LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

.W’: ., MASSACHUSETTS

-

Stream Algorithms and Architecture

Technical Memo
MIT-LCS-TM-636
March 26, 2003

Henry Hoffmann, Volker Strumpen, and Anant Agarwal

{hank,strumpen,agarwal}@cag.lcs.mit.edu

~

/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Stream Algorithms and Architecture

Henry Hoffmann, Volker Strumpen, and Anant Agarwal
Massachusetts Institute of Technology

March 26, 2003

Abstract

Wire-exposed, programmable microarchitectures including Trips [11], Smart Mem-
ories [8], and Raw [13] offer an opportunity to schedule instruction execution and data
movement explicitly. This paper proposes stream algorithms, which, along with a
decoupled systolic architecture, provide an excellent match for the physical and tech-
nological constraints of single-chip tiled architectures. Stream algorithms enable pro-
grammed systolic computations for different problem sizes, without incurring the cost
of memory accesses. To that end, we decouple memory accesses from computation and
move the memory accesses off the critical path. By structuring computations in sys-
tolic phases, and deferring memory accesses to dedicated memory processors, stream
algorithms can solve many regular problems with varying sizes on a constant-sized
tiled array. Contrary to common sense, the compute efficiency of stream algorithms
increases as we increase the number of processing elements. In particular, we show
that the compute efficiency of stream algorithms can approach 100 % asymptotically,
that is for large numbers of processors and appropriate problem size.

1 Introduction

Our goal is to show that microtechnology provides us with an opportunity to design single-
chip parallel machines on which we may increase efficiency by increasing the number of
processors for many important applications. Microtechnology is about to revolutionize the
design of computer systems for the second time since the first single-chip microprocessor,
Intel’s 4004, was released in 1971. While the amount of transistors that fit onto a single chip
has been growing steadily, only now, thirty years later, are we reaching the critical mass for
realizing a general-purpose parallel microarchitecture on a single chip. Research prototypes
such as Trips [11], Smart Memories [8], and Raw [13] represent the first steps into the design
space of tiled architectures, which are single-chip parallel machines whose architecture is
primarily determined by the propagation delay of signals across wires [4].

To enable high clock frequencies on large chip areas, tiled architectures have short wires
that span a fraction of the side length of a chip, and use registers to pipeline the signal
propagation. Short wires, in turn, introduce a scheduling problem in space and time to cope
with the propagation of signals across distances longer than those reachable via a single

wire. Moving data across wires and distributing operations across processors are equally
important scheduling goals. This scheduling problem has received attention in the context
of VLSI design [10], parallel computation [6], and parallelizing compiler design [15] in the
past.

The speed advantage of short wires has not gone unnoticed. In fact, systolic arrays were
proposed by Kung and Leiserson in the late 1970’s [5], and aimed, in part, at exploiting the
speed of short wires. Lacking the chip area to support programmable structures, however,
early systolic arrays were designed as special-purpose circuits for a particular application,
and were customized for a given problem size. Later systolic systems such as Warp [1]
became programmable, so they could reap the benefits of systolic arrays without sacrificing
flexibility. We believe that the significant area and energy efficiency of systolic arrays merit
their reexamination in face of the architectural similarities to recent tiled microarchitectures.

A commonly accepted and generally applicable technique to overcome the specialization
of a systolic array to a particular problem size is the stmulation of multiple processing
elements on one larger, more powerful systolic processor. Such a processor uses local memory
to store a potentially unbounded amount of data. Thus, the local memories required to
run large problems must also be large. Large memories use a load/store interface to cope
with intrinsically large access times. Load and store operations do not contribute useful
computation, however, and constitute a burden on the critical path. In contrast, small
memories are fast and can be organized as register sets. Register accesses are integrated
as operand accesses into machine instructions where they do not effect the critical path
adversely. Thus, it seems worthwhile to abandon the simulation technique and apply the
systolic method to large problem sizes while using a small amount of local memory only.

Figure 1: A decoupled systolic architecture (DSA) is an R x R array of compute processors
(P) surrounded by 4R memory processors (M) as shown for R = 8. Compute processors use
fast memory in form of a register set only. Each memory processor consists of a compute
processor plus a memory interface with slower memory of larger capacity.

In this article, we propose a new strategy for structuring parallel programs for tiled
architectures, together with a resulting class of decoupled systolic algorithms that we call
stream algorithms. Stream algorithms allow tiled architectures to operate in a systolic
fashion for many regular problems with variable problem sizes. Stream algorithms require

augmenting a tiled compute array with a set of memory processors on the periphery of the
array, and potentially off-chip, as illustrated in Figure 1. A stream algorithm solves a large
problem by breaking it into smaller, systolic subproblems, and by storing input data and
intermediate results in the peripheral memories. The input data are supplied to the compute
processors from the memories in a continuous stream! via the network, thereby eliminating
load /store memory accesses on the compute processors. Thus, stream algorithms decouple
memory accesses from computation, and move the memory accesses off the critical path.

Stream algorithms combine the benefits of decoupling, the software version of the decou-
pled access/execute architecture [12], and systolic algorithms, the software version of systolic
arrays [5]. Together, both features constitute an excellent match for the physical and tech-
nological constraints of future tiled microarchitectures. There is one catch, though. Since
stream algorithms are structured in systolic phases, they do not achieve high compute effi-
ciency unless the subproblems can be pipelined. Decoupling introduces yet another source
of inefficiency, namely the memory processors that execute memory accesses rather than
contributing useful computation. We show how stream algorithms amortize the loss of effi-
ciency by using a large number of processors with an asymptotically insignificant amount of
memory processors. We also identify a kernel of architectural features needed to implement
a decoupled systolic microarchitecture for executing stream algorithms area efficiently.

The remainder of this paper is organized as follows. In Section 2 we introduce our
decoupled systolic architecture. Section 3 defines our notion of stream algorithms. Then, we
discuss five applications, a matrix multiplication in Section 4, a triangular solver in Section 5,
an LU factorization in Section 6, a QR factorization in Section 7, and a convolution in
Section 8. We show how to formulate these applications as stream algorithms, and argue
why the resulting algorithms achieve optimal compute efficiency of 100 % asymptotically
when executed on our decoupled systolic architecture.

2 A Decoupled Systolic Architecture

A decoupled systolic architecture (DSA) is a type of single-chip tiled architecture. We
assume a fast network consisting of short wires connecting processors in a mesh topology
as shown in Figure 1. Our DSA consists of an R X R array of compute processors, and
4R memory processors on the periphery of the compute array. The peripheral memory
processors are the distinguishing feature of DSA’s. Each of the memory processors consists of
a compute processor with additional local memory. We assume that the memory can deliver a
throughput of one load or store per clock cycle. The compute processors can be implemented
in one of many architectural styles with varying degrees of efficiency, for example, VLIW,
TTA, or superscalar. However, the choices for achieving 100 % compute efficiency in an
area-efficient fashion are more limited. This section focuses on the key architectural features
for a DSA without dwelling on the details of a particular instantiation.

The compute processor, shown in Figure 2, is a simple general-purpose programmable

LOur notion of a data stream is consistent with the colloquial sense. According to Webster [9], a stream
is “an unbroken flow (as of gas or particles of matter),” a “steady succession (as of words or events),” a
“constantly renewed supply,” or “a continuous moving procession (a stream of traffic).”

El

Wi ﬂ}GPR U ﬂ}
<D} ﬂ]‘ E2

w2

S1 S2

Figure 2: A compute processor contains a general-purpose register set (GPR), an integer unit
(IU), and a floating-point unit (FPU) based on a multiply-and-add module. The processor
connects via FIFO’s to its four neighbors.

core comprising an integer unit, a floating-point unit with a multiply-and-add module as
the centerpiece, and a multi-ported, general-purpose register set. We do not include a larger
local memory because of the intrinsic physical constraint that large memories have larger
latencies than small ones. Instead, we use a register set with relatively small but fast memory.
To focus our attention on the datapath, Figure 2 omits all of the control logic and a small
instruction memory. We assume a single-issue, in-order pipelined FPU that allows us to
issue one multiply-and-add operation per clock cycle.

Arguably the most important feature of a DSA is the design of its on-chip network.
Our interconnect uses two prominent features of Raw’s static network [13]. The network
is register-mapped, that is instructions access the network via register names, and it is
a programmed routing network permitting any globally orchestrated communication
pattern on the network topology. The latter is important for stream algorithms that change
patterns between the phases of the computation. We discuss these features in more detail
in the following paragraphs.

As illustrated in Figure 2, we use blocking FIFO’s to connect and synchronize neighbor-
ing processors. These FIFO’s are exposed to the programmer by mapping them into register
names in the instruction set. The outgoing ports are mapped to write-only registers with
the semantics of a FIFO-push operation, and the incoming ports as read-only registers with
the semantics of a FIFO-pop operation. Furthermore, we prefer the network to be tightly
integrated with the pipelined functional units. Accordingly, bypass wires that commonly
feed signals back to the operand registers also connect the individual pipeline stages to the
outgoing network FIFO’s.? The tight network integration ensures low-latency communica-
tion between neighboring compute processors, and allows for efficient pipelining of results
from operations with different pipeline depths through the processor array.

Our decoupled systolic architecture uses a wide instruction word to schedule multiple,
simultaneous data movements across the network, between the functional units and the

2The tight integration with the processor pipeline is a key design aspect of the Raw architecture [13],
which earlier register-mapped network architectures including the Connection Machine CM2 [3] and Warp [1]
lack.

network, as well as between the register set and the network. A typical DSA instruction
such as

fma $4,$4,8N1,8W2 route $N1->$S1, $W2->$E2

consists of two parts. The fma operation is a floating-point multiply-and-add compound
instruction. It multiplies the values arriving on network ports N1 and W2, and adds the
product to the value in general-purpose register $4. Simultaneously, it routes the incoming
values to the neighboring processors as specified by the route part of the instruction. The
value arriving at port N1 is routed to outgoing port S1, and the value arriving at port W2 to
outgoing port E2. Instructions of our decoupled systolic architecture block until all network
operands are available. Using small FIFO’s with a length larger than one eases the problem
of scheduling instructions substantially. There exists a trade-off between the instruction
width and the area occupied by the corresponding wires within a processor. For our DSA,
we assume that three data movements can be specified within the route part of a single
instruction.

DSA’s may be implemented as a virtual machine on top of a tiled architecture. We
have experimented with this idea on Raw, which can be viewed as an architectural superset
of our DSA. Since every Raw processor has local memory and can be viewed as a memory
processor, we simulate our compute processors simply by ignoring the available local memory.
In that respect, Raw is a functional, but not area-efficient DSA. Raw has separate switch
and compute processors on each tile, each with their own instruction stream. We splice the
instruction stream of each of our DSA processors into a Raw processor stream, a Raw switch
stream, plus synchronization primitives. Another difference is that Raw’s floating-point unit
is not based on a multiply-and-add module. Thus, the fma instruction of our DSA requires
two instructions on Raw.

3 Stream Algorithms

In this section we introduce decoupled systolic algorithms, nicknamed stream algorithms,
and a set of conditions for which we can increase efficiency by increasing the number of
processors such that the compute efficiency approaches 100 %. Alternatively, we may view
stream algorithms as the product of a program-structuring methodology. We identify five
design principles for stream algorithms:

1. We reduce the instruction count on the critical path of a computation by
abandoning load and store instructions on the compute processors.

2. We use systolic designs, because they are well suited for parallel machines with local
interconnect structure and match our architecture with fast but short wires.

3. We decouple memory accesses from computation by dedicating processors to
one of the two tasks. This idea is motivated by the Decoupled Access/Execute Archi-
tecture [12].

4. We use M memory processors and P compute processors, such that the number of

memory processors M is asymptotically smaller than the number of compute processors
P, that is M=o(P).

5. We partition problems into decoupled systolic algorithms, and use the M memory
processors for temporary storage.

The key strategy for the design of an efficient decoupled systolic algorithm is to recog-
nize that the number of memory processors must be negligible compared to the number of
compute processors, because memory processors do not contribute any useful computation.
While it is often impossible to design an efficient decoupled systolic algorithm for a very
small number of processors and a very small problem, we can actually increase the efficiency
for larger numbers of processors and large problems. We emphasize this observation by
formulating the decoupling-efficiency condition.

Definition 1(Decoupling-Efficiency Condition)

Given a decoupled algorithm with problem size N and a network of size R,® let P(R) be the
number of compute processors and M(R) the number of memory processors. We say the
algorithm is decoupling efficient if and only if

Informally, decoupling efficiency expresses that the number of memory processors be-
comes insignificant relative to the number of compute processors as we increase the network
size R. Decoupling efficiency is a necessary condition to amortize the lack of useful computa-
tion performed by the memory processors. For example, suppose we implement an algorithm
on P = R? compute processors. If we can arrange the memory processors such that their
number becomes negligible compared to P when increasing the network size R, the resulting
algorithm is decoupling efficient. Thus, for a decoupling-efficient algorithm with P = ©(R?),
we may choose M to be O(Ig R), or M = ©(R), or M = O(R1g R). In contrast, a design with
M = ©(R?) would not be efficiently decoupled. Decoupled systolic algorithms per se are
independent of a particular architecture. Note, however, that the DSA shown in Figure 1 is
particularly well suited for executing either one such algorithm with (P, M) = (©(R?), O(R))
or multiple algorithms concurrently with (P, M) = (©(R), ©O(1)).

Decoupling efficiency is a necessary but not sufficient condition to guarantee high per-
formance. We determine the compute efficiency of a stream algorithm with problem size N
on a network of size R from the number of useful compute operations C'(N), the number of
time steps 7'(V, R), and the area counted in number of processors P(R) + M (R):

C(N)
T(N,R)-(P(R)+ M(R))

E(N,R) = (1)

The product of time steps and area can be interpreted as the compute capacity of the DSA
during time period T'. For all practical purposes, we may relate the problem size N and

3We use the network size R as a canonical network parameter. The number of processing nodes is
determined by the network topology. For example, a 1-dimensional network of size R contains R processing
nodes, whereas a 2-dimensional mesh network contains R? processing nodes.

network size R via a real-valued o such that N = o R. Substituting o R for N in Equation 1,
we define compute efficiency by means for the following condition.

Definition 2 (Compute-Efficiency Condition)
We call an algorithm with problem size N compute efficient when executed on a network
of size R, if and only if

lim E(o,R) =1,

o,R—00

where N = oR.

Equation 1 implies a necessary condition for obtaining a compute-efficient algorithm:
either the number of memory processors M = 0 or the algorithm is decoupling efficient. If
we operate a compute array without any memory processors it is a systolic array. We are
interested in the case where M > 0, however, and compute efficiency implies decoupling
efficiency as a prerequisite. Thus, with decoupling efficiency as necessary condition for
achieving 100 % compute efficiency asymptotically, every compute-efficient stream algorithm
is decoupling efficient, whereas the converse is not true. The compute-efficiency condition
requires that both R — 0o and 0 = N/R — oo. Thus, in practice we require that N > R,
which we view as a realistic assumption since using a very large network implies that we
intend to solve a very large problem. For ¢ = 1, the problem size matches the network size,
and we operate the network as a systolic array. Since decoupling-efficient stream algorithms
use an asymptotically smaller number of memory processors than compute processors, we
may view stream algorithms as a subset of systolic algorithms with a restricted number of
inputs and outputs. Inversely, we may view a systolic algorithm as a special case of a stream
algorithm that is distinguished by 0 = 1 in N = oR. We discuss the trade-off between N
and R during our discussion of stream algorithms below.

Before presenting concrete examples of stream algorithms, we outline our general stream-
structuring methodology, which consists of three steps:

Partitioning: Given a problem with ¢ > 1in N = o R, that is the problem size N is larger
than the network size R, we start by partitioning the problem into smaller, independent
subproblems. Each of the subproblems as well as the composition of their results must
be suitable for parallelization by means of a systolic algorithm such that the compute
processors access data in registers and on the network only. For simple data-parallel
applications, the partitioning can be obvious immediately. For applications with more
complicated data dependencies, we find that recursive formulations and partitioning
methods like those developed for out-of-core algorithms [14] can be helpful. To simplify
the design of the systolic algorithm, retiming [7] may be used. It allows us to start
the design with a semi-systolic algorithm, which we can transform automatically into
a systolic algorithm if one exists [6]. The design of a semi-systolic algorithm can be
significantly easier than that of a systolic version, because it permits the use of long
wires that extend beyond next-neighbor processors.

Decoupling: Our goal is to move the memory accesses off the critical path. To this end,
we have to decouple the computation such that the memory accesses occur on the

7

memory processors and compute operations on the compute processors. For a systolic
problem, the memory processors feed the input streams into the compute processors,
and the decoupling procedure is almost trivial. However, the composition of several
subproblems requires careful planning of the flow of intermediate data streams, such
that the output streams of one systolic phase can become input streams of a subsequent
phase without copying streams across memory processors. Occasionally, it may be
beneficial to relax the strict dedication of memory processors to memory accesses,
and compute portions of the composition of the subproblems, such as reductions, on
the memory processors themselves. Therefore we integrate a fully-fledged compute
processor into the memory processor of our stream architecture.

Efficiency Analysis: After partitioning and decoupling, we have designed a stream algo-
rithm. To qualify as a compute-efficient stream algorithm, however, we also require
that the compute-efficiency condition holds. Therefore, the choice of the number of
memory processors must be asymptotically smaller than the number of compute pro-
cessors, and we must show that E(o, R) approaches 1 for large values of R. Meeting
the compute-efficiency condition requires that we order the subproblems for optimal
pipelining on the compute array. Experience shows that we may need to iterate over
the partitioning and decoupling steps until a compute-efficient solution is found.

Let us emphasize the concept of a stream algorithm by highlighting what a stream al-
gorithm is not. (1) A stream algorithm is not a collection of N tasks that is scheduled on
R < N processors, using time sharing and context switching to guarantee progress. Instead,
a stream algorithm is a computation structured such that the schedule of individual tasks
is determined by the order of elements in the data streams that is primarily organized by
the memory processors. Also, (2) a stream algorithm does not simulate [N/R] = [o] pro-
cessors of a systolic array on one compute processor. While simulation of a systolic array
is a generally applicable method for executing a parallel algorithm of problem size N on
R < N processors, each of the R processors needs an unbounded amount of memory to store
the state of each of the [o] subproblems, and consequently additional instructions must be
executed to manage a large local memory. In contrast, stream algorithms avoid local mem-
ory accesses entirely by decoupling the computation from memory accesses, and moving the
memory accesses off the critical path.

4 Matrix Multiplication
As our first example of a stream algorithm, we consider a dense matrix multiplication. Given
two N x N matrices A and B, we wish to compute the N x N matrix C' = AB. We compute

element ¢;; in row ¢ and column j of product matrix C as the inner product of row ¢ of A
and column j of B:

N
cij = Y ay - by, (2)
P

where 1 <7,7 < N.

Partitioning

We use a block-recursive partitioning for the matrix multiplication. We recurse along the
rows of A and the columns of B:

Ci Che An
(e o > (. (Bu B). (3)
For each of the matrices C;; we have C;; = A;; By, where A;; is an N/2 x N matrix and By;

an N x N/2 matrix. Thus, the matrix multiplication can be partitioned into a homogeneous
set of subproblems.

Decoupling

We begin by observing that each product element ¢;; can be computed independently of all
others by means of Equation 2. In addition, Equation 3 allows us to stream entire rows
of A and entire columns of B through the compute processors. Furthermore, we partition
a problem of size N x N until the Cj; are of size R x R and fit into our array of compute
processors. We implement the resulting subproblems as systolic matrix multiplications,
illustrated in Figure 3 for N = R = 2. Rows of A flow from the left to the right, and
columns of B from the top to the bottom of the array.

b22

b21 b12 b22
b1y) by ba b2y
b by | bz b,
apay ap 1
ay A |y ap
b b b b b
s Ay Az Ay az "o 12 a Zla 12 Z
A |8y 22 |8 axn
c Cn Cio
Cu 1(1; Cip |—= —
19
c Con Co
Co 2 Copp |—= —
Co

) @ ® 4) ®) (6) 0]

Figure 3: Seven time steps of a systolic matrix multiplication C' = A - B for 2 x 2 matrices.
Each box represents a compute processor. Values entering, leaving, or being generated in
the array are shown in bold face. Shaded boxes mark the completion of an inner product.
We split the data flow of the operands and products into the top and bottom rows.

For N > R, the compute processor in row r and column s computes the product elements
c;j for all mod R = r and j mod R = s. To supply the compute processors with the proper
data streams, we use R memory processors to store the rows of A and R additional memory
processors to store the columns of B. Thus, for the matrix multiplication, we use P = R?
compute processors and M = 2R memory processors. Figure 4 illustrates the data flow of
a decoupled systolic matrix multiplication for N = 4 and R = 2. Note how the memory
processors on the periphery determine the schedule of the computations by streaming four
combinations of rows of A and columns of B into the compute processors. First, we compute
Chy by streaming {A(1,:), A(2,:)} and {B(:,1), B(:,2)} through the array. Second, we
stream {A(1,:), A(2,:)} against {B(:,3), B(:,4)}, third, {A(3,:), A(4,:)} against {B(:, 1),

9

B(:,3) [B(:,4) B(:,3) [B(:,4) B(:,3) [B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4)
B(:,1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:,2) B(,1)|B(:,2) B(,1)|B(:,2) B(,1)|B(:,2)
AL, AL by A@,) ba| bi A1) by| bz A@L:)| by by, A(L:)| byl by, A Dbas| bl Cu
AB.) AB.)|an AB))|a1, |ay AB)a1s [31p AB)|@14 |13 AB)an |1 AB)|a1, |ay
AQ2,) AR,:) AR,:) by AR,:) ba| by A@2;)| by| bz A@2;)| by| by, A2;)| bu| by,
A4)) A4)) A4,)|821 A@4)|@22 |3n A4)|3 |32 A@4,)|82 |z A4)[321 |8z
@ @ ©)] 4 ®) (6))
B(:,3)[B(:,4) B(:,3) [B(:,4) B(:,3) [B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4) B(:,3)|B(:,4)
B(,1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:,2) B(:,1)|B(:,2) B(,1)|B(:,2) B(,1)|B(:,2)
A1) byl Dol €12 ALY bl b ALY by| by, A®L)| ba| bi| i3 [AQR)| by| bzl Cu ALY byl bs AL bl by,
AB))|as |31 AB)@1s 213 AB)as |Aus AB)As; |as AGB)ass |83 AGB)[@a |A3s AB)as |Aua
A@;) bas| bu| S |A@:)| b b| €22 [A@))] bl by, A@:)| bu| by, A@R3)| ba| bi| C2s |A@)| bu| bl €20 [A@)] bl by,
A(4,)|@22 |82 A(4,)|223 |32 A(4,)|@p |8p A(4)8a1 |z A(4,) @42 |@a A(4.) A4 |32 A4,)|@g |Ap
®) 9) (10) (11) (12) (13) (14)
B(:,3)[B(:,4) B(:,3)[B(:,4) B(;,3) [B(:,4) B(:,3)|B(:,4) B(;,3)|B(:,4) B(:,3)|B(:,4) B(;,3)|B(:,4)
B(:,1) [B(:,2) B(:;1) [B(:,2) B(:,1) [B(:,2) B(:;,1)|B(:,.2) B(:;1)|B(:.2) B(:;1)|B(:.2) B(:,1)|B(:,2)
A®L)| by bua| Cai JAQR)| byl bzl Ca2 ALY byl b A(,) b,, A(,) Cx [A@) Ca [A@)
AB)a3 |agy A@B)az |As AB.)|3a |3ss AB.) Az AB.) AB)) AGB)
A@R.)| bi| by, AR.)| bas| by Ca AR,)| Dbas| b Ca AR:)| byl by, A2,) 5 A2,) Cu A2,) Cas
A4,)34 |Bas A48z [An A4,) A | A4)|@ |84 A4,) a, A4, A4,)
(15) (16) 17) (18) (19) (20) (21)

Figure 4: Data flow of a compute-efficient matrix multiplication C' = A- B for 4 x 4 matrices
on 2 X 2 compute processors. Shaded boxes on the periphery mark memory processors, and
indicate the completion of an inner-product otherwise.

B(:,2)}, and finally {A(3,:), A(4,:)} against {B(:,3), B(:,4)}. As a result, we compute Cyy,
Cha, Cy1, and Cy in that order.

If product matrix C' cannot be streamed into a neighboring array of consuming compute
processors or off the chip altogether, but shall be stored in memory processors, we may
have to invest another R memory processors for a total of M = 3R. In any case, we have
P = O(R?*) and M = ©(R), and hence M = o(P). We conclude that the structure of our
matrix multiplication is decoupling efficient.

Note that we could use a similar organization to compute a matrix-vector product Ax,
where A is an N x N matrix and x an N x 1 vector. However, using only one column
of R x 1 compute processors requires M = R + 1 memory processors. Since M # o(P),
this organization is not decoupling efficient. However, there exists a different design that
is decoupling efficient by storing matrix A and vector x on one memory processor and by
distributing the inner products across a linear array of compute processors.

Efficiency Analysis

The number of multiply-and-add operations in the multiplication of two N x N matrices is
C(N) = N3. On a network of size R with P = R? compute processors and M = 2R memory
processors, we pipeline the computation of (N/R)? systolic matrix multiplications of size
R x N times N x R. Since this pipelining produces optimal processor utilization, and the
startup and drain phases combined take 3R time steps (cf. Figure 4), the total number of
time steps required by this computation is

Twm(N,R) = (N/R)’R+ 3R.

10

According to Equation 1, the floating-point efficiency of our matrix multiplication is therefore

N3

Enm(N,R) = ((N/R)3R +3R) - (R?2 +2R)

Using 0 = N/R instead of parameter N, we obtain

o3 R

Enm(0,B) = 5505 R

(4)

for the efficiency. Consider each of the two product terms independently. Term o*/(o® + 3)
approaches 1 for large values of o, that is if the problem size N is much larger than the
network size R. On the other hand, term R/(R + 2) approaches 1 for large network sizes R.
If we assume a constant value o > 1, we find that the efficiency of the matrix multiplication
increases as we increase the network size, and approaches the optimal floating-point efficiency
of 100 % asymptotically. We also note that for a fixed o, the stream matrix multiplication
requires T(N) = (02 + 3/0)N = O(N) time steps on a network with (N/o)? compute
processors.

In practice, the network size R is subject of a delicate trade-off. To maximize efficiency,
we want to maximize both terms in Equation 4. Thus, given a problem size N, to increase
the first term, we want to increase 0 = N/R and, hence, decrease R. On the other hand,
to maximize the second term, we want to increase R. To determine a good value R for
implementing a DSA, let us consider some absolute numbers. For example, if N = R, that
is 0 = 1, we have a systolic matrix multiplication with

R

1
Ennlc=1,R)=--——.
(o) =1 Rz
Thus, the maximum efficiency is just 25 % even for an infinitely large network. On the other
hand, for a relatively small value o = 8, we have

R
E,m(c=8 R)=0.99 - ——.
(@) R+ 2
Hence, for a network size of R = 16, a compute-efficient matrix multiplication of problem size
N = 8-16 = 128 achieves almost 90 % efficiency. Larger problem sizes and larger networks
operate above 90 % efficiency.

5 Triangular Solver

A triangular solver computes the solution x of a linear system of equations Ax = b assuming
that matrix A is triangular. Here is an example with a 4 x 4 lower-triangular matrix A.

a1 0 0 0 T b1
91 A929 0 0 i) . b2
az; aszp a0 x3 B bs
A41 (42 Q43 (44 Ty by

11

Finding solution z is a straightforward computation known as forward substitution:

by
r = —
ai
1 i—1
T, = — bi—Zaijxj for 222,3,,N
Qg j=1

We are interested in triangular solvers as building blocks of other algorithms including an
LU factorization. In particular, we are interested in the lower-triangular version that finds
an N x N matrix X as the solution of AX = B, where B is an N x N matrix representing N
right-hand sides.

Partitioning

We partition the lower-triangular system of linear equations with multiple right-hand sides
recursively according to Equation 5. Matrices A;; and A,y are lower triangular.

A 0 X1 Xig Bi1 B (5)
Ay Ap Xo1 Xoo By B
The partitioned triangular form leads to a series of smaller problems for the lower-triangular
solver:

Allel — Bll

Bég - B22 - A21X12
A22X21 — Bél (10
A22X22 — Bé2 (]_1

First, we compute the solution of the lower-triangular systems in Equations 6 and 7, yielding
Xi; and Xi5. We use these solutions subsequently to update matrices By, and Bgsy in
Equations 8 and 9, producing B), and Bj,. We could compute the matrix subtraction
in Equations 8 and 9 on the compute processors of the array. However, we can save the
associated data movement by executing the subtraction on the memory processors. This
alternative is simpler to program as well. Matrices B, and B!, are the right-hand sides
of the lower-triangular systems in Equations 10 and 11. Solving these systems yields Xy,
and Xoo. Thus, Equations 6-11 define a recursive algorithm for solving the lower-triangular
system of Equation 5. The recursion reduces the problem of solving a lower-triangular system
of linear equations into four smaller lower-triangular systems of linear equations, plus two
matrix multiplications that we have discussed in Section 4 already.

Decoupling

To arrive at a decoupled design, we observe that the computations for the individual right-
hand sides of the linear system AX = B are independent. Consider the following system for

12

N = 3 and two right-hand sides.

11 0 0 T11 T12 bii bio
az agz 0 To1 T2 = bar bao
31 A3z (33 T31 T32 bs1 b3y

The computation of column j of X depends on the elements of A and the elements of
column j of B only, which means that computations of columns of X may be performed
independently.

Figure 5 depicts the systolic algorithm for our lower-triangular solver. We stream rows
of A from the left to the right and columns of B from the top to the bottom of the compute
array, while columns of X stream from the bottom of the array. The processor p;; in row 4
and column j of the compute array is responsible for computing element z;;. Note that
due to the independence of columns in this computation we may permute the columns of B
arbitrarily, provided we preserve the staggered data movement. We can also use the systolic
design of Figure 5 for an upper-triangular solver by reversing the order in which the rows
of A are stored on the memory processors, and by reversing the order in which the elements
of the columns of B are fed into the compute processors.

We illustrate the systolic algorithm by describing the computation of element z3; =
(bs1 — az1x11 — a32x91)/azs. We begin with time step 4 in Figure 5. Processor ps; receives
element x;; from po; above and a3; from the left, and computes the intermediate result s =
a1 - x11. At time step 5, processor ps; receives element xo; from above and a3, from the left.
Executing a multiply-and-add operation, p3; computes intermediate result ¢ = s 4+ ags - x9;.
At time step 6, processor p3; receives azz from the left and bs; from py; above, and computes
x31 = (b3; — t)/ass. During the next time step 7, element x3; is available at the bottom of
the array.

When reducing a problem of size N x N recursively until the subproblems fit into an Rx R
array of compute processors, we need 3R memory processors on the periphery of the compute
array to buffer matrices A, B, and X. Figure 6 shows the computation of X;; and X5, by
means of Equations 6, 8, and 10. As implied by this figure, we use R memory processors
to store the rows of A, and R memory processors for the columns of B and X, respectively.
Thus, for a decoupled systolic lower-triangular solver, we require P = R? compute processors
and M = 3R memory processors, meeting our decoupling-efficiency condition M = o(P).

Unlike the matrix multiplication, the factorization of the triangular solver does not pro-
duce identical subproblems. Therefore, we are faced with the additional challenge of finding
an efficient composition of these subproblems. Although we can pipeline the subproblems, we
cannot avoid idle cycles due to data dependencies and the heterogeneity of the computations
in Equations 6-11. However, we can minimize the loss of cycles by grouping independent
computations of the same type, and pipelining those before switching to another group. For
example, we can group and pipeline the computations of Equations 6 and 7, then Equations 8
and 9, and finally Equations 10 and 11. If we unfold the recursion all the way to the base
case of R X R subproblems, we find that the best schedule is equivalent to a block-iterative
ordering of the subproblems.

13

bg by bs,
by by bg b
b11 b21 b12
by
all a
11y
1]
ay,ay - A2 Ay
Q33 8z a3 - Q3383 a3 *
1))
b3,
by by bs,
by b1, bs; |ba b,
ay
X12
X1 b,, X12 ba; by,
Ay 1 A r @y u ax u
X1 X2
X1] X1 X12)
Q33 A3, Az Q33 83|31 S Q3383 s (A3 V
t
¢ X11
F=a, Xy S=agz Xy t=s+ag Xy
U=ay Xy, V= ag Xy
(©) (4) (%)
bs,
bs; X22 b3,
8z Az v Az
t Xal w w Xz
¢X21 ¢X12 ¢X31 ¢Xzz ¢X32
W=V +ag Xy,
(6)) (8)

Figure 5: Systolic lower-triangular solver for N = 3 and two right-hand sides.

Efficiency Analysis

We compute the efficiency of our lower-triangular solver according to Equation 1. The num-
ber of floating-point multiply-and-add operations is C'(N) = N?/2, counting each division

as a multiply-and-add operation.

As mentioned above, the crux for an efficient schedule is to order the computations in
Equations 6-11 such that two subsequent systolic algorithms can be overlapped. For the
matrix multiplication, finding a perfect overlap is relatively easy, because the there is only
one systolic algorithm. For the lower-triangular solver, we illustrate the search for a good
schedule and the corresponding efficiency analysis by means of the example in Equation 12,
where matrices A, X, and B consist of o x ¢ blocks, each block is of dimension R x R, and

o =4.
Ay 0 0 0 X X
A21 A22 0 0 X21 X22
As; Az Az 0 X311 X3

A41 A42 A43 A44 X41 X42

X3
Xo3
X33
Xy3

14

X14
Xog
X34
X

Bll
BQI
Bs,
By

BIZ
BQZ
Bs,
Bus

By
Bos
Bs3
By

By
Bsy
Bja
By

(12)

Tar

By TR
By B
\ SRR |
o -0
A A
An ‘ lr A‘ R Az ‘ R
* A N> *
A,
Xy) 2R ‘ X1) 2R
Xi1
Lar 1 3R
T T

@ @ ®

Figure 6: Phases of a decoupled systolic lower-triangular solver on an R x R array of compute
processors. In phase 1 we solve Equation 6 for Xi;. In phase 2 we update By, according
to Equation 8. While the matrix multiplication is executed on the compute processors, the
matrix subtraction is performed on the memory processors as they receive each individual
result of Ay X1;. Finally, in phase 3 we solve Equation 10 for X5;. The shapes of the matrix
areas indicate how the rows and columns enter the compute array in a staggered fashion.

Recall that the computations of the individual columns and, thus, column blocks of X
are independent. Therefore, we may sequence the systolic computations across rows to
maximize overlap. In the 2 x 2 partitioning of Figure 6, the computation of a column block
of X consists of two solver computations and one update operation. The interleaving of two
such computations yields the sequence of Equations 6-11. Now, consider column block ¢ of
the 4 x 4 example in Equation 12 with the following sequence of operations. First, solve
AHXM = BM for Xli- Second, update Béz = Bgi - A21X1i. ThlI’d, solve AQQXQZ' = Béz for
Xy;. Fourth, update B}, = Bs; — A3 X1; — Ag3Xo;, which involves two update operations.
Flfth, solve A33X3i = Bi,’)z for ng'. SlXth, update Bé’lz = B4i - A41X1i - A42X2i - A43X3Z',
involving three update operations. Finally, solve Ay Xy, = Bj; for Xy;. We observe that
for increasing o, the number of solvers increases quadratically while the number of update
operations increases cubically.

Since the update operations are little more than matrix multiplications, we may pipeline
and overlap as many of them as possible, resembling our stream-structured matrix multi-
plication. Thus, we use a block iterative schedule that iterates over row blocks. For each
row block ¢, we schedule the solver computations of an entire row ¢ with maximal overlap.
There are o solvers for each row block, which require o R time steps plus 2R time steps for
starting and draining the pipeline. Then, we compute and overlap all update operations
associated with X,;. For each X,;, there are o0 — ¢ update operations, resulting in o(o — 7)
update operations associated with row i. These operations require o(oc — i)R time steps
plus 3R time steps to start and drain the pipeline. We may save another 2R time steps by
overlapping the first update operation with the last solver computation and the first solver
computation of the next row block with the last update operation of the previous row block.
The number of time steps for an N x N lower-triangular solver with o x ¢ blocks of size

15

R x R is then:
o o—1 o—1
Tus(o,R) = Y (cR+2R)+ > (o(c —i)R+3R)— > 2R
i=1 i=1 i=1
R
5(03 + 0%+ 60 — 2).
We find that, for a fixed o, the total number of time steps is T'(/N) = ©(N) when using
(N/o)? compute processors.
According to Equation 1, the floating-point efficiency of our compute-efficient lower-
triangular solver is then
o3 R
03+02+60—-2 R+3
Analogous to Equation 4 for the matrix multiplication, the efficiency is the product of two
terms, one depending indirectly on the problem size N via o, and the second depending on
the network size R. For 0 = 1, the problem reduces to a single systolic lower-triangular
solver, and we obtain an efficiency of

Elts(aa R) -

(13)

L

Elts(a_laR)_G R—|—3

The efficiency increases when we increase R and o, such that the floating-point efficiency
approaches the optimal value of 100 %. Since the solver requires memory processors along
three sides of the array of compute processors, the second term requires a slightly larger
network size to achieve high efficiency. For example, for a very large o, we have E; (R) ~
R/(R+ 3), and we achieve more than 90 % efficiency for R > 27.

6 LU Factorization

We wish to factor an N x N matrix A into two N x N matrices L and U, such that L is
lower-triangular, U is upper-triangular, and A = LU. Furthermore, for all diagonal elements
of L = (l;;) we require that /;; = 1, where 1 <i < N.

Partitioning

We partition the LU factorization according to Equation 14. Matrices Ly, and Loy are lower
triangular, while matrices Uy, and U,y are upper triangular.

(A Ap) _ (Ly 0 > (U Ui > (14)

Ay Agy Ly Loy 0 U

This partitioning results in a series of smaller problems:
An = LnUn (15)
Ap = LnUp (16)
Ay = LoUn (17)
Ay = Ap — LU (18)
Ay = LopUsyy (19)

16

First, we compute L;; and U;; by factoring A;; according to Equation 15. We use the
results to solve Equations 16 and 17 for U;s and Lo respectively. Then, we update Ago
according to Equation 18, which produces A',. As with the triangular solver, the matrix
subtraction required by this step can be performed on the memory tiles. Finally, we use
A, to compute Loy and Uye. The recursive formulation due to Equations 15-19 reduces the
problem of an LU factorization into two smaller LU factorizations, a matrix multiplication,
a lower-triangular solver, and an upper-triangular solver of the form XU = B. The stream-
structured version of this upper-triangular solver is similar to that of the lower-triangular
solver.

Decoupling

We begin the derivation of a decoupled design with a systolic LU factorization. As an
example, consider the LU factorization for N = 3.

a11 Q12 13 1 00 U U2 U13
21 Q22 (23 = lpy 1 0 0w ugs
31 A3z2 433 l31 l32 1 0 0 wuss

Figure 7 shows the progress of our systolic LU factorization. Columns of matrix A
enter the compute array at the top, and fold over towards the bottom. The columns of
upper-triangular matrix U leave the array at the bottom and the rows of lower-triangular
matrix L on the right. The compute processor p;; in row 7 and column j of the compute
array computes either u;; if 7 < j, or l;; otherwise. Since l; = 1, the diagonal elements of L
are neither computed nor stored explicitly.

The data flow pattern of the LU factorization is straightforward. Elements of L stream
from left to right, and elements of U stream from top to bottom. When a pair of elements
enters processor p;;, it computes an intermediate value of either /;; or w;;. As a concrete
example, we discuss the computation of element uyy = ags — lo - U2, where us = a9,
u11 = a1y, and ly; = ag; /uq;. Processor pyy at the center of the array will produce value ugs.
We begin at time step 6 of Figure 7. Processor p,; receives u;; from above and uses it to
compute element [, which is sent to the right and becomes available on processor pys at
time step 7. Simultaneously, processor ps sends uy5 = a1 downwards towards processor pos.
At time step 7, processor pss receives elements wuio from pio above and ly; from po; on the
left. With element agy already resident since time step 5, processor poy computes sy =
G99 — lo1 - u19. Value ugy remains on processor poo during time step 7, while value w4 is sent
towards neighbor pss. Then, during time step 8, w5 is sent to neighbor p3s. At time step 9
Processor pss uses ugs to compute I3y = (ags — l31 - w12)/uge. In time step 10, element wusy
leaves the array at the bottom of processor ps,.

Analogous to the triangular solver, we reduce a problem of size N x N recursively un-
til the subproblems fit into an R x R array of compute processors. Figure 8 illustrates
the data movement of the matrices when computing five systolic subproblems according to
Equations 15-19. We need R memory processors to buffer the columns of A, another R for
the rows of L, and an additional R for the columns of U. Thus, our decoupled systolic LU
factorization requires P = R? compute processors and M = 3R memory processors. We
observe that M = o(P), and the structure of our LU factorization is decoupling efficient.

17

a a
32 23 Agz
a3 Az A Az Ay
an 8 s 8x» a4y
an a,, a;, .
an
@ (2
A3
Az Az Ay a5
a Az Az
22 Uy
Ay 3 a3 ay a1, 4y
s
Ay Q| Ap
4) 5)
Uz
13
Iy U] @gg Iy Ugg
Uz, 23
g 8y Upp| 33
Uy la; Ugo
51 r
Az A Asz| Ag
fu,
r=ag =l U,
(7 (8)
l3; Upg la
3B >
S ag Uss
¢ Uz, ¢ Ugs ¢ Ups
(10) (1)

|32

A
a3 Ay
Az d»p A3
Ay
Ay 3p
(€))
Qs
Ugp
i a3
Up 3g
I21
Ay Ay Ap
Az
(6)
Ups
Ug|lsy Usgs
I3
I Az 3z
fuy,

S=ag ™ InUy,

)

(12)

Figure 7: Systolic LU factorization for N = 3.

18

¢Us?,

IZl

Similar to our lower-triangular solver, the partitioning due to Equations 15-19 produces
a set, of heterogeneous subproblems. To obtain the most efficient composition of the subprob-
lems, we group, pipeline, and overlap independent subproblems. Unfolding the recursion all
the way to subproblems of size R permits a block-iterative schedule with efficient pipelining.
Analogous to the standard three-fold loop of the LU factorization, we can solve Equation 15
for each pivot block, pipeline the solvers of Equations 16 and 17 for the pivot row and column,
and update the lower right matrix by pipelining the matrix multiplications of Equation 18.
The computation of Equation 19 corresponds to the factorization of the next pivot block.

Efficiency Analysis

We approximate the number of multiply-and-add operations of an N x N LU factorization
by C'(N) ~ N3/3. This approximation neglects an asymptotically insignificant linear term,
if we count divisions as multiply-and-add operations.

To find an efficient schedule for the LU factorization, we apply the methodology that we
introduced for the lower-triangular solver. We unfold the recursive partitioning to the leaves,
where each subproblem has size R x R, and group the individual systolic computations so as
to maximize their overlap. Our block-iterative schedule resembles the standard 3-fold loop
of the LU factorization. For each pivot block k, we factor Ay into Ly, and Uy, apply lower
and upper triangular solvers to compute the L;;, and Uy;, and update the lower right matrix.
The systolic LU factorization requires 4R time steps. The systolic solvers for computing
the (0 — k) matrices Uy; use (0 — k)R time steps plus 2R time steps to start and drain
the pipeline. The computation of the (0 — k) matrices L;, also requires (o0 — k)R time
steps, but 3R time steps to start and drain the pipeline, because matrices A and U enter
the array from the top and the bottom, cf. Figure 8(3), rather than the top and the right,
cf. Figure 8(2). Updating the (o — k) x (0 — k) lower right matrix blocks uses (o —k)?R time
steps plus 3R time steps for starting and draining the pipeline. We may save a few time
steps by overlapping the first and last operations of these phases as follows. We can overlap
the first lower-triangular solver with the preceding LU factorization by R time steps, the
first upper-triangular with the last preceding lower-triangular solver by 2R time steps, the
first update operation and the last preceding upper-triangular solver by R time steps, and
the LU factorization succeeding the last update operation by 2R time steps. The number of
time steps of an N x N LU factorization with o x o blocks of size R x R is then:

Tw(o,R) ~ S 4R
k=1

+§((a—k)R+QR)+§((a—k)R+3R)+§((a—k)2R+3R)

o—1
~Y6R
k=1
1 1 31
= R(50'+ 50"+ o -2).

We observe that for a fixed o, the total number of time steps is T(N) = ©(N) when using
(N/o)? compute processors.

19

2R+ U, 2R+ 2R +
3R+ 3R+ 3R+
T
4R + 4R 4
T T
1 &) @)
T
4R+
Rl Az

|
2R Q_ °T Y

‘ — L,
ol Ty
— L
(e A § T U
3R+
U12
4R+
T
(4) ®)

Figure 8: Phases of stream-structured LU factorization on an R x R array of compute
processors, with N = 2R. In phase 1 we factor A;; into Ly; and U;; according to Equation 15.
In phase 2 we solve Equation 16 for Ujs. In phase 3 we solve Equation 17 for Ls;. In phase 4
we compute Al, according to Equation 18, performing the matrix subtraction on the memory
tiles. Finally, in phase 5 we factor A, according to Equation 19. The shapes of the matrices
indicate how the rows and columns enter the compute array in a staggered fashion.

20

Using a network of size R, P = R* compute processors, and M = 3R memory processors,
the floating-point efficiency of our LU factorization according to Equation 1 is

o3 R
od+3202+30—-6 R+3

Elu (Ua R) ~

Analogous to our treatment of F,,,, and Ej, in Equations 4 and 13, we split £, into two
terms, one of which depends on 0 = N/R, and one depending on the network size R. For
o = 1, the problem reduces to a single systolic LU factorization, and we obtain a compute

efficiency of

1 R

Asymptotically, that is for large R and o, the compute efficiency of our LU factorization on
our DSA approaches the optimal value of 100 %. As for the triangular-solver, when o > 1
we have Ej,(R) =~ R/(R + 3), and we achieve more than 90 % efficiency for R > 27.

7 QR Factorization

We want to factor an M x N matrix A with M > N into two matrices Q and R, such that @)
is an orthogonal M x M matrix, R is an upper triangular M x N matrix, and A = QR.
We assume that the factorization is based on fast Givens rotations [2]. The application of a
fast Givens rotation, expressed as a matrix multiplication, annihilates an element of A. We
call the M x M matrix G(i,j) a fast Givens transformation, if it places value zero in
element (4, 7) of the product G(i,7)" - A, and restrict G(i,7) = (g5;) to the form

J 0
1
J 1 o 17 i:j
.)) o i=gA)=
G(Zaj) -) T) gl]_ 6) i—'l/\j—] (20)
t B 1 ;
0, otherwise.

1

All diagonal elements of G(i, j) have value 1 and all off-diagonal elements have value 0, with
the exception of elements g;; and g;;, which have non-zero values g;; = o and g;; = 5. Given
matrix A = (a;;) and an auxiliary diagonal M x M matrix D = (d;), o and /3 are determined
as o = —aij/ajj, ﬁ = —Oédj/dz', Y = —O!ﬁ, dl = (1 +’)/)dl, and dj = (1 —|—')/)d] Matrix D
allows us to compute a and [without square root operations. We initialize D such that
di=1forl1<i< M.

We apply a series of fast Givens transformations to A to create an upper triangular
matrix. Since transformation G(i,j) annihilates element a;;, we apply MN — N*/2 — N/2
fast Givens transformations with 1 < j < N and j < ¢ < M to triangularize matrix A. Once

21

a particular sequence of fast Givens transformations is chosen, the computation of D and @
must observe this order. We pick a sequence of fast Givens transformations that generates
an upper triangular matrix U by annihilating the elements below the diagonal column-wise
from left to right, and within each column from top to bottom. More succinctly, we apply
the sequence of fast Givens transformations G(2,1), G(3,1), ..., G(M,1) to annihilate all
elements below the diagonal in the first column, proceed by transforming the second column
with G(3,2), G(4,2), ..., G(M,2), and so on up to column N:

GM,N)'---GIN+1,N)T--.G(M,2)"---G(3,2)"G(M,)T ---G(2,1)TA = U.

Since (AB)" = BT A", we can write this product in compact form as*

N M
G'"A=U, where G=1]] [[GG,j).

j=li=j+1

Finally, let us discuss the role of diagonal matrix D briefly. By construction of the fast
Givens transformation, we have GT'G = D. Since D is diagonal, we may split D such that
D = DY2DY2 Then we obtain D~'2GTGD'? = (GD'/*)T(GD~%?) = I, and notice
that GD~'/? is orthogonal. Thus, we may rewrite GTA = U as (D~'/2GT)A = D~'/2U with
the consequence that Q = GD /2 is orthogonal and R = D~Y2U is upper triangular.

Partitioning

We partition the QR factorization according to Equation 21 for M > N. Without loss of
generality, we restrict our discussion to the case where M = 3/2N, such that matrices A;;
and R;; in Equation 21 are N/2 x N/2 matrices.

AH A12 Rll RIZ
Asy A = Q 0 Ry (21)
Az Asp 0 0

This partitioning allows us to formulate the QR factorization as a series of three sub-
problems, defined by Equations 22-24.

A R
Ay = 0 (22)

4We introduce the convention that the product notation defines a sequence of multiplications that corre-
sponds to the sequence of indices in the product such that multiplications with larger indices are applied from
the right, that is we interpret products as right-associative and the matrix multiplication as left-associative
to determine the sequence uniquely. For example,

2 3 2 3
IT II ¢6.h=1] (11 G(m‘)) = (G(2,1)-G(3,1)) - G(3,2).

j=1i=j+1 j=1 \i=j+1

22

A,22 == Q{ A22 (23)

!/

(4] = e() 21

Equations 22-24 enable us to compute the QR factorization by solving three smaller
problems. First, we triangularize columns 1,..., N/2 of A according to Equation 22. As
a result, we obtain R;; and a sequence of fast Givens transformations associated with ma-
trix ;. Next, we update columns N/2 + 1,..., N of A according to Equation 23, which
yields Ry, and the intermediate matrices Af, and A%,. This computation uses the sequence
of fast Givens transformations calculated in the previous step, without computing @)1 ex-
plicitly. Then, we triangularize columns N/2+1,..., N according to Equation 24, resulting
in Ry and the sequence of fast Givens transforrnamons associated with QQ Matrix Q2 is

an N x N submatrix of (). Matrices @), @)1, and @)y are defined in terms of fast Givens
transformations by Equations 25-27:

N/2 M
Qi = HHGZJ) 172 (25)

J=li=j+1
I 00
Q2 = 0 0O = H HG@]) —1/2 (26)
0 2 j=N/2+1i=j+1
Q=010 = H H Gl J) DD~ 1/2 (27)
j=1li=j+1

where D = (d;) and D = (d;) are diagonal M x M matrices. Furthermore, d; = d; for
0 <i< N/2and d; = 1 otherwise, and d; = d; for N/2+1 < i < M and d; = 1 otherwise.
According to common practice, we do not compute the intermediate forms (; and -
of matrix @) in order to triangularize matrix A. Instead, we utilize the sparse structure of
the fast Givens transformation to operate with a highly efficient representation. Recall from
the definition of G(7, j) in Equation 20 that G(i, j) contains only two characteristic values «
and (3. Thus, it suffices to represent G(¢,j) by means of the pair (asj, £;;). In addition to
being a space efficient representation, it is also advantageous for implementing the only two
operations associated with fast Givens rotations, premultiplication and postmultiplication.
We say that we premultiply a matrix A with fast Givens transformation G(i,j) when
forming the product G(i,)T - A, and we postmultiply matrix A when forming the product
A -G(i,7). Due to the structure of G(i,), premultiplication effects rows ¢ and j of A only,
and postmultiplication changes the values in columns ¢ and j of A only, cf. Figure 9.
Premultiplication of an M x M matrix A = (a;;) produces elements aj, = ajx + (5 - i
in row j and af, = ai + o - ajp in row ¢ for 1 < k < M. All other elements of A
remain unchanged by premultiplication. Analogously, postmultiplication results in elements
aj; = agj+Bij-ax; in column j and elements aj; = ag;+a;j-ay; in column 4 for 1 <k < M. All
other elements of A are retained by postmultiplication. We note that both premultiplications

23

—

G(ij) " A: AG(i)):

 —

Figure 9: The product of premultiplication G(i,7)T - A differs from A in rows i and j only,
while the product of postmultiplication A - G(3, j) differs from A in columns ¢ and j only.

and postmultiplications offer various degrees of parallelism. Specifically, we will exploit the
fact that the premultiplications G(i,j)T - A and G(k,1)T - A and postmultiplications A-G (i, j)
and A - G(k,l) are independent for mutually distinct values of i, j, k and .

In summary, the partitioning of Equation 21 permits us to express the computation of
matrix R of the QR factorization as two smaller QR factorizations of Equations 22 and 24
and a sequence of premultiplications with the fast Givens transformations associated with Q7
according to Equation 23. If matrix () is not desired, as may be the case when using the
factorization as part of a linear system solver,); and ()2 do not have to be computed
explicitly. If the () matrix is desired it can be computed by means of postmultiplications
using a partitioning along rows instead of columns.

Decoupling

Our decoupled design for the QR factorization is based on three systolic algorithms, each
using an R x R array of compute processors. The first algorithm performs a systolic Givens
computation by triangularizing an M x R matrix, where M > R; cf. Equation 22 and,
analogously, Equation 24. The systolic Givens computation produces a sequence of fast
Givens transformations G(3, j), each of which is represented by the pair («;j, f;;), and the
corresponding values of diagonal matrix D. The second algorithm implements the update
operation of Equation 23 as a systolic premultiplication of an M x R matrix. The
third algorithm computes matrix) by means of systolic postmultiplications according
to Equations 25-27 on R x M matrices.

Figures 10 and 11 illustrate the systolic Givens computation for triangularizing an M x R
matrix A, where M > R. Columns of matrix A enter the array at the top. In addition,
the elements of diagonal matrix D enter the array by interleaving them with the leftmost
column of matrix A. The resulting upper-triangular matrix R leaves the array at the bottom.

Furthermore, the Givens computation yields a sequence of pairs (o, f;;) and a sequence of
~1/2

; that leave the array on the right. In addition, intermediate values® of

values 9; = d
0; leave the array at the bottom of processor pgi; for example dff’) in time step 25. The
diagonal processors p;; of the array compute the sequence of pairs («;, 3;;) for the entire

column j, that is for all rows ¢ with j < ¢ < M. In addition, these processors compute value

d(n)

sy Uy

M 42 4®

®We denote the sequence of n updates of diagonal element d; as: d;, d; , and, finally,

compute 6; = 1/4/ dEn). Similarly, upper triangular element r;; (i < j) evolves from a;; via a sequence of n

(1) (2) (n) (n)

intermediate values: ajj, u;;’, w;;", - Ui, Tij = diug;

24

d, ax Ay
A ' d, 8 ' Ay
Ay ' ds s A3
C¥E ' dy g
. Ag3 ay
ds as, . Ay .
ag . ds as, . ag,
ay . d, as, . ag,
Az ' ds Az
Az ag
d, ax ag . Ay .
Ay a;, . d, ay, a . P
d, Ay g d, Az ay3 Ay
an d, Ay aj, d, Ay Ay
Ay
0z,
ap a;p d; a;y dyjap,

) @ ©) Q)

Az
d, a, . A3
a . d, ay A5
. Ay . d, s Q43
. Ay ' d, s
. gy Ay
ds a3 . . ass
ag . ds Az . a3
. as; . d, as, . ag
Az . ds as
Az Az
ay 2|8 oy Ay Op | 8p Poi| @ O ay PBa A B Oy Y21 B
B 2| ugy Yo Ba| uf | ug @ Ta ug | 9 ns
a; d|ap g a; djap [EE] ap d; |ufy [EE] u d; ufy u@
Yo Y1
dy
d, ufy d, ug ufd d, usy ufy
(%) (6) () (8)
Ay
d, ay, . g ay,
Ay ' 4 g a3
ay . d, a,, Ay,
ay . d, s
. ag3 Az
ds Az, Ay .
Az A d, | @2 Oa1 A3 O (3 Pglag O Az Py az; PBa
Oa1 Bar om| U8 Yar By | u@ u§y u@ ya u@ [%
ufp dfjuf ufy ufp df|uf ufy ufp df?juf ufy ufp dfju ufy
ug Yo [Uf ufd
dg Ogp
uf) dfjuf uf) dfjuf ds uf) dfjuf ds uf) dP jufy
9) (10) (11) (12)

Figure 10: Systolic Givens computation for an M x R matrix, where M > R. We show
the triangularization of a 4 x 3 matrix A, such that R = D=2 G(4,3)" G(4,2)" G(3,2)"
G(4,1)" G(3,1)" G(2,1)" - A. The fast Givens transformation G(i,j) is represented by the
pair (a;;, Bi;), and 6; = a2, [continued in Figure 11]

25

d, a,, Q43
an ' ds A4 ' Q43
d(Z)Y 31 jﬁ . a4 Ay d; |8g (1)0‘41 41 Olyg | Ay (3)[341 Q43 (1)0‘41
1 Ogy Bar oy | Uiz Ya Ban| Y12 uzg
uf df|u® ufd ufp dPuf ufy uf dfju ufd ufp dPuf ufy
ufd dPuf) os ufl o5 |uld B ufd Ba 8 ufd Vs
oL
Ba Oz ugy Y Ba uf 2 uf Ve 52 df
uf) dP jufd uf) dijuf) uf) dPuf d, uf d|ug)
Y32
dy
o |ug @ g wg ag
(13) (14) (15) (16)
ay Ba 43 B o Ya) 1
o o ug "t | ap S
uf df|u ufy uf dPju uf uf dfP|u uf® uf U(l? uf
Yar [UR u® u dPuR o, u@ o [ul B Oy ufd B
d@ Oy B Oz u@ Yoo Ba ug) = us) Ya
ds uf dfug uf df|uf uf dfjuf) uf df
u@ Yoo [UR dP
d@ Olyg
ug g ug ap o g ap @ g
an (18) 19
(19) (20)
3, 8, 3,
12 M3 [IPT) |
uf uf uf
Y42 [P ry, 9, s 9,
LT dg) 82 M2 M2 Fas
u$) dfjuf) uf) dP|uf ug) usl uf)
u ap| N vou 0T B 7o
Bz Oty = r, Yas PBas > dP U v I, d§
a® g op a9 g ap -l g
LIEEY
(21) (22) (23) (24)
3,
Fas |77
r d§ s 3, ds
[3, ly |— s
ug ug)
¢d23) ¢r12 ¢r22 ¢r13 wzs ¢r33
(25) (26) 27) (28)

Figure 11: Continuation of Figure 10.

26

~ij = —ou; Bij, which is used to update elements d" ™ = (147,;;)d\™ and d§"+1) = (1+%-j)d§-")
of diagonal matrix D. After all updates are applied, we compute §; = 1/\/@ The updates
of the diagonal elements are scheduled on either the diagonal or subdiagonal processors of
the array.

The systolic Givens computation involves a relatively large number of operations even
for the small 4 x 3 example in Figures 10 and 11. Therefore, rather then discussing the
computation of a particular element, we describe the data flow through the array at a higher
level. As mentioned before, the processors on the diagonal of the array are responsible
for computing the fast Givens transformations. In particular, processor p;; computes the
transformations G(2, 1) during time steps 4-8, G/(3,1) during time steps 9-13, and G(4, 1)
during time steps 14-18. For example, transformation G(2, 1) involves computing as; in time
step 4, (91 in time step 5, 791 in time step 6, and updating the diagonal elements d; and dy
during time step 8 on the diagonal and subdiagonal processors p;; and py;. Analogously, the
fast Givens transformations G(3,2), and G(4,2) are computed on processor ps; with support
of ps3y during time steps 12-21, and G(4, 3) on processor ps3 during time steps 20-25.

The systolic Givens computation in Figures 10 and 11 produces an upper triangular
3 x 3 matrix by computing the premultiplications with the fast Givens transformations. All
updates due to premultiplications occur on the upper triangular processors of the array.
They generate the elements r;; (i < j) via a sequence of intermediate values: a;;, ugjl-), ug ,

s ugb), i = 5iugb). Recall that the updates of diagonal element §; involve multiplications
with (14;;) for i > j and with (1+7;;) for ¢ < j. The systolic Givens computation according
to Equation 22 will therefore generate intermediate values of ¢;, that require further updates
when computing Equation 24. In Figure 11, only one intermediate value, df), is produced,
which leaves the array at the bottom of ps; at time step 25. It will enter the array again, as
explained during the discussion of Figure 16 below.

Figures 12 and 13 illustrate the systolic premultiplication, which updates matrix A ac-
cording to Equation 23. This update uses the pair-representation of the Givens transfor-
mations, so that matrix @7 does not have to be computed explicitly. The systolic array
produces the R x R matrix Ry and the (M — R) x R matrix (A, A},)" of Equation 23.
Columns of matrix A enter the array at the top, and the pairs («;;, 8;;) of fast Givens trans-
formation G(i,j) as well as the diagonal elements of matrix D /2 enter the array from
the right. Processor p;; computes element r;; of matrix Ri5. The elements of matrices R,
and (A}, A%,)" leave the array at the bottom such that the values of (A%, Aj,)" precede
those of Rys.

Compared to the systolic Givens computation, the data flow through the array in Fig-
ures 12 and 13 is relatively straightforward. We show the systolic premultiplication of a 4 x 3
matrix A. According to Equation 23, the premultiplication for this particular example is:

2)~ Do) 0,276,276 1)T6E,)TER)T | 42),
A 29 A22

where the multiplications are executed from right to left. For example, consider the compu-

tation of element rq;. Its value is determined by the premultiplications with G(2, 1), G(3,1),

and G(4, 1), generating a sequence of intermediate values a1, uﬁ’, uﬁ), uﬁ), and finally r;:

27

s an
Az Qg3 . YA
Az . X Ay
asx Az . as
a; a5 . ay Agg
g Az an azn
a3 a A
a21B21 Otgy Bag Oty By 84 0Olyy B1 Otay Bag Oty Bay 64
13
Otgp Bap 042 B2 82 s 05 PaapBapd,
- O3 Basds e e 0yaBasds
1) 2
an
. g Ay
gz . Ay . s
as . as Ay
Az Ags . as
an an . an Ags
Az Oy Az O | 823 Py 5
u By Oar Bas 0ay Bar 81 u®) Oty Ba1 0ay Bar 81
23 22 13
aip 13 an a1 13
- 05 B30y B 8
. Oy Bar0yp Baz 82
() B Y P
ufy
- O4gPysds
3) 4)
an
. g asn
as . Ay : Ay
Az . az A3
Ay O | 822 Ppr| sz Oy Ay Par| 32 04|z Ba
u | ug | ug (BacaBads u | ug | u@ (GaPad
q 6)
an i u@d an u@ ufy
ugd o
OC32632 Oty Baz 82 ngg) Bgp Olaz Bsd,

- O3 Pasds - 0y3Pasds

®) (6)

Figure 12: Systolic premultiplication for computing R and update A according to Equa-
tion 23. [continued in Figure 13]

28

an
. Ay an
Qs O3 |82 Py |ds; Oy Ay Par| Qs Ouy| Ass Par a4 Oyl Ba 3
1 2 1 2 1 3 1 3
ufp uf afd [Bud: uf? afy ug |% afy uf? I3
1 2 1 2 2 2 3
ufy ufy ufy ufy u® uf3 uf ufy uf?
1 0 i 1 1 0 1 1
ufd oy, (U B uf) o |US Bay |l o uf) B |ald oy, (al PBa
2 2 2 2 2 2 2 3
uf3 uf oy, Ba 8 uf u® af [P0) af) uf |5,
ug ud usd uw ug u2 ug u? ug
2
af
. O3 Pasds 0Oly3Bas O3 Ay |Bas®s
2 2 2 2, 2, 2,
ug w9 |ug o Jug ug
(@) ®) ©)
ay, Pa S, 3
uf TS M
3 3
uf uf?
1 1 1
af) og|af) Pa|ris O, af) Bu|rn o, ra 8,
afy u l23 uf? M2 23 M l2
2 2 3 2 3 3
ugp ug u$? ug) ug) uf)
2 @ 2 2 2
a) ogz@E Pa af) oy3|aB Pus|ris Os a@ Baa|re 83(ry
Ay ug |3, ay u§ I3 uf? I3 I3
2 2 2 2 2 3 2 3
ugp ug ugy ugy ufy ugy uf u$)
! al, ! ay, f al, .
(10) (12) (12)
)
11 83| ry M
I3 M3 33 a1 I3 s
3
us?
¢r12 ¢r23 ¢I’11 ¢r22 ¢r33 ¢r21 ¢r32
(13) (14) (15)
¢ L
(16)

Figure 13: Continuation of Figure 12.

29

Uﬁ) = a1 + Bar - s, Uﬁ) = Uﬁ) + B31 - as1, Uﬁ) = Uﬁ) + Bar - @ar, 11 = 0y - Uu) In Figures 12

and 13, each of these updates is computed by processor p;;. The values of the first column
of A enter py; from the top. The («, 3)-pairs associated with the fast Givens transformations
G(2,1), G(3,1), and G(4,1) enter p;; from the right. Values ay; and [are available for
the first update at p;; during time step 6, resulting in uﬁ) The second update occurs at
time step 8, and the third at time step 10. At time step 11, diagonal element §; arrives at
processor pi1, resulting in the computation of ;. Thereafter, r; travels downwards through
the array, one processor per time step, until it leaves the array at the bottom of processor p3;
at time step 14.

The computations of elements a;; for i > R are analogous to those of the r;;. For example,
the computation of @}, produces the sequence of intermediate values: a4, afﬂ) = Q41+ Q41011
afl) = aflll) + a42ugll), ay, = afl) + a43u§21). The corresponding updates occur at time step 9 on
processor pyp, time step 10 on processor po;, and time step 11 on processor ps;. Element al,
leaves the array at the bottom of processor p3; at time step 12.

Figures 14 and 15 illustrate the systolic postmultiplication, which computes matrix @)
of the QR factorization according to Equation 27 by postmultiplying the sequence of fast
Givens transformations into the identity matrix. Here, we denote intermediate values of G
as Q' according to

(Qu @ ’13):(100)(1111(;”) HL2

j=li=j+1

where (17 is an R x R submatrix of @, @}, and Q5 are R x R matrices of intermediate values,
and [is an R x R identity matrix. The R x R array of compute processors in Figures 14
and 15 generates an R x M block of rows at a time, where M > R. Matrix G = (g;5),
which is initially the M x M identity matrix, enters the processor array at the top. The
fast Givens transformations are represented by their (e, B)-pairs, and enter the array from
the right. The diagonal elements of matrix D~1/2 enter the array from the right following
the fast Givens transformations. Matrices @11, @, and @5 leave the array at the bottom,
such that processor pg; emits row i of matrix (Q; @}, @}3), and the values of @)}, and Q'
precede those of (1.

Processor p;; of the array computes element ¢;; of Q1;. For example, consider the com-
putation of element ¢y7, which results from postmultiplications with G(2,1), G(3,1), and
G(4,1). Starting with gy;, processor p;; generates the sequence of intermediate values:
gﬁ) = g1 + Ba1912, 98) = gﬁ) + B31913, gﬁ) = gﬁ) + Bu1914, and finally ¢, = 5195?- The
first update occurs on processor pi; at time step 6, the second at time step 8, the third at

time step 10, and the computation of ¢;; at time step 11. The intermediate values gl() for

Jj > R are computed before the elements of (J1;. In Figure 15, these are the values gh), 954),
and g34 We note that the number of updates involving zero-elements of the initial matrix
G = I is asymptotically insignificant compared to the total number of updates. Hence, we
leave the updates involving zero-elements in the computation to keep the systolic array as
simple as possible.

We are now ready to compose our three systolic algorithms for fast Givens computa-

tion, premultiplication, and postmultiplication, and discuss the decoupled data flow of the

30

' 924
913 . O34
) 923 '
912 . O3z
du 92 .
. O [¢EN)
. a1
1
EV
. 924
J13 . [eEN
. J23 .
912 . 933
9u 922 .
O3 Oy
9%
921 9a1
3
914
. 924
J13 . Jas
. 923 .
O O21(9y Bar|Qs Oa
9% 9% 9%
9u 921 oy
9% 9¥

Figure 14:

(®)

« Oty Bor Otay Bag 0y Bar 81

Olgp B3z 0a2 Baz 82

By Oar Bar 0y Bar 81

- 0B 042 Bar 8

- 03B 0s

By 01 Bar 1

Olgy Bar 0ty Bar 8,

. 043Pus0;

« Oz Pagds

G4
. 924
913 . G34
. 923 .
912 . J33
du 922 .
. 921 932
93
2
G914
. 924
J13 . Ja4
. 923 .
912 . 933
92 O |9y Ba
9% 9%
9u 921 9a1
9%
4)
CEV
. 924
913 . 934
912 PBa|02z Oa1|gss Ba
9f? 953 9%
9u 9 &
9% o
9%
993 9% 9%

Olpy P21 Otag Bag 0tr Bar 84

0Olg2 B3z 042 Ba2

. O4gPasds

Olgy Bai 0ty Bar 84

. O Pap 042 Baz 8

- 0y3PBu 83

Olyq Bar 1

Y32 0z Ba2 82

- 03483

(6)

Systolic postmultiplication for computing an R x M block of @

I1G(2,1)G(3,1)G(4,1)G(3,2)G(4,2)G(4,3) D™1/2. [continued in Figure 15]

31

J24 J14
O13 Oa1(Ups Pz (Oas O 013 PBa|924 01|93 Bas O1s O41 (924 Ba 3
o | of | off [Pad ® | o | o9 | @ | o | am
9ff 9% 9% aff 9% 9 9fd 9% 9§
0% 05|95 Bz 0¥ 04|99 B |9 o4 ¥ Bax|9% 04 |9% B
08 | gf |G 98 | o8 | of |Ped: o | o8 | o9 |*
ot)7} 9% 9% e} 99)} 9% 99
0§ Oa
« O3 Bus s 05 B43 83 g§) Basds
9% 9 9% 9} 98 9%
(7 ® 9
914 Ba 8, 3,
9 d21 qu
9 |op 9
g9} oy 9% Baz|dar 32 99 Ba|dn 9, du 98,
g (o} O3z 99 d22 Gz Q12 92
of? 9% 9 9 9%)}
g8 O3 |gQ Bas g® 043 |gR Baz|diz O3 99 Ba|9xn 03|ds
98 99 |5 of) 9 s 9® Uzs Qas
9} 9% 9% 9%y 9% 9% 9} 98
199 108 o) 1
(10) (11) (12)
Q12
Qi 03|y A1z
Qi3 Q23 O33 Qi3 Q23 Gi3
o}
¢Q12 ¢Q32 ¢Q11 ¢Q22 ¢q33 ¢Q12 ¢QZ3
(13) (14) (15)
fass
(16)

Figure 15: Continuation of Figure 14.

32

complete QR factorization. Figure 16 shows the twelve systolic computations needed to
compute both) and R of an M x N matrix A for M = 3R and N = 2R on an R X R array
of compute processors. In addition, 3R memory processors are required on the periphery
of the compute array. We use two fast Givens computations to compute Ryy, Rso, and the
corresponding fast Givens transformations in phase 1 according to Equation 22 and phase 3
according to Equation 24, respectively. Phase 2 implements the premultiplication according
to Equation 23. The remaining phases use the postmultiplication to compute matrix). In
particular, matrix); of Equation 25 is computed during phases 4-6, one R x M row block
per phase, and matrix) is computed during phases 7-12.

The fast Givens computation of phase 3 is reflected about the horizontal axis, when
compared to our presentation in Figures 10 and 11. This reflected version of the systolic
algorithm allows us to stream the results of the premultiplication from phase 2 right back
into the array. Similarly, we use reflected versions of the postmultiplication during phases 7
9. We note that the computation of R is finished after phase 3. Thus, for linear system
solvers that do not require knowledge of (), we could stop the computation after these three
phases. Phases 7-12 for the computation of () deserve further discussion, because our imple-
mentation deviates slightly from Equations 25-27. Rather than computing (), explicitly, we
postmultiply); with the corresponding fast Givens transformations directly. However, these
postmultiplications apply to the right-most M x (M — R) submatrix of ¢); only, as shown in
phases 7-9. Finally, the right-most column block (Q7; Qb Q%) of the intermediate matrix
must be multiplied by D~/2? according to Equation 26. This multiplication is implemented
in phases 10-12. Matrix () is now available in parts on the memory processors at the top
and in parts at the bottom of the machine.

Analogous to our other stream algorithms, the partitioning due to Equations 22-26 pro-
duces a set of heterogeneous subproblems. We reduce the QR factorization of size M x N
until the subproblems can be computed on an R x R array of compute processors. Figure 16
represents the data movement when computing the systolic subproblems of Equations 22—
27. We use R memory processors at the top of the array to buffer the columns of A and
intermediate results, another R at the bottom of the array for the rows of () and columns
of R, and R more to the right of the array for storing Givens transformations. Thus, our de-
coupled systolic QR factorization requires P = R? compute processors and M = 3R memory
processors. We observe that M = o(P) and thus our QR factorization is decoupling efficient.

Efficiency Analysis

In the following, we analyze the efficiency of computing R and () of an M x N matrix A
separately, because the computation of () is optional. To handle the general case where
M > N, we introduce two o-values o, = M/R and oy = N/R with network size R. We
approximate the number of multiply-and-add operations for computing matrix R by means
of fast Givens transformations as Cr(M, N) ~ N*(M — N/3). This approximation neglects
an asymptotically insignificant quadratic term that includes division operations and a linear
term including square-root operations.

We begin by analyzing the number of time steps for the computation of matrix R. We
apply the methodology used for the lower-triangular solver and the LU factorization, by

33

A 31 A 32
A 21 A 22
A 11 A 12
N N R N
D G(M,N/2)...G(2,1) G(2,1)...G(M,N/2) D z G(2,1)...G(M,N/2) D
e N
Ry D G(M,N)...G(N/2+1,N/2) Qu
R 11 ,
A A2 Q'
Az Az Q3
1) 2 3) 4)
Q 12 Q 2
G(2.1)..GM,N/2) D G(2,1)..GMN2) D Q1 Qs
NN - -
Q. Qu G(N/2+1,N/2)...G(M,N) D G(N/2+1,N/2)...G(M,N) D
Q2 Qs Qi Q2
Q23 Qi3 les Qs
%) (6) (7 (8)
Q3
Q33

G(N/2+1,N/2)...G(M,N) D

A’F

Q32

Q’33
9) (10) 1) (12)

Figure 16: Phases of a stream-structured QR factorization on an R x R array of compute
processors, with M = 3R and N = 2R. In phase 1, we triangularize the left-most N/2
columns of A, producing R;; and a set of fast Givens transformations as expressed in Equa-
tion 22. In phase 2, we apply the Givens transformations to the right-most N/2 columns
of A giving us Ryy, A),, and A%, according to Equation 23. In phase 3, we triangularize
the right-most columns of A according to Equation 24. Phases 4-6 compute (); according
to Equation 25, while phases 7-12 compute) = Q1@ according to Equation 27. Note
that phases 3 and 7-12 can be modified without loss of efficiency, so that matrix () is not
distributed across the top and bottom rows of memory processors, but would be available
on one side only.

34

partitioning the problem recursively until matrix A consists of o); X o blocks of size R x R.
Equation 28 illustrates the factorization for o)y = 5 and oy = 4.

An A Az Au Riy Ry Riz Ru
Agr A Ay Ay 0 Ry Ry Ro
Az Az Asy Ay = @ 0 0 R Rs (28)
An Ap A Au 0 0 0 Ry

To facilitate the efficiency analysis, we discuss our block-iterative schedule in detail. Our
partitioning in Equations 22-24 extends to the 5 x 4 case as follows. The factorization sweeps
across pivot blocks from top left to bottom right. For each pivot block, we triangularize and
update. First, we annihilate all lower-triangular elements in the pivot column using a systolic
fast Givens computation. Then, we update the column blocks to the right of the pivot
column by means of premultiplications, cf. phases 1 and 2 in Figure 16. In our example of
Equation 28, we first annihilate all lower-triangular elements in column block A4;;. Second, we
premultiply the 5x 3 block matrix consisting of column blocks (A;y Az Ajq) for 1 < i < 5. We
apply our systolic premultiplication once to each of these column blocks separately. We then
proceed with triangularizing column block A;s. The subsequent premultiplication effects the
matrix (A;3 Ayy) for 2 <i <5, that is excluding the top row. Similarly, after triangularizing
column block A;3, the subsequent premultiplication effects matrix (Ayy Asq)” only. Figure 17
shows the areas of matrix A that are effected by the fast Givens computation (a) and the
premultiplication (b) when handling column block .

e ||
x
T
i T | T
x x
& &
' ;
R (6, R
(a) (b)

Figure 17: (a) The fast Givens computation of Equation 22 (or Equation 24) for column
block i effects the bottom (o — i+ 1)R rows. (b) After triangularizing column block i, we
update the (o) — i+ 1)R X (o5 — i) R submatrix of A according to Equation 23.

We now consider the general case where A is a o), X oy matrix. The behavior of the

systolic fast Givens computation shown in Figures 10 and 11 is as follows. The critical path
is determined by the computations of the processors on the diagonal of the array. Processor

35

prr requires 5 time steps to compute «, (3, 7, and intermediate values of dp and wug; for
each Givens transformation. Thus, the fast Givens transformation of column block 7 uses
5(op — i + 1)R time steps. In addition, starting up the pipeline takes 5R time steps and
draining 10R time steps, resulting in a total of 5(oy; — i + 1)R + 15R time steps.

The number of time steps for the premultiplications associated with column block 7 can
be counted as follows. The systolic premultiplication requires 2 time steps per output value
according to Figures 12 and 13. For (o —i) column blocks and with (o3, —i4 1) row blocks
each, the premultiplication takes (on — i) - 2(opr — @ + 1) R time steps. In addition, starting
the pipeline requires 2R time steps and draining 4R time steps for a total of 2(on — i) (o —
i+ 1)R + 6R time steps.

The number of time steps for computing upper-triangular matrix R of the stream-
structured QR factorization is summed up as follows. For a o), x on block matrix A
with block size R x R on a network of size R, where the postmultiplication can overlap the
preceding fast Givens computation by R time steps, we have

oN
TT(O'M,O'N,R) ~ Z5(UM—Z+1)R+15R
i=1
ony—1

+ Z 2(on —i)(opy —i+ 1)R+6R
=1
on—1

-2 R
=1
3., 101

1
= R(o%om — ga?\, + doyon — 20N+ & N~ 5).

Using a network of size R, P = R? compute processors, and M = 3R memory proces-
sors, the floating-point efficiency of the computation of upper triangular matrix R of the
QR factorization is

2 1.3
oNOM — 30N R

E-(om,on, R) =~ o%om — 30% +doyon — 30k + oy — 5 "R+3
Asymptotically, that is for large network size R, o,;, and oy, the compute efficiency ap-
proaches the optimal value of 100%. As for the triangular-solver and LU factorization,
when oy,0n > 1 we have E.(R) ~ R/(R + 3), and we achieve more than 90 % efficiency
for R > 27.

We now turn to the efficiency analysis of the computation of matrix () of the QR factor-
ization. The number of multiply-and-add operations is Co(M, N) = 2M*N — M N — M N?.
We use a block-iterative schedule to overlap and pipeline the systolic postmultiplications.
We partition the problem recursively until () is a o, X o block matrix, and each block is
a R x R matrix. The postmultiplications associated with column block 7 of @) also effect the
all column blocks 7 + 1,..., 0 to the right of i, as shown in Figure 18. We apply our sys-
tolic postmultiplication to individual row blocks. Thus, the computation of column block ¢
applies o systolic postmultiplications to a row block of size R X (op — i + 1)R. According
to Figures 14 and 15, the computation of each output value requires 2 time steps. Therefore,

36

the number of time steps for postmultiplying o,; row blocks associated with column block ¢
is 2Rop (o — @+ 1). With a startup time of the systolic postmultiplication of 2R time
steps, and a drainage time of 4R time steps, the number of time steps for column block 7 is

9R

-

(GM— i+1)R

Figure 18: We compute column block 7 of M x M matrix) by partitioning the computation
into oy, row blocks, each with R rows and (o) — i + 1)R columns. Each row block is
computed using a systolic postmultiplication. After the postmultiplication, the hatched area
of the matrix holds the final values of (), while the shaded area comprises intermediate
values.

We obtain the number of time steps for computing matrix @) of the QR factorization of
an M x N matrix A by summing up the number of time steps for each update of matrix Q).
Matrix () is updated once for each set of Givens transformations produced by the systolic
Givens computation array, and there are oy sets of Givens transformations. We can save
2R time steps per column block by overlapping consecutive computations.

oN ony—1

Tylom,on,R) = > (2Rom(om —i+1) +6R) — Z 2R

=1

= R (20]2\/101\; — O’ZZVO'M +onoy +4ony + 2)

Using a network of size R, P = R? compute processors, and M = 3R memory processors,
the floating-point efficiency of computing matrix @) of the QR-factorization is

202, 0N — 0% 0N — OMON R

Eqlons, on, F) 202,05 — 050y + OOy + 4oy +2 R+ 3
Asymptotically, that is for large network sizes R, o, and oy, the compute efficiency of
computing matrix () matrix approaches the optimal value of 100 %. When o), on > 1, we
have E,(R) = R/(R + 3), and we achieve more than 90 % efficiency for R > 27.

The number of time steps and efficiency of the entire QR factorization involves the
computation of both R and subsequently). The number of multiply-and-add operations
is C(M,N) = Cr(M,N) + Co(M,N) ~ 2M*N — N3/3. The number of time steps for
computing R and () is the sum of the time steps for the individual computations:

1 3 125
Tqr(O'M,O'N,R) ~ R<2O'%/[O'N - gO’?v—i‘E)O'MO'N — EO-ZQV_F?O.N —3> .

37

Using a network of size R, P = R? compute processors, and M = 3R memory processors,
the floating-point efficiency of our stream-structured QR factorization is

2 1.3
2000n — 30N R

E, (oy,on, R ' '
r(Ow o) o 1ok + sowax — 4ok + oy 3 R+ 3

For o), = on = 1, the problem reduces to a single systolic QR factorization, and we obtain
a compute efficiency of

5 R

69 R+3

The expressions for execution time and compute efficiency are easier to comprehend when

considering a square matrix A of dimension N x N. Then, o), = oy, and we can express
the execution time and efficiency as a function of 0 = oy = on and R:

Ey(oy =108 =1,R) =

5 7 125
Ty(o,R) ~ R <§a3 + 50—2 + 50 3)
and
o3 R
E,(0,R) ~ . .
(0, B) 0+ %02 +20-2 R+3

We note that for a fixed o, the QR factorization of an N x N matrix requires T'(N) =
(302 + 204+ 25 — 3/0)N = O(N) time steps with (N/o)? compute processors.

8 Convolution

The convolution of vector a of length M with vector w of length N produces an output
vector b of length M + N —1. Without loss of generality, we assume that M > N. Element &
of b is given by

b, = Z a;j - Wj (29)

i+j=k+1
where
1< k <M+N-1
1< @ <M
1< j <N
Partitioning

We partition the convolution into N/R subproblems by partitioning the sum in Equation 29
as follows:

N/R
by = Z Z a; -+ Wj (30)
I=1 itj=k+1

38

where

1< k <M+R-1
1< i <M
(l-1)R+1< j <IR+1.

This partitioning expresses the convolution of @ and w as the sum of convolutions of a with
N/R weight vectors w;. Intuitively, we partition weight vector w into chunks of length R,
compute the partial convolutions, and exploit the associativity of the addition to form the
sum of the partial convolutions when convenient.

Decoupling

We use the systolic design of Figure 19 to implement a convolution with N = R. This design
is independent of the length M of vector a. For the example in Figure 19 we have chosen
N = R =4 and M = 5. Both vector a and weight vector w enter the array from the left,
and output vector b leaves the array on the right. Compute processor p; is responsible for
storing element w; of the weight vector. Thus, the stream of elements w; folds over on the
way from left to right through the array. In contrast, vector a streams from left to right
without folding over. During each time step, the compute processors multiply their local
value w; with the element of a; arriving from the left, add the product to an intermediate
value of b, that is also received from the left, and send the new intermediate value to the
right. The elements of b leave the array on the right.

b, b b; b,
b, bl | by
W, Wy W, Wy W, Wy W, Wy W, Ws Wy W, W Wy W Wy
asa,asa,a, asa, aza,a, asa, asa,a, as ayaz a,a,
D 2 ®) 4)
bl b2 bl bZ b, b2 b2 b b b,
bl | b, | by bl | b2 | b, |—b; b | b2 | by | —b; b2 | b} |—bs
Wy W, | W, Wy W (W, W, Wy W W, (W W, W W, Wy (W,
asla, asla, a, as aslas a,a, asla, asa, a, as aslas a,a,
®) (6) (M (8
by b b7 bs b, bg
bl | b |—>b, b2 |—Dbs bl |—bs —=b,
wW, (W (W, wW, W (W, wW, (W (W, wW, W (W,
as|a, agla, a, as asasa, asla, ag as ay)
€) (10) (11) (12)

Figure 19: Systolic convolution of input sequence a; of length M = 5 with N = 4 weights w;.
Both the weights and input sequence are fed into the linear array of R = 4 compute proces-
sors. Intermediate results are shown above the corresponding processors. Value b}, represents
an intermediate value of by after the first ¢+ products have been computed according to Equa-
tion 29.

We illustrate the data movement in Figure 19 by discussing the computation of b, =
aswy + azwy + asws + a;wy. We begin with time step 5 in Figure 19 when element ay

39

enters processor p; on the left. Element w, is already resident. Processor p; computes the
intermediate value b} = a4 - wy, and sends it to processor p,. At time step 6, p, receives as
and b} from processor p; on the left. With weight w, already resident, processor p, computes
intermediate value b3 = bl + a3 - wo. In time step 7, values b3, ap, and w3 are available for
use by processor ps. It computes and sends intermediate value b3 = b? + ay - w3 towards
processor py. At time step 8, py receives b3, a;, and w4 from ps, and computes by = b3 +a;-wy.
At time step 9, by exits the compute array.

We use the partitioning of Equation 30 to reduce a convolution with a weight vector
of length N into N/R systolic convolutions that match network size R of a linear array of
compute processors. In addition, we employ one memory processor on the left of the array
to buffer vectors @ and w, and another memory processor on the right of the array to store
intermediate values of the computation as well as to compute the sum of the subproblems.
Figure 20 illustrates the computation of a convolution on a linear processor array. Our
decoupled systolic convolution requires P = R compute processors and M = 2 memory
processors. We observe that M = o(P) and, therefore, our convolution is decoupling efficient.

b, b3t b3* b,
b, b3 | by
Wy W, |Wy Wy W, Wy W,
a, a, |a, a; |a,a, a, |a;a,la,
@) @) (4)
b; bi? bt bi? b3 bi? b3t bt
bi*| b, b3t | b3? bi! | b2 b3' | bi? |b3?
W W, Ws | Wy Wy (W (W, 2 Wa Wy W bi?
as |a,a;a, a, |asa,la, a, |a,aga, a; |a,a,a,
(®) (6) () (@)
b2' b3? b, b2* b2* b, b21 b2? by b, b
b3t |, b3t bi? b2! |, b3? b2* |, b2? b2! |, b3?
w, w, [Tpielpie w, w, [Tpie|pee w, w, [pie W w, [pit
a; |3z, bt A5 |34833, bt a5 34/a3 bt as)a4
9) (10) 11) (12)
bg
b; bg
Wy
as
(13) (14

Figure 20: Stream convolution of an input sequence of length M = 5 with N = 4 weights
on a linear array of R = N/2 = 2 compute processors and M = 2 memory processors. Value
bfc’l represents the computation of b, when the outer summation of Equation 30 has been
executed [times and the inner summation has been executed ¢ times. Note that the memory
tile on the right performs an addition to accumulate the results of the partial convolutions.

40

Efficiency Analysis

The number of multiply-and-add operations in the convolution of a sequence a of length M
with a weight sequence w of length N is C'(M, N) = M N. On a linear network of size R with
P(R) = R compute processors and M = 2 memory processors, we partition the computation
into 0 = N/R subproblems, each of which is a convolution of sequence a of length M with
weight sequence w of length R. These subproblems overlap perfectly, as is obvious from
Figure 20.

We account for the time steps of the convolution as follows. There are o = N/ R systolic
convolutions on a linear array of R compute processors that pipeline perfectly. Each of the
systolic convolutions requires M + R time steps to stream a sequence of length M through
an array of size R, and because each processor executes one multiply-and-add operation per
time step. Due to the perfect overlap of subsequent systolic convolutions, the R time steps
needed to drain the pipeline are incurred only once. Thus, the number of time steps is:

Teonv(0, R) = oM + R.

Using a linear network of size R consisting of P = R compute processors and M = 2 memory

processors, the floating-point efficiency of the convolution is:
o? R

02+ N/M R+2

Econw(0,R) = (31)
Given our assumption that M > N, we have N/M < 1, and the efficiency of our stream-
structured convolution approaches the optimal value of 100 % for large values of o and R.
Thus, for ¢ > 1, we have E.u, &~ R/(R + 2) and obtain more than 90 % efficiency for
R > 18. For N = R or, equivalently, o = 1, the stream convolution reduces to a systolic
convolution with a compute efficiency of

1 R
1+N/M R+2

Econu(a - 17 R) -

We note that for N = M the efficiency of the systolic convolution has an upper bound of
50 %. Our stream convolution defies this upper bound provided that o is sufficiently large.

9 Conclusion

We have studied the feasibility of highly efficient computation on tiled architectures. Because
these architectures are constrained by short wires, we found that systolic computation, which
considers both architecture and algorithms simultaneously, proves invaluable even with to-
day’s microtechnology. We developed stream algorithms together with a decoupled systolic
architecture as a means to exploit the similarity between systolic arrays and tiled architec-
tures. In addition, we discovered that for many regular applications decoupling memory
accesses from computation allows us to move load and store operations off the critical path.
The resulting reduction of the critical-path length enables us to increase efficiency by in-
creasing the number of processors, and even approach 100 % compute efficiency in the limit.

41

Unlike systolic arrays, our decoupled systolic architecture allows us to execute programmed
stream algorithms of arbitrary problem size on a constant-sized machine. In contrast to
contemporary parallel RISC architectures, our decoupled systolic architecture enables us to
increase efficiency by increasing the number of processors.

Application P(R) | M(R) | S T(o,R) E(o,R)
matrix mult. R? 2R 9 o3R + 3R zrg—j»?)) RL;2
triangular solver | R? 3R | 9 (03 + 0% + 60 — 2) Mdgiiﬁaﬂ e
LU factorization || R? 3R | 9 | R(30*+ 302+ 30 -2) Wi’%) 1?%3
QR factorization | R? 3R | 22| R(30% + L0 + 1220 — 3) W : RL;3
convolution R 2 11 oM + R U2+";/M . 1?%2

Table 1: Summary of stream algorithms. We show the number of compute processors P,
number of memory processors M, and the bounded amount of storage for local variables
per compute processor S. In addition, we compare the execution time 7" and compute
efficiency F.

We presented five concrete examples of stream algorithms for a matrix multiplication,
a triangular solver, an LU factorization, a QR factorization, and a convolution. Table 1
summarizes our results for these applications. For each of our stream algorithms, the table
lists the number of compute processors P and memory processors M as a function of network
size R. We also show the amount of local state S as the number of scalar variables that each
compute processor must maintain. Consider the matrix multiplication, for example. Each
compute processor must store locally the values of problem size N, network size R, its row
and column indices within the compute array, the intermediate value of the matrix element
being computed, a computed product element that is streamed towards the output, and
three loop variables. Note that the space requirements for the local state on the compute
processors is bounded for each of our stream algorithms by a reasonably small number.
Table 1 also compares the execution times 7" and efficiencies F of our stream algorithms.

Our experience with the design of stream algorithms has revealed three noteworthy in-
sights. First of all, our design philosophy for stream algorithms appears to be quite versatile.
We were able to formulate stream algorithms even for relatively complex algorithms like the
QR factorization. Secondly, our stream algorithms achieve 100 % compute efficiency where
conventional systolic designs cannot. The astute reader may have noticed that none of
our systolic algorithms achieves 100 % efficiency. For an infinitely large network size R,
the efficiency of our systolic matrix multiplication is E,,,, = 1/3, for the triangular solver
Eys = 1/6, for the LU factorization Ej, = 1/12, for the QR factorization E,, = 5/69, and for
the convolution E.,,, = 1/(1 + N/M). However, all of our stream algorithms are compute
efficient. Thirdly, our design philosophy for stream algorithms emphasizes the amortization
of inefficient systolic computations by means of efficient ones. For example, in the QR fac-
torization, the systolic algorithm for the Givens computation is quite inefficient, because
only the diagonal processors of the compute array are fully utilized. However, the num-

42

ber of multiply-and-add operations required by the QR factorization is not dominated by
the systolic Givens computation, but rather by the systolic premultiplication and postmul-
tiplication, both of which are highly efficient, because we can pipeline a large number of
problems. When partitioning a large problem into systolic subproblems, we focus our efforts
on identifying and optimizing those critical subproblems which dominate the computational
effort.

In summary, we believe that stream algorithms provide an excellent match for the physical
and technological constraints of future single-chip tiled microarchitectures.

Acknowledgments

This work has been funded as part of the Raw project by DARPA, NSF, the Oxygen Alliance,
MIT Lincoln Laboratory and the Lincoln Scholars Program. We would like to thank Janice
McMahon and Bob Bond for their support.

References

[1] Marco Annaratone, Emmanuel Arnould, Thomas Gross, H. T. Kung, Monica S. Lam,
Onat Menzilcioglu, Ken Sarocky, and Jon A. Webb. Warp Architecture and Implemen-
tation. In 13th Annual Symposium on Computer Architecture, pages 346-356, 1986.

2] Gene H. Golub and Charles F. Van Loan. Matriz Computations. John Hopkins Univer-
sity Press, Baltimore and London, 2nd edition, 1993.

(3] Daniel W. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[4] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The Future of Wires. Proceedings
of the IEEE, 89(4):490-504, April 2001.

(5] H. T. Kung and Charles E. Leiserson. Algorithms for VLSI Processor Arrays. In
Carver A. Mead and Lynn A. Conway, editors, Introduction to VLSI Systems, chapter
8.3, pages 271-292. Addison-Wesley, 1980.

6] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, 1992.

(7] Charles E. Leiserson and James B. Saxe. Retiming Synchronous Circuitry. Algorithmica,
6:5-35, 1991.

[8] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark Horowitz.
Smart Memories: A Modular Reconfigurable Architecture. In 28th Annual International
Symposium on Computer Architecture, pages 161-171, June 2000.

9] Merriam-Webster, Inc. Merriam-Webster’s Collegiate Dictionary. Springfield, MA, 10th
edition, 2001.

43

[10]

[11]

[12]

[13]

[14]

[15]

Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

Ramdass Nagarajan, Karthikeyan Sankaralingam, Doug C. Burger, and Steve W. Keck-
ler. A Design Space Evaluation of Grid Processor Architectures. In 34th Annual Inter-
national Symposium on Microarchitecture, pages 40-51, December 2001.

James E. Smith. Decoupled Access/Execute Computer Architectures. ACM Transac-
tions on Computer Systems, 2(4):289-308, November 1984.

Michael B. Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Green-
wald, Henry Hoffmann, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind
Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amaras-
inghe, and Anant Agarwal. The Raw Microprocessor: A Computational Fabric for Soft-
ware Circuits and General-Purpose Programs. IEEE Micro, 22(2):25-36, March/April
2002.

Sivan Toledo. A Survey of Out-of-Core Algorithms in Numerical Linear Algebra. In
James Abello and Jeffrey Scott Vitter, editors, Fzternal Memory Algorithms and Visu-
alization, pages 161-180. American Mathematical Society Press, Providence, RI, 1999.

Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1995.

44

