Subcontracted Rational SFE

Matt Lepinski and Silvio Micali
November 1, 2005

Abstract

In their paper, “Rational Secure Computation and Ideal Mechanism Design,” Iz-
malkov, Lepinski and Micali show that any one-shot mediated game can be simulated
by the players themselves, without the help of a trusted mediator, using physical en-
velopes and a ballot-box. We show that communication between the players is not
essential to the ILM protocol. That is, we provide a protocol for rational secure func-
tion evaluation (Rational SFE) where the players just send a set of envelopes to a
referee who simply performs a sequence of publicly verifiable actions. That is, the
players can “subcontract” all of the computation to an untrusted referee. In addition
to providing a communication structure that more closely matches the ideal game, our
protocol also enables us to better simulate mediated games in which abort is not a
dominated action.

1 Prior Work

The general notion of secure multi-party computation was put forward and exemplified by
Goldreich, Micali and Wigderson [3], based on the two-party results of Yao [6]. In particular,
the notion encompasses secure function evaluation (SFE). Assume that n parties, where
party ¢ has a secret input x; wish to evaluate a a vector valued function f on their secret
inputs, without revealing any more about their original z;’s than strictly necessary. In
essence, an SFE protocol enables the n parties, without any external help, to communicate
so that each player i computes y;, where (yi,...,y,) = f(x1,...,2,) with the same privacy
and correctness as when each player ¢ confides his z; to a trusted party, who then computes
f and privately hands out y; to each player ¢. The notion of an SFE has found much
favor and has been formalized and implemented for a variety of communication models. In
particular, the original paper envisaged that all players communicate via broadcasting (and
use encryption to enforce the privacy constraints). As for another example, [1, 2] assume
that each pair of players is endowed with a dedicated and perfect communication channel
(i.e. no one can tap the conversation of two players ¢ and j and no one else can inject
messages over their channel).

Izmalkov, Lepinski and Micali [4] point that all previous SFE protocols rely on the honesty
of some players, and hence they can be inappropriate in setting where different outputs of
f yield different rewards. Thus, they introduce and exemplify the new notion of a rational

SFE, whose security depends on the rationality of the players and not on their honesty. Let
us assume for simplicity only, that f actually returns the same value Y to all players, that is,
that the players want to compute a n-input, single-output function: they want to compute
f(z1,...,2,) =Y). Then a Rational SFE for such an f and for any utilities associated to
f’s outputs guarantees that n rational players can communicate so as to perfectly simulate
(i.e., enjoy the same privacy and incentives) of the following mediated game: each player i
hands an input x; to a trusted mediator, who, if all players provide him with a valid input
in f’s domain, computes f and announces the result, or else, if a player does not provide
him with a valid input, announces the identity of the player and imposes a sufficiently large
monetary fine on him, so that no rational player would choose not to provide a valid input
to the mediator. To provide such a simulation of a mediated game, ILM use the ballot-
box communication model. (In essence, the players may generate and exchange envelopes,
or secretly randomize the order of some envelopes. At the end, all players hand their yet
unopened envelopes to a referee who publicly opens all of them, so as to enable all player to
compute the output Y".)

A crucial feature of a Rational SFE is that players should be prevented from signaling to
one another (else no perfect simulation of a mediated game may exist, because such signaling
is by definition impossible when a player can only send a single message—their input— to
the trusted mediator). The need for imposing a monetary fine in the mediated game stems
from the fact that in the ballot-box protocol that perfectly simulates it a player may abort
at any time. In which case, there is no way of properly continuing the protocol so as to
produce the proper Y. This is so because each player ¢ owns a sequence of envelopes at each
point in time whose content is secret to all other players, but known to i. Thus, if ¢ aborts
destroying or taking away his envelopes, the protocol cannot be completed without his help.
Thus no simulation may be perfect unless we allow players to "abort” also in the mediated
game (i.e., by not sending a proper input to the trusted mediator) but dissuade this from
happening.

2 Results

We put forward a Rational SFE (indeed, even the first SFE!) satisfying the following property
in the ballot-box model: Each player takes only a single initial action, which consists of
handing a sequence of envelopes to the referee. The contents of the envelopes provided by a
player i encode i’s input. After all players have done so, the referee performs a deterministic
sequence of ballot-box operations such that all players can observe that the right operation
has been performed. The last operation of the referee is to publicly open all envelopes so
that all players learn the right output Y.

In essence, we succeed in implementing the ILM protocol without the requirement that a
player acting on a set of envelopes actually knows their contents. In a sense, after the initial
input stage, all envelopes are “owned” by the referee who performs all necessary operations
without ever learning their content (except of course for the last public opening).

Our result enables us to match any mediated game without relying on monetary fines.
Whatever the mediator could have done when a player ¢ aborts in the mediated game, we
could do in our ballot-box protocol when player ¢ does not provide envelopes to the referee.

(As in the ILM case, a player not providing envelopes that encode a valid input is quickly
exposed and treated as not having provided any envelopes altogether.)

(Notice that if the players can provide the referee with their initial envelopes without
noting whether or not the other players do the same, then we can even simulate any mediated
game in which abort is interpreted by the mediator as a player confiding to him a default
input.)

Our result, even in the standard SFE setting provides the first polynomial-time solution
to a problem raised by Feige, Kilian and Naor.[5] That is, the problem of performing SFE
when each player sends only a single message to an untrusted external party. (We note that
our model is slightly different from —and incomparable with— the original FKN model.)

3 Techniques

The simplest way to obtain our result is to allow for a probability of error that is negligible
in an auxiliary security parameter k£ that is independent of the function f, and to disregard
efficiency (though remaining polynomial time in k& and the time to compute f). Still, even
our simplest protocol is a “Las Vegas” type algorithm. That is, the error is of the best
possible type: When the protocol produces an output, the result is both correct and private,
and with negligible probability (in k) it produces no output at all.

As in ILM, we follow the same basic data encoding as in GMW. Each bit is encoded as
one of two permutations in S;. The identity permutation corresponds to the bit 0 and a
special permutation which we denote a corresponds to the bit 1. In ILM, each permutation
is encoded using a sequence of five envelopes. Instead, we encode a permutation « using
120k identical sequences (each consisting of five envelopes whose contents are the standard
representation of the permutation «).

At the beginning of the protocol, each player i for each bit of his input sends to the
referee 120k copies of a five envelope sequence encoding this bit of his input. For now
let us assume that each player publicly creates these 120k sequences using the following
subprotocol. First, the player publicly creates 120k + 1 sequences encoding the identity
and 120k + 1 sequences encoding the permutation a. The player then privately creates one
sequence of five envelopes, which we denote by ¢, that encodes his chosen bit. The player
then puts the 120k + 1 sequences encoding the identity into a super envelope and the 120k +1
sequences encoding a into a second super envelope. The player then uses the ballot-box to
randomize the order of the two super-envelopes. He then opens the two super envelopes to
reveal a stack of 120k + 1 sequences on the right and a stack of 120k + 1 sequences on the
left. He privately reads (and reseals) one sequence from each stack to determine which is
the identity and which is a. Next then discards the stack of envelopes that does not encode
his chosen bit, leaving him with one stack of 120k + 1 sequences in a stack and the single
sequence ¢ which he privately created to encode his bit. We denote by v the top sequence
of five envelopes from the stack of un-discarded sequences.

The player needs to prove that ¢ and ¢ encode the same permutation. To do this,
the player creates five super envelopes, such that the jth super envelope contains the jth
envelope from sequence ¢ and the jth envelope from sequence . The player then uses the
ballot box to randomizes the order of the five super-envelopes. He then opens the super

envelopes to reveal five pairs of envelopes. Finally, he opens publicly opens these five pairs
of envelopes and reveals their contents. Notice that if ¢ = 1 then the two values contained
in each pair of envelopes will be the same. Furthermore, in such a case, the revealed values
provide no information about ¢ and 1 other than that they are equal. If any pair of revealed
values are different then this is treated as an abort by the active player. This concludes the
proof that ¢ = 1. At the conclusion of this proof the active player has 120k sequences of
envelopes which can be given to the referee as the valid encoding of the player’s input bit.

We have now explained how the initial inputs are encoded as 120k five-envelope se-
quences. In essence, the ILM protocol reduces the secure computation any function to the
following task: A player ¢ has a proper encoding of permutation a and a proper encoding
of permutation # and must produce a proper encoding of the permutation af. In the ILM
paper, they present a procedure for this task which requires that player ¢ knows «. Here we
present a new procedure, making essential use of our redundant data encoding, that allows
the referee (who has a proper encoding of o and a proper encoding of 3) to produce a proper
encoding of af without knowing anything about o or 3. Note that our procedure destroys
both the encoding of o and the encoding of 5 and therefore (in order to use the values «
and [again later in our Rational SFE) we must also have a procedure which given a proper
encoding of a permutation ¢ produces two proper encodings of the same permutation ¢.

We first present our procedure which given an encoding of « and an encoding of (3
produces an encoding of af. First, the referee creates 120k sequences that encode the
identity permutation. He then creates five super envelopes where the jth super envelope
contains the jth envelope from the 120k identities followed by the jth envelope from the
120k sequences for 3. Next, the referee uses the ballot box to randomly permute these five
super envelopes. If p is the secret permutation chosen by the ballot-box, then the when
the referee opens the five super envelopes, he obtains 120k sequences containing p and 120k
sequences containing p3. Note that if p = « then the 120k sequences containing pg are a
proper encoding of a3 and we are done.

In order to determine whether this is the case, the referee takes one sequence containing
p and one sequence containing a and pairs the envelopes of p and the envelopes of « into
five super envelopes. The ballot-box is then used to permute these five super envelopes and
opens them to obtain two five-envelope sequences. Notice that if p = « then these two five-
envelope sequences both contain the same random permutation (and otherwise they contain
a random pair of permutations whose “difference” is pa~!). The referee thus opens both
five-envelope sequences and everyone learns whether p = a.

As stated previously, if the test reveals that p = a then the referee has successfully
created a proper encoding of af as desired. Otherwise, the referee is left with 120k — 1
sequences containing p and 120k sequences containing p3. As before, these sequences can
be placed in five super envelopes and permuted using the ballot box to obtain (for a random
and independent p’) 120k — 1 sequences containing p’ and 120k sequences containing p'[3.
As before the referee can test whether p’ = o and if so he has successfully created a proper
encoding of af. Otherwise he repeats the process until either (1) he successfully creates a
proper encoding of a3 or (2) he has failed 120k times in a row an run out of five-envelope
sequences containing «. (Notice that event (2) happens with probability negligible in k).

As previously discussed, we also need a procedure which takes in a proper encoding of

permutation ¢ and produces two proper encoding of permutation ¢. To do this, the referee
first publicly creates 360k five-envelope sequences containing the identity permutation. He
then creates five super envelopes where the jth super envelope contains the jth envelope
from each of the 360k identities. Next, the referee uses the ballot box to randomly permute
these five super envelopes. If p is the secret permutation chosen by the ballot-box, then the
when the referee opens the five super envelopes, he obtains 360k sequences containing p.
Note that if p = ¢ then he has 360k five-envelope sequences containing ¢. In such a case
the referee has succeeded since he can easily use 240k of these 360k sequences to create two
proper encodings of ¢. To test whether p = ¢ he uses the same equality testing subprocedure
from the multiplication procedure above.

If the test reveals that p # ¢ then the referee is left with 360k — 1 sequences containing
p. As before, these sequences can be placed in five super envelopes and permuted using
the ballot box to obtain (for a random and independent p’) 360k — 1 sequences containing
p'. As before the referee can test whether p/ = ¢ and if so he can easily create two proper
encodings of ¢. Otherwise the referee repeats the process until either (1) he succeeds and is
able to create two proper encodings of ¢ or (2) he has failed 120k times in a row an run out
of five-envelope sequences from his original encoding of ¢. (Notice that event (2) happens
with probability negligible in k).

In summary, our protocol follows the same structure as the ILM protocol, except we
use redundant data encoding scheme along with the above multiplication procedure and
the above duplication procedure in place the ILM multiplication and duplication procedures
which require the player performing the operations to know the value « (for multiplication)
and ¢ for duplication.

Note that above we required each player 7 to execute a public input commitment protocol
in order to create the 120k five-envelope sequence that encodes his input bit. Instead,
we could player ¢ privately create the 120k five-envelope sequences and hand them to the
referee. The difficulty in this that the player may choose to give the referee 120k five-envelope
sequences which do not properly encode any bit. (In particular, the 120k sequences might
not all have identical contents). The solution is to have the player instead submit 240k
(supposedly identical) five-envelope sequences to the referee. The referee could then pick
60k random pairs of sequences and test that they are equal. Such testing provides great
confidence that a super majority of the remaining 120k sequences have identical contents.
This naturally, requires some changes to the above procedures to account for the fact that a
“proper encoding” now guarantees only that a super majority of the sequences are identical
(as opposed to all of the sequences being identical as above). A full discussion of these
modifications is beyond the scope of this technical memo and will be presented in a later
version of this work.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for fault-tolerant
distributed computing. In Proc. of STOC 88, pages 1-10, 1988.

[2] D. Chaum, C. Crépeau, and I. Damgard. Multi-party unconditionally secure protocols.
In STOC 88, 1988.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC
87, pages 218-229. ACM, 1987.

[4] Matt Lepinski Sergei Izmalkov and Silvio Micali. Rational secure computation and ideal
mechanism design. In Proc of FOCS 05, 2005.

[5] Joe Kilian Uri Feige and Moni Naor. A minimal model for secure computation. In Proc
of STOC 94, 1994.

[6] Andrew Yao. Protocols for secure computations. In Proc. of FOCS '82. IEEE, 1982.

