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Abstract

An emerging trend in processor design is the incorporation of short vector instructions into
the ISA. In fact, vector extensions have appeared in most general-purpose microprocessors. To
utilize these instructions, traditional vectorization technology can be used to identify and exploit
data parallelism. In contrast, efficient use of a processor’s scalar resources is typically achieved
through ILP techniques such as software pipelining. In order to attain the best performance, it
is necessary to utilize both sets of resources. This paper presents a novel approach for exploiting
vector parallelism in a software pipelined loop. At its core is a method for judiciously parti-
tioning operations between vector and scalar resources. The proposed algorithm (i) lowers the
burden on the scalar resources by offloading computation to the vector functional units, and (i7)
partially (or fully) inhibits the optimizations when full vectorization will decrease performance.
This results in better resource usage and allows for software pipelining with shorter initiation
intervals. Although our techniques complement statically scheduled machines most naturally,
we believe they are applicable to any architecture that tightly integrates support for ILP and
data parallelism.

An important aspect of the proposed methodology is its ability to manage explicit com-
munication of operands between vector and scalar instructions. Our methodology also allows
for a natural handling of misaligned vector memory operations. For architectures that provide
hardware support for misaligned references, software pipelining effectively hides the latency of
these potentially expensive instructions. When explicit alignment is required in software, our
algorithm accounts for these extra costs and vectorizes only when it is profitable. Finally, our
heuristic can take advantage of alignment information where it is available.

We evaluate our methodology using several DSP and SPEC FP benchmarks. Compared to
software pipelining, our approach is able to achieve an average speedup of 1.30x and 1.18x for
the two benchmark sets, respectively.

Keywords: Modulo Scheduling, Vectorization, ILP

1 Introduction

Increasingly, modern general-purpose and embedded processors provide short vector instructions
that operate on elements of packed data [9, 12, 21, 22, 24, 29]. Vector instructions are desirable be-
cause the vector functional units can perform the same operation on multiple operands in parallel.
Thus, a vector instruction increases the amount of concurrent execution while maintaining a com-
pact instruction encoding. In addition, their performance advantages are realized with moderate
architectural complexity and cost.

Short vector instructions are predominantly geared toward improving the performance of mul-
timedia and DSP codes. However, today’s vector extensions also afford a significant performance



potential for a large class of data parallel applications, such as floating-point and scientific compu-
tations. In these applications, as in multimedia and DSP codes, a large extent of the processing is
embedded within loops that vary in nature from fully parallel to fully sequential.

In the context of applications rich with data parallelism, compiler technology previously pio-
neered for vector supercomputers is not ideal for today’s ILP-based processors. When loops contain
a mix of vectorizable and non-vectorizable operations, a traditional approach may diminish ILP
as it leads to separate loops for the vector and scalar operations. In the wectorized loops, scalar
resources are not used well, and in the scalar loops, vector resources remain idle. In modern proces-
sors, a reduction in ILP may significantly degrade performance. This is especially problematic for
VLIW processors (e.g., Itanium) because they do not dynamically reorder instructions to rediscover
parallelism. However, even dynamically scheduled processors can not parallelize instructions across
distinct loops.

As an alternative to vectorizing technology, a loop-intensive program exhibiting data parallelism
can be software pipelined, essentially converting available parallelism to ILP. Software pipelining
overlaps instructions from different loop iterations and derives a schedule that attempts to maximize
resource utilization. Unfortunately, without explicit instruction selection that vectorizes operations,
the architecture’s vector resources are not used and software pipelining is limited.

Today, the burden of programming short vector units falls largely on the application developer
who manually orchestrates the mapping of operations to resources (i.e., which scalar operations to
vectorize). Invariably, this style of hand-programming is tedious, error prone, and results in non-
portable solutions. In this paper, we show that concurrently using both scalar and vector resources
presents novel problems, leading to a new algorithm for automatic vectorization. We formulate these
problems in the context of software pipelining, with an emphasis on VLIW processors. The intuition
underlying this work is that better utilization of both scalar and vector resources will lead to
greater overlap among iterations, and hence improve performance. Our algorithm effectively maps
loops with data parallelism to processors with short vector instructions. It selectively chooses to
vectorize the most profitable data parallel computations, while remaining cognizant of the resource
requirements of the loop. As a result, the algorithm (¢) lowers the burden on the scalar resources
by offloading computation to the vector functional units, and (ii) partially (or fully) inhibits the
optimizations when full vectorization will decrease performance.

A noteworthy aspect of our approach is that it readily copes with the alignment restrictions
imposed by many architectures. Some processors (e.g., AltiVec) require that vector memory op-
erations address locations that are aligned on natural boundaries. As a result, the compiler must
explicitly reorganize the data using additional instructions [23]. Other processors (e.g., Itanium)
support unaligned memory operations, but incur a performance penalty if the data span multiple
cache lines [15]. Many of the techniques for satisfying alignment constraints [6, 11, 19] can be
directly applied in our algorithm. Instruction selection considers any misalignment penalties and
instruction overheads when choosing to vectorize an operation. Furthermore, because our work
leverages the concept of software pipelining, we can easily hide the added latency of misaligned
vector operations.

We implemented the proposed optimization in Trimaran [2], a compilation and simulation infras-
tructure for VLIW architectures. Trimaran includes a large suite of optimizations geared toward
improving ILP. It also includes a parametric cycle-accurate simulation environment. We found
that our approach offers significant performance gains on the various architectural configurations
we simulated. Compared to Trimaran’s optimizations, which include software pipelining using
modulo scheduling [25], our optimization yields a 1.30x and 1.18x speedup on a set of DSP and
SPEC FP benchmarks, respectively.



This paper is organized as follows: Section 2 describes the intended architectural model for this
work. Section 3 motivates our approach with a simple example. Section 4 presents our algorithm
for automatic instruction selection and selective vectorization. Section 5 contains our experimental
evaluation. Section 6 describes related work and Section 7 concludes the paper.

2 Target Architecture

We believe our techniques are applicable to any machines that provide a combination of ILP and
short vector hardware. In this paper, however, we focus our attention on VLIW architectures since
they are the primary benefactors of static scheduling techniques. Several innovations have been
developed to support ILP scheduling in general, and software pipelining in particular. Primarily,
these consist of rotating registers and predication [8]. Predication is useful for eliminating code
expansion by reusing the kernel code for the epilogue and prologue. It also enables the scheduling
of loops with control flow [20]. Rotating registers eliminate scalar anti and output dependences
by queuing register writes until they are used. In our evaluation, we assume these concepts are
extended to vector registers as well so that vector operations can be software pipelined using the
same technique. If rotating registers are not available, a similar effect can be achieved with modulo
variable expansion [18, 26]. This method unrolls the loop and performs scalar renaming to remove
false dependences.

Multimedia architectures typically require memory operations for communicating data between
scalar and vector registers. In our evaluation we also assume this interface, even though our
approach does not rely on it. Since vector instructions are never involved in a dependence cycle,
software pipelining can hide the extra latency of explicit communication. However, these operations
still compete for machine resources and can limit performance when these resources are in high
demand. Since our system tightly integrates scalar and vector instructions, it could benefit from
a faster communication mechanism. An ideal design would allow scalar operations the ability to
read and write vector elements directly. This would eliminate the need for explicit communication
instructions. Such a design could be achieved by superimposing the vector registers on the scalar
registers.

3 Motivating Example

We use the dot product shown in Figure 3(a) to motivate our approach. The data dependence graph
is shown in part (b). For simplicity, we omit address calculations. Suppose we target a machine
whose visible machine resources consist of three issue slots. Assuming single-cycle latency for all
operations, a modulo schedule for the loop is shown in part (c). Here, we achieve an initiation
interval (IT) of two. In a modulo schedule, the IT measures the throughput of the kernel. It is
limited by the available resources and any cycles in the dependence graph [25]. The latter restrict
throughput because a new iteration can not begin until its dependences from the previous iteration
are satisfied. In the schedule of part (c), we require two cycles to execute the four loop operations.

Now suppose the target architecture supports execution of one vector instruction each cycle
(including memory operations). Assume the machine implements a vector length of two for the
operations in the loop. A dependence cycle prevents vectorization of the add operation. As a
result, the traditional approach distributes the loop into one that performs the vector computation
and another that performs the scalar computation. Scalar expansion is used to communicate
intermediate values through memory. This is shown in part (d). Since the machine can issue only



DO =1, N
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Figure 1: (a) A dot product kernel and (b) its data dependence graph. (c¢) Modulo scheduling the kernel
results in an II of two. Subscripts specify the original iterations executed by each operation; the kernel is
highlighted in gray. (d) Loop distribution of the kernel into vector and scalar loops.

one vector operation each cycle, software pipelining does not improve performance of the vector
loop. Four cycles are required to execute the four vector operations. For a vector length of two,
this amounts to an initiation interval II,, = 2. The operations in the scalar loop can be overlapped,
resulting in an initiation interval II; = 1. Combined, this achieves an overall initiation interval of
IT, + IIy = 3, resulting in worse performance than modulo scheduling alone.

A better approach is to leave the loop intact so the vector and scalar operations can execute
concurrently. This strategy is illustrated in Figure 2(a). Here we achieve an II of 1.5, since two
iterations are initiated every three cycles. For simplicity, we have assumed explicit operations are
not required for communicating between scalar and vector operations (namely, the vector multiply
and the scalar add).

Finally, Figure 2(b) illustrates what is possible with selective vectorization. By inhibiting
vectorization of one of the load operations, we achieve better overall resource utilization. This
allows a schedule with an initiation interval of one, resulting in the best performance.

Cycle Slot 1 Slot 2 Slot 3 Cycle Slot 1 Slot 2 Slot 3
1 vload, , 1 vload, , load,
2 vload, , 2 load,
3 vmul, , 3 vload, , load,
4 vioad,_, add, 4 vmul,, load,
5 vload, , add, 5 vload 4 load, add,
6 vmul,_, 6 vmulg_, load, add,

(a) (b)

Figure 2: (a) Modulo schedule obtained with full vectorization when the loop is left intact. This results in
an IT of 1.5. (b) Using selective vectorization, we can achieve an IT of 1.



4 Instruction Selection and Vectorization

Before we describe our instruction selection and vectorization algorithm, we emphasize that software
pipelining in the form of modulo scheduling [25] follows our optimization. This fact has strong
implications for our algorithm design. When an operation does not lie on a dependence cycle, its
latency is of minor concern since dependent operations can be separated by pipeline stages without
affecting the throughput of the kernel. Although long latency operations tend to increase the
length of the pipeline’s prologue and epilogue, this has little impact on performance as long as the
loop iteration count is relatively high. Vectorizable operations are never involved in a recurrence.
Otherwise, they could not be parallelized in the first place. This allows us to focus on resource
usage alone during vectorization.

At a high level, the goal of instruction selection and vectorization is to divide the vectorizable
operations between scalar and vector resources. This partitioning is done in a way that maximizes
loop performance. In this phase we are concerned only with the decision of whether or not to
vectorize each operation. Software pipelining and register allocation are performed later.

The conventional strategy vectorizes all data parallel operations. In loops with a large number
of vector operations, this can leave scalar resources idle. Moving some operations to scalar units can
provide a more compact schedule. In other situations, full vectorization may be more appropriate.
This can occur when machine resources are overwhelmed by excessive transfer between vector and
scalar register files. For the same reason, it may be advantageous to omit vectorization altogether
in loops with little data parallelism. The best choice depends on the underlying architectural
resources, the number and type of operations in the loop, and the dependences among them.

The problem is further complicated when the compiler is responsible for satisfying complex
scheduling requirements. Most architectures provide heterogeneous functional units, each support-
ing a subset of the machine’s instruction set. A particular operation may have many scheduling
alternatives and could reserve multiple resources during its execution. Furthermore, scalar and
vector operations may compete for the same resource. This is almost certainly the case for memory
operations since the same functional units typically execute vector and scalar memory operations.

Below we provide our compilation methodology for exploiting data parallelism in software
pipelinable loops. We describe our approach to identifying vectorization opportunities, followed
by a description of our heuristic for selective vectorization. We conclude the section by addressing
the communication and alignment constraints imposed by existing architectures.

4.1 Identifying Vectorizable Operations

Before we can proceed with operation partitioning, the first step is to identify all vectorizable
operations in the loop body. To accomplish this, we use the data dependence theory first devel-
oped for vector supercomputers. This requires loop dependence analysis to identify cycles in the
dependence graph. Operations in a dependence cycle must execute sequentially; the rest can be vec-
torized. The major difficulty here is to accurately identify dependences among memory references.
A simple approach that assumes dependence between any store and load will prevent vectoriza-
tion. For array-based code, an extensive literature exists for computing dependences among array
accesses (see [5] for a review). In our toolchain, we use the implementation provided by SUIF [30].
After building the dependence graph, cycles are identified using Tarjan’s algorithm for strongly
connected components [28].

Traditionally, parallel operations are identified at the source level. Since we are partitioning
actual machine instructions, data parallelism must be identified on a low-level intermediate format.



Partition-Ops () Switch-One-Op (currPartition, locked)

for i — 1 to numOps bestCost «— oo

currPartition[i] < SCALAR for i — 1 to numOps
bestPartition «— currPartition if VECTORIZABLE (2) A ¢ ¢ locked
bestCost «— BIN-PACK(curr Partition) cost «— TEST-REPARTITION (i, curr Partition)
lastCost < oo if cost < bestCost
while lastCost # bestCost bestCost «— cost

lastCost < bestCost best «— i

locked + 0 locked «— locked U best

for ¢ — 1 to numVectorizable currPartition|best] <« —currPartition[best|

cost «— SWITCH-ONE-OP (currPartition, locked) return BIN-PACK (currPartition)

if cost < bestCost
bestCost < cost
bestPartition < currPartition
curr Partition < bestPartition
return bestPartition

Figure 3: Partitioner pseudo code.

Therefore, memory dependence information is computed in the front-end and passed as annota-
tions to the backend. A low-level representation introduces dependences not present in the original
source. In three-operand format, temporary registers are introduced to hold the results of subex-
pressions. The flow dependence involving these registers also creates an anti-dependence with the
next iteration. This results in a dependence cycle that prevents vectorization. However, virtual
registers whose uses are only reached by definitions in the same iteration can be privatized to re-
move the false dependence. Thus, while vectorization is traditionally performed using a source-level
program representation, we show that identifying data parallelism in low-level codes presents no
real problems.

4.2 Partitioning Heuristic

Be base our algorithm on the two-cluster partitioning heuristic due to Kernighan and Lin [16]. The
pseudo code is shown in Figure 3. The algorithms iteratres over the vectorizable operations in the
loop, moving them between a scalar and vector partition until the lowest cost partition is found.
In the end, operations in the vector partition are vectorized and the rest remain scalar. Initially,
all operations are assigned to the scalar partition, although a completely vector starting condition
may be equally viable. At each step, an operation is chosen to move from one partition to the
other. Omnce an operation is moved, it is locked and removed from consideration until the next
iteration of the partitioner. This causes every operation to move exactly once per iteration. After
each move, the algorithm computes the cost of the resulting configuration, noting the minimum
cost encountered so far. When every operation has moved, the partition with the lowest overall
cost is used as the new starting configuration for another iteration. The process terminates when
we see no improvement over the starting configuration.

4.3 Operation Selection and Cost Calculation

Operations are selected for repartitioning based on a cost function. At each step, we choose the
operation whose movement results in the configuration with the lowest overall cost. We define the
cost of a given configuration to be the weight of the most heavily used resource, where the weight
is the number of cycles the resource is needed for executing the operations in the configuration. In
modulo scheduling terminology, this corresponds to the resource-constrained minimum initiation
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Figure 4: Bin-packing example.

interval (ResMII). In the absence of dependence cycles, this represents a lower bound on the IT of
the modulo schedule.

We calculate the cost of a configuration using a bin-packing approach akin to the original
formulation in modulo scheduling. Namely, a bin (with zero initial weight) is associated with
each compiler-visible resource. Operations are selected one at a time and assigned to the bin that
minimizes the weight of the most heavily-used resource. Every placement of an operation in a bin
increments the weight of that bin. If an operation reserves a resource for more than one cycle, the
bin’s weight is adjusted accordingly. In addition, each scalar operation is binned k times to match
the work output of a single k-wide vector operation.

Since communication of operands between scalar and vector operations usually requires explicit
instructions, the partitioning algorithm must account for these instructions as a result of its deci-
sions. Specifically, when an operation is placed in a different partition than operations on which
is it flow-dependent, the appropriate communication instructions are also binned. Note that a
particular operand is transferred at most once since all consumers can reuse the transmitted data.

In the original bin-packing formulation, operations are selected for placement in order of their
scheduling alternatives such that those with little freedom are binned first. This heuristic produces
better results than an unordered placement. We make one further optimization: when two schedul-
ing alternatives do not increase the weight of the most heavily-used resource, we select the option
that minimizes the sum of the square of each bin weight. This strategy tends to balance operations
across bins even when these operations do not affect the cost of the overall configuration. This
is illustrated in Figure 4. During bin-packing, assume we have reached a state with three oper-
ations placed in each FPU, two operations in ALU 1, and one in ALU 2. If the next operation
can be placed on either ALU, a simple implementation may choose ALU 1 since the operation’s
addition to that bin does not increase the total cost. The sum squares of such a configuration is
32 4+ 32 4+ 32 + 12 = 28. The alternative configuration has a lower value of 3% 4+ 32 +22 + 22 = 24
and provides a balance among the ALUs.

This optimization allows the partitioner to quickly compare alternatives during operation selec-
tion. Ideally, we would like to perform a complete bin-packing for each possibility before selecting
an operation for repartitioning. Unfortunately, this approach is prohibitively expensive since it
requires n bin-packing passes before an operation is selected. Instead, the algorithm checkpoints
the current state of the bins, deallocates the resources for the operation under consideration, and
reserves the set of resources used in the other partition. For example, if we move an operation to
the vector partition, we simply remove that operation’s scalar resources from the bins and reserve
its vector resources. If necessary, we also account for any transfer costs implied by the repartition-
ing. We then record the cost of the new configuration, restore the bins to their original state, and
repeat the process for another operation. Once an operation is finally selected and repartitioned,



we perform a fresh bin-packing to rebalance the bins.

Note that when an operation is moved from one partition to another, the cost of the new con-
figuration may increase. This occurs, for example, when an operation’s producers and consumers
remain in the other partition, necessitating explicit transfer instructions (whose resource require-
ments must be considered). However, the algorithm will continue to move one instruction at each
step. If there are no alternatives that reduce the overall cost, the algorithm chooses the configura-
tion that yields the lowest increase in cost. It is this strategy that allows the algorithm to climb
out of a local minimum. As communicating operations are repartitioned, the communication cost
decreases, ideally toward a new minimum.

The algorithm continues to iterate until no additional improvements are possible. In the worst
case, this requires n total iterations for a loop containing n vectorizable operations. Every iteration
repartitions each operation once and bin-packs each new configuration. Since bin-packing itself
requires n steps, this results in an O(n3) algorithm. However, in practice we observe that a
solution is found after only a few iterations, making the algorithm very practical. In fact, for our
benchmarks, the time spent in the instruction selection and vectorization phase is far less than the
time spent modulo scheduling. Nonetheless, if a faster execution of the algorithm is desirable, we
can artificially limit the number of iterations it carries out.

On a final note, we also compared the results from our algorithm to those generated from an
exhaustive search approach that is practical for loops consisting of 15-20 instructions. For several
randomly generated kernels, the heuristic produced identical results in all cases.

4.4 Loop Vectorization

After partitioning decisions are made, the next step is to construct a new loop with the vectorized
instructions. In order to satisfy dependences, operations are emitted in a specific order. We
start with the original dependence graph and combine each strongly connected component into a
single node, called a piblock [5]. Data parallel operations comprise their own piblock. Dependences
between operations in different piblocks are reconnected to the encompassing piblocks. This creates
a new graph without dependence cycles. A topological sort of the graph then determines the order
of the piblocks with respect to each other. This is analogous to the loop distribution phase in
traditional vectorization.

For each operation selected for vectorization, we emit the vector equivalent opcode. Each scalar
operation is emitted & times (where k is the vector length). If a scalar operation is contained in a
dependence cycle, the operations in the cycle are emitted in their original control flow sequence in
order to satisfy dependences. This effectively unrolls the piblock & times.

When explicit communication is required, the appropriate transfer operations are inserted af-
ter the operands are computed. The compiler also adjusts the loop increment and upper bound
according to the vector length k. Lastly, if the loop trip count is not known statically, or if it is
not a multiple of the vector length, a cleanup loop is inserted to execute the remaining iterations.

4.5 Alignment

An important consideration for contemporary short-vector extensions is the alignment constraint
placed on vector memory operations. Specifically, a k-way load or store must operate on data that
fall on a k-byte boundary. Some processors support unaligned memory operations, but incur a
performance penalty if the data cross a cache line. Others permit no misalignment and rely on
software to merge data from consecutive misaligned regions.
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Figure 5: Compiler flow.

When dynamic alignment is supported in hardware, the extra latency incurred by misaligned
loads is not a major concern in our approach. Vector operations never lie on dependence cycles.
Therefore, the latency of a misaligned vector load can be tolerated by the software pipeliner. In the
absence of alignment information, we assume a misaligned latency for vector loads during software
pipelining.

If explicit instructions are required for misaligned memory operations, our algorithm handles the
extra cost naturally. When considering a vector versus scalar allocation, the necessary instructions
are bin-packed during cost evaluation. This way, we accurately gauge the trade-offs of vectorizing
unaligned memory operations.

Solutions to the alignment problem have been proposed by us and other researchers [6, 11, 19,
32]. Current techniques attempt to both extract alignment information from the program, and
transform loops to exhibit more aligned references. The transformation usually involves peeling
the first few iterations from the loop until the memory references within the loop reach a certain
aligned configuration. At this point, a vectorized version of the loop can proceed assuming the
alignments reached in the pre-loop. These methods can be incorporated directly into our proposed
optimization. Whenever specific alignment information is available, we model the cost of each
vector memory operation appropriately.

5 Evaluation

Figure 5 shows the high-level compiler flow of our system. We use SUIF [30] as our compiler
front-end. As mentioned, identification of vector parallelism requires accurate loop dependence
information. We leverage SUIF’s dependence analysis package to accomplish this. Our SUIF front-
end also allows us to compile Fortran and provides us with a suite of existing optimizations. Our
backend compiler and simulation system is provided by Trimaran [2]. In addition to writing a SUIF
to Trimaran converter, several changes were required in the Trimaran infrastructure. Most notably,
we have added support for vector instructions and vector registers throughout the system.

Extracting precise dependence information from C is notoriously difficult since the language
allows arbitrary aliasing through pointers. This problem is usually solved by applying a whole-
program alias analysis or by extending C with directives that allow the user to convey dependence
information. For the C benchmarks we study, we assume pointer arguments passed to a function do
not overlap. This is analogous to using the restrict keyword in function declarations and allows
us to detect data parallelism when arrays are passed as arguments.

For all loops, we apply a suite of standard optimizations before scheduling. These include
register promotion, common subexpression elimination, copy propagation, constant propagation,
dead code elimination, induction variable optimization, and loop-invariant code motion. We did
not employ any transformations specifically targeted to enhance data parallelism. Of these, loop
interchange [5] would be particularly useful since it can move unit-stride memory references into
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Table 1: Processor configuration.

the inner loop. Transformations that increase opportunities for vectorization will only improve
performance since our system is not obligated to vectorize. In any case, the focus of this paper is
not the identification of data parallelism. We are interested in how it can be exploited to create
highly efficient loop schedules.

We apply our transformation to DO loops without control flow or function calls. In general, these
are the loops to which both software pipelining and vectorization are most applicable. Innovations
such as if-conversion [4] and hyperblock formation [20] have made it possible to target a broader
class of loops, but they are not used in this study. In the future, we plan to incorporate some of
these techniques to broaden the classes of loops we vectorize.

We evaluate performance on the target machine shown in Table 1. We assume a total vector
length of 128 bits. Therefore, the ISA supports vectors of four 32-bit elements or two 64-bit
elements. This is consistent with contemporary machines [9, 24]. Multimedia architectures also
support longer vectors of subword operations, but none of the benchmarks we study here use
subword data types. We assume architectural support for misaligned memory references. However,
the simulator charges double latency for any load operations that cross a cache line boundary.
Essentially, we assume two sequential loads are required to retrieve these data.

In the results that follow, we show speedup of our technique over modulo scheduling. For this
baseline, we unrolled each loop k times (for vector length k) prior to scheduling. This eliminates the
advantage gained from reduced address arithmetic when loops are vectorized. When vectorization
is enabled, an extra performance gain is possible because a single address calculation is needed for
each vector memory operation. This same optimization can be realized without vectorization by
taking advantage of the base + offset addressing mode available in most ISAs, including our target
machine.

In Figure 6 we show the speedup for five DSP kernels: median filter, Daub4 wavelet and
inverse wavelet transforms, FFT (Fast Fourier Transform), and the Haar wavelet transform. The
graph shows speedup for four different machine configurations. The baseline architecture is sum-
marized in Table 1. In Figure 6 we also vary the number of FPUs and memory units between two
and four. We focus on these resources since the bulk of computation in these kernels is memory
operations and floating point calculations.

Each bar shows the speedup achieved from full vectorization and the additional performance
gained with selective vectorization as guided by our algorithm. In both cases, the loop is left
intact in order to overlap scalar instructions with vector instructions. When full vectorization is
enabled, we simply vectorize all data parallel operations that are detected in the loop. Selective
vectorization uses the partitioning algorithm described in Section 4. Notice that in many cases
full vectorization performs worse than modulo scheduling. This occurs when the number of scalar
resources surpasses the number of parallel operations that can be computed with the vector unit.
In the case of Haar, it also occurs when the costs of transmitting the results of vectorized operations
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Figure 6: Speedup over modulo scheduling for a set of DSP kernels. For each kernel, four different machine
configurations are shown with the number of FPUs (F) and memory units (M) varying between 2 and 4.

becomes the performance bottleneck.

In all cases, our heuristic is able to produce a schedule that meets or exceeds those provided by
full vectorization or modulo scheduling alone. For many combinations, offloading vector computa-
tion to the scalar units results in a significant speedup. Our algorithm also automatically detects
situations when baseline modulo scheduling provides the best performance. In this case, it throttles
back vectorization or completely inhibits it.

In Table 2, we also show the speedup for several SPEC FP benchmarks. For these, we use
the machine configuration of Table 1. These benchmarks were chosen because they exhibit a high
degree of data parallelism. This characteristic also makes these codes highly amenable to software
pipelining. However, as the table shows, a careful and balanced mapping of operations to the scalar
and vector resources can provide superior performance.

Benchmark ‘ Full Vectorization ‘ Selective Vectorization ‘

alvinn 1.08 1.18
su2cor 1.01 1.11
swim 1.04 1.18
tomcatv 1.07 1.26

Table 2: Speedup over modulo scheduling for a set of SPEC FP benchmarks.
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6 Related Work

With the advent of short vector extensions, there is a need to supply access to these instructions
to the high-level programmer. Most of this support has come in the form of inline assembly, macro
calls, or specialized library routines. However, there has been success in providing automatic paral-
lelization using traditional vectorization [6, 27]. Commercial products that make use of multimedia
extensions include the Intel compiler [6], The VAST/AltiVec Compiler [3], and VectorC [1].

One of the major difficulties facing automatic vectorization for short vector extensions is the
alignment restriction placed on vector memory operations. In [19], we proposed a static analysis
for extracting alignment information. A nearly identical method was developed concurrently by
Bik [6]. We also designed a system based on runtime profiling that transforms loops in an attempt
to maximize the number of aligned references. Eichenberger and Wu [11, 32] have developed an
effective method for reducing the cost of memory references when explicit instructions are required
to handle misalignment.

Traditional vector compilation is largely based on constructing an accurate dependence graph
of a loop [13, 17]. As mentioned, this is used as the basis for identifying data parallelism. Ad-
ditionally, it is used as a framework for determining the validity of transformations that increase
opportunities for vectorization. Classic examples include loop distribution, scalar expansion, and
loop interchange. In this research we have made extensive use of the text by Allen and Kennedy [5].
Another excellent reference is the text by Wolfe [31].

Modulo Scheduling has been studied extensively in the literature. As a result, we can not list all
the contributions made in the field. We have based our work primarily on Rau’s original description
of Tterative Modulo Scheduling [25]. Many of these techniques were developed at Cydrome for one
of the first commercial VLIW architectures [8]. Similar techniques were developed concurrently by
Lam [18]. Extensions to the core modulo scheduling algorithm include techniques to reduce register
pressure [10, 14] and the ability to schedule loops with control flow [20]. Recently, there has been
interest in modulo scheduling for clustered architectures [7, 33]. Explicit communication among
clusters is similar to communication between vector and scalar operations. In both cases, parti-
tioning can introduce transfer operations not present in the original loop. In our work, partitioning
is complicated by its connection to instruction selection. That is, choosing a vector versus scalar
allocation also influences the specific opcode and number of operations that must be generated.

7 Conclusion

Short vector extensions have been integrated into the ISA of many general-purpose and embedded
microprocessors. This has added a data parallel component to traditional ILP hardware. To exploit
this design, we propose a new method for exploiting vector parallelism in software pipelined loops.
Our approach selectively vectorizes operations in important program loops to improve resource
utilization between the scalar and vector functional units. This results in lower minimum resource
constraints and allows for software pipelining with shorter initiation intervals. Although our tech-
niques complement statically scheduled machines most naturally, we believe they are applicable to
any architectures that tightly integrate support for ILP and data parallelism.

In this paper we show that our strategy can lead to performance gains that exceed techniques
targeting ILP or data parallelism alone. Furthermore, the methods presented here are applicable
to machines with arbitrary resource constraints. An important aspect of this is the ability to
manage explicit communication between vector and scalar instructions. Our methodology also
allows for a natural handling of misaligned vector memory operations. For architectures that
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provide hardware support for misaligned references, software pipelining effectively hides the latency
of these potentially expensive instructions. When explicit alignment is required in software, our
algorithm accounts for these extra costs and vectorizes only when it is profitable. Finally, whenever
alignment information is available, the information is easily incorporated into our heuristics.

Our compiler infrastructure is still developing. Currently, we are unable to accommodate loops
containing control flow or early exits. In spite of this, we are able to achieve an average speedup of
1.30x and 1.18x on a set of DSP and SPEC FP benchmarks, respectively. When loops are fully
vectorized before software pipelining, our optimization yields a speedup of 1.12x and 1.32x.
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