
The Security Power of the Ballot Box

Matt Lepinski and Silvio Micali

February 2, 2005

Abstract

We show that any function f can be securely evaluated by a pro-
tocol with ballots and a ballot box. That is, n mutually suspicious
players, each player i possessing a secret input xi, can use ballots and
ballot boxes to jointly evaluate f(x1, . . . , xn) = (y1, . . . , yn), so that
(no matter how many players may collude and deviate from their pre-
scribed instructions, and no matter how long they compute!) each
player i learns exactly yi with the same privacy and correctness as if
all players privately handed their secret inputs to a trusted party, who
privately evaluates f and privately returns yi to each player i.

Our protocol is (1) efficient, (2) enjoys perfect privacy, (3) guaran-
tees perfect correctness, (4) is universally composable in the sense of
[DoMi00] and [Can01], and (5) is always collusion-free in the sense of
[LMS05], even for games with secret actions.

1 Main Theorem

For any function f , mapping n private inputs to a single public output,
there exists an n party protocol for a ballot-box network with public
opening that securely evaluates f .

We now procedure to define (1) a ballot-box network, (2) a ballot-box
network with public opening and (3) the notion of securely evaluating a
function. In a subsequent version of this work, we will provide a proof of
our main theorem, generalize our results to functions with n inputs and n
outputs and explore applications to economic mechanisms.

1

2 Communication Models

2.1 Ballot-Box Networks

Intuition

We envisage a group of players, seating far apart around a large table,
communicating in two ways. The first way is via broadcasting: a player
stands up and loudly utters a given message. The second way is via identical,
opaque envelopes (and super-envelopes) and a ballot box.

Informally, a player can choose a message, write it on a piece of paper
and seal it into a new, empty envelope. So long as it is not opened, the
envelope totally hides and guarantees the integrity of its content. Only the
owner of a sealed envelope can open it, either privately (in which case —
though all other players are aware that he is opening it—- he will be the only
one to read its content) or publicly (in which case all players will learn its
content). A player owns a sealed envelope if it is physically close to him. By
definition, the player originally sealing a new envelope owns it. After that,
ownership of an envelope can be transferred to another player by tossing it
to him.

A player can also publicly put up to 4 of his envelopes into a new super-
envelope E, in which case none of the resulting “sub-envelopes” can be
opened before E. All super-envelopes are again opaque and identical among
each other, but have a slightly larger size than (ordinary) envelopes. A
super-envelope E thus tightly packs its sub-envelopes, so that their relative
order (counting —say— from E’s front) does not change when E is moved
about. The rules of ownership for super-envelopes are the same as for en-
velopes. There is, however, only one possible way for a player i to open a
super-envelope E of his: namely, all players become aware that i has opened
E, and E’s sub-envelopes become “exposed” again, and can thus be manip-
ulated (e.g., opened or transferred) individually. Such sub-envelopes always
guarantee the integrity and privacy of their contents.

Envelopes and super-envelopes always stay above the table and their
transfers are always tracked by the players. The players can thus “mentally
assign” to each envelope or super-envelope an identifier, j, insensitive to
any possible change of ownership. The only exception is when a player i
publicly puts some of his envelopes or super-envelopes into a ballot box:
when they are taken out, their contents will remain unchanged and private,
but their identities are randomly permuted, in a way that is unpredictable
to all players.

In essence, by putting on the table, opening, transferring and “ballot-

2

boxing” envelopes and super-envelopes, we obtain a communication system
having a global memory different portions of which are observable by differ-
ent players.

Formalization

We denote by AL the Cartesian product of a set A with itself L times; by
Σ the set of all finite binary strings; by # a special symbol not in Σ; by SL

the group of all permutations of L elements; by x := y the operation that
assigns value y to variable x; by rand(X) the function that selects a random
element (uniformly and independently) from a finite set X.

Definition: An envelope is a triple (i, j, c), where i is a player, j
a positive integer, and c a finite binary string. A super-envelope is
a triple (i, j, c), where again i ∈ N and j ∈ N, but c ∈ ΣL, L >
1, is a tuple of strings. A ballot is either an envelope or a super-
envelope. If (i, j, c) is ballot, we refer to i as the ballot’s owner, to
j as the ballot’s identifier, and to c as the ballot’s content. A set of
ballots is well-defined if, for each j ∈ N, there exists at most one ballot
with identifier j. By the expression “ballot j” we mean the unique
ballot, if any, having identifier j. To emphasize that ballot j actually
is an envelope (super-envelope) we may use the expression “envelope
j” (“super-envelope j”).

Definition: A ballot-box network consists of a set of global variables,
the network memory, modifiable solely through a specific set of oper-
ations, the network operations.

The variables of the network memory are: a well-defined set of ballots
B; a public history H, readable by all players; and, for each player i,
a private history of i, hi, readable only by i. (Variable H is a publicly
observable transcript of all network operations so far; it consists of a
list of items separated by #. Variable hi is i’s private transcript of all
network operations so far.)

The network operations (defined via the auxiliary variable max, the
highest identifier of a ballot in B) are:

– player i broadcasts m: if m ∈ Σ, then H := H# broadcast, i,m

3

– i makes a new envelope with public content c: if c ∈ Σ, then
max := max + 1; B := B + {(i,max, c)}; hi := hi# (i, max, c);
and H := H# NewPublicEnvelope, (i, max, c).

– i makes a new envelope with private content c: if c ∈ Σ, then
max := max + 1; B := B + {(i,max, c)}; and
H := H# NewPrivateEnvelope, i,max.

– i publicly opens envelope j: if (i, j, c) ∈ B and c ∈ Σ, then B :=
B − {(i, j, c)} and H := H# open, (i, j, c).

– i privately opens envelope j: if (i, j, c) ∈ B and c ∈ Σ, then
B := B − {(i, j, c)}; hi := hi# (i, j, c); and H := H# Open, i, j.

– i makes a new super-envelope from envelopes j1, . . . , jL:
if (i, j1, c1), . . . , (i, jL, cL) ∈ B, then B := B−{(i, j1, c1), . . . , (i, jL, cL)};
max := max + 1; B := B + {(i,max, (c1, . . . , cL)};
H := H# NewSuper, i, j1, . . . , jL.

– i opens super-envelope j: if (i, j, (c1, . . . , cL)) ∈ B, then B :=
B−{(i, j, (c1, . . . , cL))};B := B + {(i, max+1, c1), . . . , (i, max+
L, cL)};max := max + L; and H := H# OpenSuper, i, j.

– i transfers ballot j to k: if (i, j, c) ∈ B, then max := max + 1;
B := B − {(i, j, c)}+ {((k, max, c)};H := H# Transfer, i, j, k.

– i ballot-boxes j1, . . . , jL: if (i, j1, c1), . . . , (i, jL, cL) ∈ B, then
B := B − {(i, j1, c1), . . . , (i, jL, cL)}; π := rand(SL); B := B +
{(i,max+1, cπ(1)), . . . , (i,max+L, cπ(L))};max := max+L;H :=
H# BallotBox, i, j1, . . . , jL.

– i reads and reseals envelope j: if (i, j, c) ∈ B and c ∈ Σ then
hi := hi# (i,j,c);H := H# Reseal, i, j.

– i publicly permutes identifiers j1, . . . , jL by π: if (i, j1, c1), . . . , (i, jL, cL) ∈
B, then B := B−{(i, j1, c1), . . . , (i, jL, cL)}; B := B +{(i, max+
1, cπ(1)), . . . , (i, max + L, cπ(L))}; max := max + L;
H := H# PublicPermute, i, j1, . . . , jL, π.

– i aborts: H := H# Abort, i.

Network operations are executed one at a time, and without any in-
terruption. Immediately after an execution, all players actually read
the modified variables available to them.

By the expression i makes a new envelope j with private (or public)
content c we mean that i makes a new envelope and that the identifier

4

assigned to it actually is j. Similarly, by i makes a new super-envelope j
from envelopes j1, . . . , jL with identifier j we mean that j actually is the
identifier assigned to the new super-envelope made by i. Finally, we will
use the expressions i opens super-envelope j to expose envelopes k1, . . . , kL

and i ballot-boxes j1, . . . , jL to get ballots k1, . . . , kL to mean that identifiers
k1, . . . , kL are the identifiers assigned to the ballots created by the opening
or ballot-boxing operation.

Remarks

Notice that B remains well-defined after each network operation. Also notice
that, at any point, the highest identifier of a ballot in B is bounded by the
total number of ballots created up to that point.1

Our formalization of a ballot-box networks captures the salient features
of “ownership” and “opening” of our intuitive model. No player can open
a ballot he does not own. When a super-envelope is created from a set
of envelopes, the latter are removed from the ballot set, and thus cannot
be opened by anyone. Finally, when a super-envelope (i, j, (c1, . . . , cL)) is
opened by i, new envelopes with owner i and respective contents c1, . . . , cL

are created. This is consistent with our intuitive description, where owner-
ship corresponds to physical proximity: if super-envelope j is close to player
i and, due to this proximity, it is indeed opened by him, then the envelopes
exposed by opening super-envelope j will also be close to i.

To simplify the description of our protocols, we provide a redundant set
of network operations. For example, to broadcast m a player can create a
new envelope with contents m and then publicly open it. As for another
example, the read-and-reseal operation could be implemented —although in
a convoluted way— using only other network operations.

Our formalization of super-envelopes, and ballot boxes is slightly more
general than needed in this paper: our protocols do not require super-
envelopes to contain at more than 4 sub-envelopes or ballot-boxes to ran-
domize more than 5 ballots, nor the identification of the player causing an
abort.

The abort operation merely alerts all players by placing a special symbol
in the public history, but does not effect the future network operations of

1Therefore our way to ensure that no two ballots have the same identifier has no
negative effect on the existence of “polynomial-time” protocols. (If, instead, each new
ballot identifier were chosen to be twice as long as the previous one, a protocol using k
ballots would require exponentially many (in k) elementary operations —which certainly
include the reading or writing of each identifier bit.)

5

“bad players.” This is again consistent with our intuitive model: for in-
stance, a player leaving the table cannot stop other players from opening
their own ballots or making new ones. (In our protocols, when the sym-
bol Abort appears in the public history, a “good” player takes no further
action. But “bad” players may continue to perform network operations on
the current network memory. Thus our protocols are designed so that, if an
abort occurs, bad players cannot gain undue information by opening their
own ballots.)

2.2 Ballot-Box Networks with Simultaneous Public Opening

We must augment our standard ballot-box network with on additional op-
eration in order to securely evaluate a function with a single public output
in such a way that either all players learn the output or else no one learns
anything. The operation we add is that, if all players agree, then a specified
set of envelopes will be publicly opened. We now describe this operation
formally:

Definition: A ballot-box networks with simultaneous public opening
is a ballot-box network augmented with the following operation.

– All open envelopes j1, . . . , jL: If (i1, j1, c1), . . . , (iL, jL, cL) are en-
velopes in ∈ B, and H ends in the string # broadcast, 1, (j1, . . . , jL)
... # broadcast, n, (j1, . . . , jL), then H := H#(c1, . . . , cL).

We think of this operation as being performed with the aid of a weakly
trusted party who collects the envelopes to be opened and then publicity
reveals their contents. Notice that this party is not trusted with any secrets,
he is only trusted to open a set of envelopes and real their contents.

3 The Notion of Securely Computing Common-
Output Functions

In this section we wish to define what it means for n players to compute
securely a function f from n private inputs to a single, public output (in
any of our envisaged communication networks).

6

3.1 Intuition

Informally, a protocol specifies the strategies, P1, . . . , Pn, for good play-
ers to use for communicating in the underlying network. If each player i
started with private input xi and all players are good —-i.e., follow their
own strategies— (P1(x1), . . . , Pn(xn)) specifies an execution of a protocol.

Difficulty of Secure Evaluation without Bad Players. No-
tice, however, that designing a protocol P for securely evaluating a function
y = f(x1, . . . , xn) is hard, even if all players stick to communicating accord-
ing to their prescribed strategies. In fact “forget what you have seen after
termination except the result” is not a reasonable instruction —certainly it
does not an operation of our communication models! Consequently, players
who send messages as told, can easily evaluate f correctly, but can they
as easily guarantee the desired privacy? For instance, assume that each xi

represents the price that player i is willing to pay for a given item, and
the player wish to implement a second-price auction —i.e., that f is the
function returning the second highest price and the identity of the highest
bidder. Then it is trivial to find strategies P1, . . . , Pn, so that f is correctly
evaluated, but much harder to ensure that the players, seeing their own tran-
scripts of the communication cannot deduce more that the auction desired
outcome!

Secure Evaluation with One Bad Player. This task become more
daunting if some players will deviate from their prescribed strategies. Tra-
ditionally, Game Theory focuses on single-player deviations. For instance,
a single player, i, may repudiate Pi and use instead a deviating strategy P ′

i .
In this case, our task becomes that of designing an n-tuple of strategies, P ,
such that, for any possible player i and strategy P ′

i , (P ′
i , P−i) continues to

be a correct and private evaluation of f .
The Problem of Bad Inputs. Assume now that there is only one

bad player, but what is his input? For a good player, i, his input is xi. A
bad player j, however, might ignore his input in which case we have no hope
of computing a function of this input. On the other hand, we cannot say
that a bad player j has no input or has an input which is pinned down after
the protocol is complete. If a bad player is not required to commit to some
input early in the protocol then he might be able to produce unacceptable
outcomes. For example, in an auction, a bad player might get the auction to
always output ”player j wins and pays price maxi6=j(xi). This is, of course,
a valid output of the function if j had bid maxi6=j(xi) + 1 but surely it is
unacceptable to always produce this outcome when player j should not know
the value maxi6=j(xi).

7

3.2 Formalization

Protocols and Adversaries. In all our protocols players are determin-
istic (the only source of randomness comes from their use of the ballot box).
Therefore we slightly simplify our definition of a protocol so as to envisage
deterministic strategies for the good players.

We envisage that one player at a time is active in taking an action: for
instance, the order of activity could be 1, . . . , n, 1, . . . If player 1 should act
based on the action of player 2, however, this order of activity is inefficient,
since all other players would need to take the “empty action” to enable the
desired dependency. For efficiency sake, we thus let a protocol specify the
exact sequence of players who will be active in its executions. If a protocol
envisages k operations, it will specify the sequence of k players performing
them.

An adversary is an algorithm that corrupts and controls some of the
players. We explicitly specify the adversary be probabilistic, and thus, to
guarantee a complete description of an execution, we let the adversary al-
gorithm produce the coin tosses it uses in its computations.

Definition: An n-player, k-operation protocol P consists of an n-tuple
of strategies, and a k-long sequence of players. We let Pi denote ith
strategy of P , and PS the sequence of players of P . On any input,
Pi produces either (1) a network operation opi for player i, or (2) the
special symbol halt and an output outi ∈ Σ ∪ {abort}.
An adversary A is a probabilistic strategy that, on any input X, pro-
duces (1) a value v and the sequence of coin tosses R used to compute
v from X.

Executing Protocols and Adversaries. When a protocol is exe-
cuted with an adversary, all players begin with private input — the values
on which they want to compute a function — and auxiliary inputs – which
represents any additional information a player may have from previous pro-
tocols. “Good” players following the protocol strategy ignore their auxiliary
input, but when the adversary corrupts a good player it learns the player’s
auxiliary input and may make use of that information. During an execution,
an adversary view hA is maintained which contains all information available
to the adversary. In an execution, the adversary gets a chance to corrupt
players, then the first player in the protocol’s player sequence performs an
operation, the adversary gets another chance to corrupt players and the
protocol continues with the next player in the player sequence selecting an

8

operation. This continues until the player sequence is reached and all players
have halted.

Definition: An execution of P with inputs (x1, . . . , xn) and auxiliary
inputs (a1, . . . , an) and A with auxiliary input α and set of corrupted
players C ⊂ N is generated by processing —one at a time— every
element in PS, starting with an empty network memory and an initial
adversary history hA = (α, C, xC).

Processing an element of PS consisting of (an occurrence of) player i is
done in two phases. In the first, A corrupts as many additional players
as he desires. In the second, player i selects the network operation to
be executed. That is, i is processed by executing the following three
steps:

Step 1: The adversary history is updated so as to include the right
portions of the network memory: hA := hA # hc,H. Then A is
run on the updated hA to produce a value v with corresponding
coins R, and the adversary history is further updated so as to
include the coins just used: hA := hA#R. As long as v is the
identity of a player j, then i is added to the set of corrupted
players, C := C∪{j}, i’s private and auxiliary inputs and private
history are given to the adversary, hA := hA# (aj , xj , hj), and A
is run again on the updated hA.

Step 2: If i ∈ C, then A is run on hA to produce a value v with
corresponding coins R, and the adversary history is updated so as
to include these coins: hA := hA# R. If v is a network operation
for i then the operation is immediately performed so as to update
the network memory.

Step 3: If i 6∈ C, unless Pi has previously output halt, Pi is run on
input (xi, hi,H) and (1) if Pi produces a network operation opi,
then opi is immediately executed so as to modify the current net-
work memory, otherwise (2) if Pi produces halt then the current
public history and the private history of i are appended to ai:
ai := ai#H,hi.

After all elements of PS have been processed, Step 1 is executed one
more time (to give the adversary an opportunity to corrupt additional
players and gain additional information).

Execution Notation. In an execution of a protocol P , we say that

9

player i halts when Pi outputs halt, and that the protocol halts when all
players halt.

We say that an execution of P has aborted (by operation m) if a good
player outputs abort (before the processing of the mth element of PS has
ended).

If e is an execution of P and A, then
• hA(e) shall denote the final history of A: the value of hA after the final

execution of Step 1;
• hm

A (e) shall denote the value of hA when operation m + 1 is about to
be executed;2

• C(e) shall denote the final corrupted set: C’s value after the final exe-
cution of Step 1.

• Cm(e) shall denote the set of corrupted players when operation m + 1
is about to be executed;

• H(e) shall denote the final public history in e; and
• hm

i (e) shall denote the private history of player i in e after processing
the mth element of PS;

• hi(e) shall denote the final private history of player i in e: i.e., hi(e) =
hk

i (e).

Effective Inputs and Outputs. The effective inputs of the players
are the values upon which the function is actually computed and depends on
the network operations executed before some round m. The effective input
function determines a player’s effective input based on his private history.
We require that good players have effective inputs equal to their private
input xi but a corrupted player might select a different value as his effective
input. An effective output is the public output actually computed by the
protocol. The effective output function determines the effective output based
on the final public history.

Definition: Let P be a k-operation, n-party protocol, IN = (IN1, . . . , INn)
an n-tuple of functions. We say that IN is an effective input function
for P if there exists a natural number m < k such that, in any execu-
tion e of P with an adversary A

• If e has aborted by the mth operation, then INi(hi(e)) = INi(hm
i (e)) =

⊥ for all players i;
• Else, xi = INi(hi(e) = INi(hm

i (e)) for all good players i.

2I.e., the value of hA at the end of Step 1 of the processing of element m + 1 of PS

10

We say that OUT is an effective output function for P if, in any exe-
cution e of P with an adversary A that has aborted, OUT (H(e)) = ⊥.

Secure Protocols. A protocol securely evaluates a function if no
matter what a malicious adversary does (1) he cannot prevent the function
from being correctly computed unless he aborts the protocol; (2) prior to
the final public opening, he has absolutely no information about the honest
player inputs except what can be derived from the corrupted player inputs
and auxiliary inputs; and (3) even after the the final public opening, the
only information he has about honest player inputs is what can be derived
from the corrupted player inputs and the public output.

Definition: We say that a protocol P in a ballot-box network with
simultaneous public opening securely evaluates a function f if there ex-
ists an effective input function IN and an efficiently computable output
function OUT such that for any adversary A corrupting at most n− 1
players and for any distribution D over tuples (x1, . . . , xn, a1, . . . , an, α),
in a random execution e of P and A with inputs drawn from D the
following three properties hold:

• If e has not aborted then f(IN1(h1(e)), . . . , INn(hn(e))) = OUT (H(e));
• I(x−Ck−1(e);h

k−1
A (e) | 〈 xCk−1(e), aCk−1(e), α 〉) = 0;

• I(x−C(e);hA(e) | 〈 xC , aC(e), α,OUT (H(e)) 〉) = 0.

Remarks

Above we state our definition in terms of mutual information. However,
we could equivalently state our definition in terms of conditional entropy as
follows:

H(x−Ck−1(e) | 〈 xCk−1(e), aCk−1(e), α 〉) = H(x−Ck−1(e) | 〈 hk−1
A (e), xCk−1(e), aCk−1(e), α 〉)

H(x−C(e) | 〈 xC(e), aC(e), α,OUT (H(e)) 〉) = H(x−C(e) | 〈 hA(e), xC(e), aC(e), α,OUT (H(e)) 〉)

11

References

[Can01] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In Proc. 42nd FOCS, 2001.

[DoMi00] Yevgeniy Dodis and Silvio Micali. Parallel Reducibility for
Information-Theoretically Secure Computation. In Proc. of Crypto
2000, 2000.

[LMS05] Matt Lepinski, Silvio Micali and Abhi Shelat. Collusion-Free Pro-
tocols. In Proc. 37th STOC, 2005.

12

