the system. The PAST system suggests that
the same smart cards used for authentication
could be used to maintain storage quotas [10].
The Tangler system proposes an interesting quota
scheme based on peer monitoring: nodes monitor
their peers and report badly behaving nodes to
others [21].

2.2 Versioning and Backup

The existing distributed storage systems dis-
cussed above are intended for sharing, archiving,
or providing a distributed file system. As a re-
sult, the systems do not provide specific support
for incremental updates and/or versioning. Since
many file changes are incremental (e.g., evolution
of source code, documents, and even some aspects
of binary files [14]), there has been a significant
amount of work on exploiting these similarities to
save bandwidth and storage space.

The Concurrent Versioning System, popular
among software development teams, combines
the current state of a text file and a set of com-
mands necessary to incrementally revert that file
to its original state [6]. Network Appliances in-
corporates the WAFL file system in its network-
attached-storage devices [3]. WAFL provides
transparent snapshots of a file system at selected
instances, allowing the file system data to be
viewed either in its current state, or as it was
at some time in the past.

Overlap between file versions can enable a re-
duction in the network traffic required to update
older versions of files. Rsync is an algorithm for
updating files on a client so that they are iden-
tical to those on a server [20]. The client breaks
a file into fixed size blocks and sends a hash of
each block to the server. The server checks if
its version of the file contains any blocks which
hash to the same value as the client hashes. The
server then sends the client any blocks for which
no matching hash was found and instructs the
client how to reconstruct the file. Note that the
server hashes fixed size blocks at every byte offset,
not just multiples of the block size. To reduce the
time required when hashing at each byte offset,
the rsync algorithm use two types of hash func-
tions. Rsync’s slower cryptographic hash func-
tion is used only when when its fast rolling hash
establishes a probable match. LBFS also uses file

FBL

Verl iH(E(A)) iH(E(B)) iH(E(C)) b

FB A FB B FB C

(a

FBL

Ver 1 | H(E(A)) 1! H(E(B))
Ver2 [HED)) ||| HE®))

(b

Figure 1: File Block List and File Blocks: (a) shows a file with three equal sized blocks, (b) shows
how a new version can be added by updating the file block list and adding a single new file block.

block hashes to help reduce the ammount of data
that needs to be transmitted when updating a
file [14]. Unlike rsync’s fixed block sizes, LBFS
uses content-dependent “fingerprints” to deter-
mine file block boundaries.

3 System Architecture

Before discussing the details of the pStore
architecture, we present an overview of how
the system works for one possible implementa-
tion. A pStore user first invokes a pStore client
which helps him generate keys and mark files for
backup. The user notes which files are most im-
portant to him, and the client uses his choices to
decide how often to backup the file and how many
replicas to make.

To insert a file, pStore computes an identifier
specific to the user’s file. The identifier is chosen
in such a way that it will not conflict with iden-
tically named files owned by other users. The file
is encrypted using symmetric encryption to pre-
vent members of the pStore network from seeing
its potentially private contents. The file is broken
into digitally signed blocks, and signed metadata
is assembled which indicates how the blocks can
be reassembled. The metadata and blocks are
inserted into a peer-to-peer network. If the file
changes and is backed up again, only the changes
to the file are stored.

To retrieve the file, the user specifies its name
and version, or browses the pStore directory hier-
archy. The metadata is retrieved, and it indicates
where to look for blocks belonging to the desired
version. When the file blocks are retrieved, their
signatures are examined to ensure file integrity.

3.1 Data Structures

This section describes the data structures used
to manage files, directories, and versions. These
data structures were designed for reliability, se-
curity, and resource efficiency.

3.1.1 File Blocks Lists and File Blocks

A pStore file is represented by a file block list
(FBL) and several file blocks (FB). Each FB con-
tains a portion of the file data, while the FBL con-
tains an ordered list of all the FBs in the pStore
file. The FBL has four pieces of information for
each FB: a file block identifier used to uniquely
identify each FB, a content hash of the unen-
crypted FB, the length of the FB in bytes, and the
FB data’s offset in the original file. Figure 1(a)
illustrates the relationship between a FBL and its
FBs. The figure uses the notation H(E(X)) to in-
dicate the hash of the encrypted contents of file
block X. A traditional file can be converted into a
pStore file by simply breaking the file into several
fixed size FBs and creating an appropriate FBL.
File attributes such as permissions and date of
creation can also be stored in the FBL.

The FBL contains version information in the
form of an additional ordered list of FBs for each
file version. An FB list for a new version is cre-
ated with an adaptation of the rsync algorithm
[20]. The revised algorithm uses the FB hash,
length, and offset information to make an efficient
comparison without the need to retrieve the ac-
tual FBs. Our adaptation extends rsync to sup-
port varying FB lengths that will arise from the
addition of new FBs as the pStore file evolves;
care is taken to match the largest possible portion
of the previous version. If duplicate FBs are de-

tected, then duplicates are not created. Instead,
they are simply referenced in the FBL. This saves
both storage space and network traffic (which can
be particularly advantageous when using metered
or low bandwidth network connections). New or
changed portions of the file are broken into new
FBs of appropriate size, referenced in the FBL,
and inserted into the network. The final result,
depicted in Figure 1(b), is a pStore file which can
be used to reconstruct either version with no du-
plicate FBs. Another advantage of the pStore
versioning scheme is that corruption of an FB
does not necessarily preclude the retrieval of all
versions as it would if version information were
unified with the data (as in CVS). Versions that
do not include the corrupt FB will remain intact.

pStore also allows files to be grouped into di-
rectories. A pStore directory is simply a text file
listing the name of each file and subdirectory con-
tained in the directory. Since a directory is rep-
resented as a pStore file, the same mechanism as
above can be used for directory versioning.

File block lists and file blocks are encrypted
with symmetric keys to preserve privacy. This
is in contrast to peer-to-peer publishing networks
where encryption is used to aid anonymity and
deniability of content for node owners [5, 22]. File
blocks are encrypted using convergent encryption
[2]. Convergent encryption uses a hash of the
unencrypted FB contents as the symmetric key
when encrypting the FB. This makes block shar-
ing between different users feasible since all users
with the same FB will use the same key for en-
cryption. Convergent encryption makes less sense
for FBLs, since FBLs are not shared and the un-
encrypted content hash would have to be stored
external to the FBL for decryption. FBLs are
instead encrypted with a symmetric key derived
from the user’s private key. This means that all
FBLs for a given user are encrypted with the
same key, simplifying key management.

3.1.2 Data Chunks

For the purposes of pStore file insertion and
retrieval in a distributed peer-to-peer network,
FBLs and FBs are treated the same. Both can
be viewed as a data chunk, denoted C(i,p,s,d),
where ¢ is an identifier, p is public metadata, s
is a digital signature, and d is the actual data.

Any data chunk in the network can be retrieved
by specifying its identifier. The public metadata
is signed with the owner’s private key and the
owner’s public key is included with each data
chunk. This allows anyone to verify and view
public metadata, but only the owner can change
the public metadata.

As mentioned above, pStore uses a hash of the
encrypted FB contents for the file block identi-
fier. Thus, when the FB is retrieved, one can
compare a rehash of the data chunk to the iden-
tifier to verify the data has not been tampered
with. The public metadata for a FB chunk con-
tains this identifier and is used for authentication
when deleting FB chunks. A FB chunk can be
specified more formally as follows:!

i = H(H(d) osalt)

type o1
s = Bb, (H(p)oKa

d = EIS’{(FB) (FB)
C(FB = O(iapa S,d)

p =

The type is an indicator that this is a FB chunk
as opposed to an FBL chunk. Type is included
to ensure correct sharing and deletion of chunks.
The identifier salt is used for replication and is
discussed in Section 3.2.1.

A hash of the filename makes a poor FBL
chunk identifier since it is likely multiple users
will have similarly named files creating unwanted
key collisions. Although two users have a file with
the same name, they might have very different
contents and should be kept separate to main-
tain consistency and privacy. A hash of the ac-
tual FBL also makes a poor chunk identifier since
it will change after every version and cannot be
easily recovered from the current local copy of the
file. pStore uses a namespace-filename identifier
which is similar to Freenet’s signed-subspace keys
[5]. Every pStore user has a private namespace

!Notation used for cryptographic primitives:

H(M) : one-way hash of M

EL (M) : M encrypted with key K

D% (M) : M decrypted with key K

Ka : public key belonging to A

K/ : private key corresponding to K4

The superscript for encryption and decryption indicates
whether a symmetric scheme (¢ = s) or public key scheme
(t = p) is used. The o operator indicates concatenation.

into which all of that user’s files are inserted and
retrieved, eliminating unwanted FBL chunk iden-
tifier collisions between different users. A pStore
user creates a private namespace by first creating
a private/public key pair. pStore provides the
flexibility for a user to have multiple namespaces
or for several users to share the same namespace.
A namespace-filename identifier is formed by first
concatenating the private key, pStore pathname,
filename, and salt. The results are then hashed to
form the actual identifier. In addition to provid-
ing a unique namespace per user, this allows im-
mediate location of known files without the need
to traverse a directory structure. A FBL chunk
can be specified more formally as follows:

’i =

p

H(K'y o path o filename o salt)
type o timestamp o i o H(d)

s = By, (H@p)o K

d = Ej,(FBL)
Crer. = C(i,p,s,d)

where f is a deterministic function used to de-
rive the common symmetric key from the user’s
private key. A timestamp is included to prevent
replay attacks. The type and salt are used in a
similar manner as for FBs.

The public key contained within the public
metadata provides ownership information useful
when implementing secure chunk deletion (as de-
scribed in Section 3.2.3). This ownership infor-
mation may also be useful when verifying that
a user is not exceeding a given quota. Unfor-
tunately, attaching ownership information makes
anonymity difficult in pStore. Since anonymity is
not a primary goal of pStore, we feel this is an
acceptable compromise.

The content hash in the public metadata pro-
vides a mechanism for verifying the integrity of
any chunk. Since the hash is publicly visible (but
immutable), anyone can hash the data contents of
the chunk and match the result against the con-
tent hash in the public metadata. Unlike FBs,
there is no direct relationship between the FBL
identifier and the FBL contents. Thus an attacker
might switch identifiers between two FBLs. Stor-
ing the identifier in the FBL public metadata and
then comparing it to the requested search key pre-
vents such substitution attacks.

3.2 Using the Data Structures

pStore relies on Chord to facilitate peer-to-peer
storage due to its attractive O(logN) guaran-
tees concerning search times [7]. Unlike Freenet,
Chord does not assume any specific data access
pattern to achieve these search times, and this
integrates nicely with pStore’s primarily data in-
sert usage model. Since it is a low-level prim-
itive, using Chord does not burden us with ex-
traneous functionality ill-suited for a distributed
backup system such as absolute anonymity and
file caching at intermediate nodes.

3.2.1 Replication

pStore supports exact-copy chunk replication
to increase the reliability of a backup. Chunks are
stored on several different peers, and if one peer
fails then the chunk can be retrieved from any of
the remaining peers. More sophisticated informa-
tion dispersal techniques exist which decrease the
total storage required while maintaining reliabil-
ity [18]. Although pStore uses exact-copy chunk
replication to simplify the implementation, these
techniques are certainly applicable and may be
included in pStore in the future.

To distribute chunk replicas randomly through
the identifier space, salt is added when cre-
ating the identifier. The salt is a predeter-
mined sequence of numbers to simplify retrieval of
replicas. This replication technique differs from
“chain replication” in which the user sends data
to one node, requesting that it store a copy of
the data and pass it along to another node until
a counter has expired [8, 5]. Malicious or broken
nodes in the chain can reduce the effectiveness
of chain replication by refusing to pass the data
along, potentially preventing replicas from reach-
ing benign nodes. pStore’s replication technique
avoids this problem by sending replicas directly
to the target nodes.

Many systems rely on caching frequently ac-
cessed files along the retrieval path to further
increase data replication [5, 8, 10], but a data
backup application is poorly suited to this form
of caching. File insertion is much more com-
mon than file retrieval for pStore and other data
backup applications. Although FBLs are ac-
cessed on every backup, they are never shared.

FBL for User A

Ver1 H(E(A)) 1 ; H(E(B)) ; H(EC) 7, -

FBL for User B

Ver1 H(E(A) ! HE®)) 1! HEQ) 7! -
] HE®)) (|| -

f

FB B

FBC FB D

Figure 2: Sharing File Blocks: Blocks are shared between user A and user B and are also shared
between two of different versions of the file for user B.

Instead of caching along the lookup path, FBLs
can be cached on the owner’s local machine. FBs
are shared but are rarely accessed.

3.2.2 Sharing

Unlike file sharing peer-to-peer networks, a
pStore user cannot directly make use of the lo-
cal storage space he contributes to the system,
since it contains encrypted data from other users.
To encourage fair and adequate donation of stor-
age space, pStore would require a quota policy
where the amount of space available to a user for
pStore backups is proportional to the amount of
personal storage space contributed to the system.
Users then have a vested interest in making sure
their data is stored efficiently. Techniques which
decrease the space required to store a given file in
pStore increase the effective pStore capacity for
the owner of that file. To address this issue pStore
permits sharing at the file block level to capture
redundancy both within a single file and between
different versions, files, and users.? FB sharing
occurs explicitly during versioning as described
in Section 3.1.1. By exploiting the similarity be-
tween most versions, this technique saves stor-
age space and reduces network traffic which could
be significant when performing frequent backups.
FB sharing also occurs implicitly between dupli-
cate files owned by the same or different users.3

20ther techniques which would further increase the ef-
fective capacity for a user include data compression and
information dispersal algorithms (as in [4, 18]).

3We adopt the terminology presented in [2]: replicas
refer to copies generated by pStore to enhance reliability,
while duplicates refers to two logically distinct files with
identical content.

Implicit FB sharing is a result of using a hash
of the encrypted contents as the file block iden-
tifier. Convergent encryption ensures that iden-
tical file blocks are encrypted with the same key,
allowing multiple users to securely share the same
FBs. File sharing between users can be quite
common when users backup an entire disk image
since much of the disk image will contain common
operating system and application files. A recent
study showed that almost 50% of the used storage
space on desktop computers in Microsoft’s head-
quarters could be reclaimed if duplicate content
was removed [2]. Figure 2 illustrates an example
where two users have inserted an identical file.
Notice how although user B has modified the file
and inserted a new version, most of the FBs can
still be shared.

FBLs are not shared since they are inserted
into the network under a private namespace.
Even if two users have identical FBLs, they will
have different identifiers and thus be stored sep-
arately in the network. Using a content hash of
the FBL as the FBL identifier permits FBL shar-
ing when the version histories, file attribute in-
formation, and file content are identical. This
would be similar to the technique used to store
inodes in CFS [8]. Unfortunately, this drastically
increases the complexity of updating a file. The
entire virtual path must be traversed to find the
FBL, and then after the FBL is modified, the vir-
tual path must be traversed again to update the
appropriate hash values. Even if pStore allowed
FBL sharing, the number of shared FBLs would
be small since both the version history and the
file attributes of shared FBLs must be identical.

,,

3 pStor e Source Node ‘ ‘ pStore Node | ‘ pStore Node
[I I
Roe || e B e E . —
— Asynchronous Function Call i T 3 3 ¢ T 3 3 i T
— Asynchronous RPC over UDP Socket SIB mLIJ(I at%r Chord —_ Chord —_—— Chord
fffff = Asynchronous RPC over Unix Socket acken Lo ! !

Figure 3: pStore Implementation

pStore still allows sharing of directory informa-
tion and actual file data through FB sharing but
keeps version information and file attributes dis-
tinct for each user.

3.2.3 Deletion

If we assume a policy where users can only in-
sert an amount data proportional to the amount
of storage contributed, then pStore users may rea-
sonably demand an explicit delete operation. A
user may want to limit the number of versions
per FBL or remove files to free space for newer
and more important files.

Explicit delete operations in peer-to-peer sys-
tems are rare, since there is the potential for mis-
use by malicious users. Systems such as Freenet,
Chord, and Free Haven rely instead on remov-
ing infrequently accessed files or using file expi-
ration dates [5, 7, 9]. Removing infrequently ac-
cessed files is an unacceptable solution for pStore,
since by definition backups are rarely accessed
until needed. Expiration dates are ill-suited to a
backup system for two reasons. First, it is impos-
sible for a user to renew chunks which, through
modification, no longer exist on the user’s ma-
chine. Second, a user may be unable to refresh
his data due to a hardware crash - and this is
exactly the case when a backup is needed.

Exceptions include Publius, which attaches an
indicator to each file that only acceptable users
can duplicate to indicate file deletion, and Farsite,
which uses digital signatures to authorize dele-
tions. pStore also uses digital signatures in the
form of the public metadata mentioned in Section
3.1.2. This public metadata can be thought of as
an ownership tag which authorizes an owner to
delete a chunk.

Each storage node keeps an ownership tag
list (OTL) for each chunk. While FB chunks

may have many ownership tags, each FBL chunk
should only have one ownership tag. A user can
make a request to delete a chunk by inserting a
delete chunk into the network. The delete chunk
has the same identifier as the chunk to delete, but
has no data.

When a storage node receives a delete chunk,
it examines each ownership tag in the OTL asso-
ciated with the chunk. If the public keys match
between one of the ownership tags and the delete
chunk, then the delete is allowed to proceed. The
appropriate ownership tag is removed from the
OTL, and if there are no more ownership tags in
the OTL then the chunk is removed. The OTL
provides a very general form of reference counting
to prevent deleting a chunk when other users (or
other files owned by the same user) still reference
the chunk.

Notice that a malicious user can only delete
a chunk if there is an ownership tag associated
with the malicious user on the OTL. Even if a
malicious user could somehow append his owner-
ship tag to the OTL, the most that user could
do is remove his own ownership tag with a delete
command chunk. The chunk will remain in the
network as long as the OTL is not empty.

4 Implementation

We implemented pStore using both original
C++ code and third-party libraries for encryp-
tion algorithms and asynchronous programming.
pStore uses RSA for public key encryption [19],
Rijndael (AES) for symmetric key encryption
[17], and SHA-1 for cryptographic hashing [16].
Figure 3 shows the components involved in the
pStore implementation. pStore clients are linked
with the pStore library to provide various user
interfaces. The current implementation provides

a command line interface for inserting, updating,
retrieving, and deleting single files, as well as pub-
lic and private key generation. In addition to the
Chord backend for peer-to-peer storage, a simula-
tor backend was developed which stores chunks to
the local disk for debugging and evaluation pur-
poses. pStored runs on each node in the network
and maintains a database of chunks which have
been inserted at that node.

The current system acts as a proof-of-concept
implementation. As such, certain features in the
pStore architecture have been omitted. pStore
directories are not implemented and no effort is
made to handle very large files efficiently. Al-
though quotas would be important in a produc-
tion pStore system, this implementation does not
provide a mechanism for quota enforcement.

5 Ewvaluation

Three realistic workloads were assembled to
test various aspects of pStore and evaluate how
well it meets its goals of reliability and minimal
resource-usage. The first workload, softdev, mod-
els a software development team that backs up
their project nightly. At any time during the de-
velopment process they must be able to revert to
an older version of a file. It consists of ten nightly
snapshots of the development of pStore and in-
cludes a total of 1,457 files (13MB). The fulldisk
workload models individual users who occasion-
ally back up their entire hard disk in case of emer-
gency. We chose four Windows 2000 machines
and five Linux-based machines (four RedHat 7.1
and one Mandrake 8.1). Due to resource con-
straints we modeled each disk by collecting 5% of
its files. Files were chosen with a pseudo-random
number generator and the resulting workload in-
cludes a total of 23,959 files (696MB). The fi-
nal workload, homedir, contains 102 files (13MB)
taken from a user home directory with several
hourly and daily snapshots. These workloads pro-
vide a diverse testset with different file types, file
sizes, number of files, and amounts of versioning.

To test reliability, we brought up a network of
30 nodes across five hosts and backed up both
softdev and homedir. Ordinarily, each pStore
node would be on a separate host, but five hosts
allowed for a manageable test environment and

100%
80% -
60% -

40% -

Successfully Retrieved Files (Percent of Total)

—— SoftDev:r=1
—e— SoftDev: r =2 AN
20%p —— SoftDev:r =4 : o J
- HomeDir:r=1
-& - HomeDir:r=2{ =~ . T T T o7
- ‘Hom‘eDir:‘ r= z‘l

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Failed Nodes (30 Node Network)

0%

Figure 4: File Availability vs. Node Failures

the logical separation between nodes allowed for
a fair reliability study. Nodes were killed one-
by-one, and we measure how many files could be
retrieved from the remaining nodes as a percent-
age of the entire dataset.

The results in Figure 4 show backup availabil-
ity as a function of failed nodes. r denotes num-
ber of instances of a file inserted into the network.
As expected, increasing r increases the availabil-
ity of the backup set. For homedir which consists
of fewer, larger files than softdev, the reliability
is usually less for each number of failed nodes.
Even when seven nodes (23% of 30) have left
the network, four replicas are sufficient to bring
back 95% of one’s files for both workloads. The
observed reliability of the pStore system can be
generalized as follows. Given a fraction, f, of
failed nodes and a uniform assignment of chunks
to nodes due to SHA-1 hashing, the probability
that a block is not available is f". A file with
k blocks is not retrievable if any of the k blocks
are not available — a probability of 1 — (1 — f7)*.
Thus, for a given r (which can be small) and £,
similar availability may be maintained as the net-
work scales as long as f remains unchanged.

The remaining experiments, which do not rely
on the properties of pStore’s underlying network,
were performed using the pStore simulator. The
simulator allowed analysis to be performed prior
to integration with Chord. Figures 5 and 6 show
the efficiency of pStore when working with soft-
dev. The figures compare four techniques for
maintaining versioned backups: local tape back-

ups (tape), pStore without versioning (nover),
pStore with versioning (withver), and pStore us-
ing CVS for versioning (cvs). The tape test was
simulated by using the cp command to copy files
to a new directory each night. The nover test
does not use the versioning algorithm described
in Section 3.1.1. Instead it simply inserts each ad-
ditional version under a different pStore filename
(creating a separate FBL for each version). The
withver test uses the pStore versioning algorithm.
To evaluate pStore’s versioning method against
an established versioning scheme, we used pStore
to back up CVS repository files. These files can
be retrieved and manipulated with the CVS pro-
gram rather than relying on pStore versioning.
In our tests, the entire CVS repository file is re-
trieved and then deleted from the network. Next,
CVS is used to produce a new version, and the
new repository file is inserted into the network.

Figure 5 shows the network bandwidth usage
for each versioning technique when inserting each
nightly snapshot. Notice that for the first snap-
shot, pStore FBLs and chunk overhead (public
metadata) cause the pStore tests to use more
bandwidth than the tape test. For later ver-
sions, the withver test requires less than 10% the
bandwidth of tape and mover tests since pStore
versioning avoids inserting identical inter-version
data into the network. The cvs test uses drasti-
cally more bandwidth since each new version re-
quires retrieval of the entire CVS repository and
consequently all of the data associated with each
previous version.

The amount of bandwidth for restoring ver-
sions was also analyzed. The tape, nover, and
withver tests were similar since each test must
retrieve the entire version. The cvs test again
used drastically more bandwidth since all ver-
sions must be retrieved at once and not just the
the desired version.

Figure 6 shows how much storage is required
in the network using each of the four methods.
The stacked white bar indicates the additional
amount of storage required if implicit block shar-
ing is turned off. Without versioning or block
sharing, pStore is nearly equivalent to the local
tape backup with the exception of the storage re-
quired for FBLs and chunk overhead. Since sub-
sequent versions in softdev are similar or identi-

Il Local Tape Backup
Il pStore (No Versioning)
7|| E pStore (Versioning)
] pStore (CVS)

Bandwidth Usage (MB)
»

N

[

11/21 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30
Date of Backup

Figure 5: Bandwidth Usage - softdev Backup

14 Il Local Tape Backup
I pStore (No Versioning)
13|| [psStore (Versioning)
12|| =1 pStore (CVS)
" 1 w/ No Block Sharing
€10
5 9
S 8
o
g 7
S 6
o
S 5
7]
4
3
2
1
0

11/21 11/22 11/23 11/24 11/25 11/26 11/27 11/28 11/29 11/30
Date of Backup

Figure 6: Required Storage for softdev

cal, implicit block sharing can reduce the required
storage by 3-60% even without any sophisticated
versioning algorithms. The withver and cvs tests
reap the benefit of block sharing as well. Since
this is due to explicit block sharing during ver-
sioning, there is no increased storage requirement
when implicit block sharing is turned off (as illus-
trated by the lack of visible white bars for these
tests). The withver and cvs tests are able to re-
duce the storage required by another 1-10% over
nover (with implicit block sharing enabled). This
is because the nover scheme has separate FBLs
for each version resulting in additional FBL over-
head, and the scheme uses fixed block sizes re-
gardless of similarities with previous versions re-
sulting in less efficient inter-version sharing.
Clearly, the rsync algorithm on which pStore is

Il Actual File Data
11F I FBL Data
10 [1 Chunk Overhead
9
2s
87
=
g6
@
g5
o
o 4
7]
3
2
1
0

512

1024 2048

Block Size (Bytes)

4096 8192

Figure 7: Storage vs. Block Size:

based will find more overlap between file versions
when it is comparing smaller blocks. Thus, de-
creasing block size appears to be a simple way to
decrease the required storage of pStore version-
ing. In practice, while the storage required for
the actual data decreases due to more effective
versioning, the size of each FBL and the amount
of public metadata increases due to the greater
number of blocks. This increase in overhead out-
weighs the modest decrease in the actual stored
data (see Figure 7). The 11/30 softdev snapshot
is shown; other days exhibit similar trends.

It is reasonable to expect common blocks be-
tween users running the same operating system.
To test this, the amount of block sharing was
measured while inserting the fulldisk workload
into pStore. Unique public/private key pairs
where used for each user to test convergent en-
cryption. The Linux datasets saved 3.6% of
the total inserted bytes through block sharing,
while the Windows datasets saved 6.9%. When
both sets were inserted simultaneously, 5.3% was
saved. This number is much lower than the 50%
found in the Farsite study [2], probably owing to
the homogenous nature of the Farsite workload
compared to the heterogenous and sparse nature
of the fulldisk workload.

6 Future Work and Conclusion

Our research suggests some interesting direc-
tions for future work on secure peer-to-peer
backup systems. Recall that although the nover

10

scheme does not use the pStore rsync style of
versioning, the mover scheme can provide simi-
lar functionality through its use of logical direc-
tories. If a user wants to view files from a cer-
tain date, the user simply retrieves files from the
logical directory corresponding to that date. Fig-
ures 5 and 6 show that the mover scheme has
reasonable storage and bandwidth demands, but
as mentioned in Section 5, the nover scheme fails
to efficiently exploit inter-version sharing. This
is because each version is broken into fixed size
blocks irrespective of any similarities to previous
versions. Blocks will only be shared across ver-
sions if the same block occurs in each version at
the same offset. The FBLs are specifically de-
signed to help divide a new version into file blocks
more efficiently, especially when there are similar
blocks between versions but at different offsets
(a very common scenario when a user is insert-
ing data into the middle of a new version). The
nover scheme, however, cannot keep previous ver-
sion information in the FBLs since each version
essentally creates its own separate FBL.

The above observations suggest that a modified
nover scheme could make an interesting alterna-
tive to the pStore system. The nover scheme
would be modified to use LBFS style version-
ing to efficiently exploit inter-version similaries.
LBFS would be used to divide a new version of
a file into FBs, and since LBFS works on “fin-
gerprints” within the file data, portions of the
file which match an older file will be implicitly
shared (even if the similar data is at a different
offset in the the new version). The FBLs in this
new scheme simply contain a list of the hashes of
the FBs which make up that file. FBLs could use
convergent encryption enabling securing sharing
of FBLs between users. To conserve bandwidth,
the new scheme could make use of a new peek
primitive which checks to see if a chunk with a
given content hash exists in the peer-to-peer net-
work. If a duplicate content hash exists, then
there is no need to insert a new chunk with the
same hash into the network (although sending a
signed command may be necessary to correctly
update the ownership tag list for that chunk).
The FBLs in this new scheme resemble SFSRO
inodes, and similar bandwidth gains based on the
resulting hash tree are possible (the hash for a di-

rectory FBL represents not only the children of
that directory but the entire subtree beneath that
directory). This new scheme would be simpler to
implement than pStore, and therefore it would
be interesting to compare it to pStore in terms of
bandwidth and storage requirements.?

While experimenting with pStore, we discov-
ered that digitally signing each chunk adds signif-
icant performance, bandwidth, and storage over-
heads. We observed several FBs for which the FB
metadata was larger than the actual FB data.
This is largely a result of including the user’s
public key with each chunk. Even so, we feel
that the cost of digital signatures is outweighed
by two significant benefits. First, digital sig-
natures are the key to secure deletion and as
mentioned in Section 3.2.3, traditional deletion
techniques are ill-suited to backup usage models.
Second, digital signatures could provide a useful
tool in implementing an effective quota manage-
ment infrastructure, since each signature effec-
tively tags data with ownership. In cooperative
trusted peer-to-peer networks, it may be suitable
to assume that users will not exceed suggested
quotas. In such an environment, secure deletion
might be replaced by very long expiration dates.
This would eliminate the need to include a public
key with every chunk and lead to better perfor-
mance due to less processing, reduced bandwidth,
and smaller disk space overhead.

pStore uses chunk replication, various crypto-
graphic techniques, and a revised versioning algo-
rithm to achieve its three primary design goals of
reliability, security, and resource efficiency. We
have described a proof-of-concept implementa-
tion of the pStore architecture which provides a
command line interface for file insertion, update,
retrieval, and delete in a network of untrusted
peers. We show that a small number of repli-
cas is sufficient to provide adequate reliability
for a modest network size and that pStore can
provide significant bandwidth and storage sav-
ings. These savings are useful in the context of
a quota system where users are concerned about
their effective capacity in the network and also
in situations where users have disk or network

4These ideas matured through various discussions with
Professor Robert Morris at the MIT Laboratory for Com-
puter Science.

11

bandwidth constraints. pStore is a novel system
which brings together developments in peer-to-
peer storage with those in the domain of data
backup and versioning.

References

[1] R. Anderson. The eternity service. In Proceedings
of the 1st International Conference on the Theory
and Applications of Cryptology, 1996.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop
PCs. In Measurement and Modeling of Computer

Systems, pages 34—43, 2000.

K. Brown, J. Katcher, R. Walters, and A. Wat-
son. SnapMirror and SnapRestore: Advances in
snapshot technology. Technical report, TR3043,
Network Applicance, 2001.

Y. Chen, J. Edler, A. Goldberg, A. Gottlieb,
S. Sobti, and P. Yianilos. A prototype implemen-
tation of archival intermemory. In Proceedings
of the Fourth ACM International Conference on
Digital Libraries, 1999.

I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In Pro-
ceedings of the Workshop on Design Issues in
Anonymity and Unobservability, pages 46-66,
Berkeley, CA, Jul 2000. International Computer
Science Institute.

Concurrent versions
http://www.cvshome.org.

system.

F. Dabek, E. Brunskill, M. F. Kaashoek,
D. Karger, R. Morris, I. Stoica, and H. Balakrish-
nan. Building peer-to-peer systems with Chord,
a distrubuted location service. In Proceedings of
the 8th IEEE Workshop on Hot Topics in Oper-
ating Systems, pages 71-76, 2001.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles, October 2001.

R. Dingledine, M. Freedman, and D. Molnar. The
free haven project: Distributed anonymous stor-
age service. In Proceedings of the Workshop on
Design Issues in Anonymity and Unobservabil-
ity, pages 67-95, Berkeley, CA, Jul 2000. Inter-
national Computer Science Institute.

[10]

[11]

[15]
[16]

[22]

P. Druschel and A. Rowstron. Past: A large-
scale, persistent peer-to-peer storage utility. In
Proceedings of the 8th IEEE Workshop on Hot
Topics in Operating Systems, May 2001.

K. Fu, M. F. Kaashoek, and D. Mazieres. Fast
and secure distributed read-only file system. In
Proceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation,
pages 181-196, Oct 2000.

The gnutella protocol specification v0.4. Dis-
tributed Search Services, Sep 2000.

Mojo nation. http://www.mojonation.net.

A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In Proceed-
ings of the 18th ACM Symposium on Operating
Systems Principles, pages 174-187, Oct 2001.

Napster. http://www.napster.com.

National Institute of Standards and Technology.
Secure hash standard. Technical Report NIST
FIPS PUB 180, U.S. Department of Commerce,
May 1993.

National Institute of Standards and Technology.
Advanced encryption standard (AES). Technical
Report NIST FIPS PUB 197, U.S. Department
of Commerce, Nov 2001.

M. O. Rabin. Efficient dispersal of information
for security, load balancing, and fault tolerance.
Jounral of the ACM, 36(2):335-348, Apr 1989.

R. Rivest, A. Shamir, and L. Adelman. A method
for obtaining digital signatures and public key
cryptosystems. Communications of the ACM,
21(2):120-126, Feb 1978.

A. Tridgell and P. Macherras. The rsync al-
gorithm. Technical report, TR-CS-96-05, Aus-
tralian National University, Jun 1996.

M. Waldman and D. Mazieres. Tangler: A cen-
sorship resistant publishing system based on doc-
ument entanglements. In 8th ACM Conference
on Computer and Communcation Security, Nov

2001.

M. Waldman, A. Rubin, and L. Cranor. Publius:
A robust, tamper-evident, censorship-resistant,
web publishing system. In Proceedings of the 9th
USENIX Security Symposium, Aug 2000.

12

