
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

PROJECT MAC

MAC-TR-4

VERBAL AND GRAPHICAL LANGUAGE FOR
THE AED SYSTEM: A PROGRESS REPORT

by

DOUGLAS T. ROSS and CLARENCE G. FELDMANN

This empty page was substih1ted for a
blank page in the original document.

This empty page was substih1ted for a
blank page in the original document.

This empty page was substih1ted for a
blank page in the original document.

VERBAL AND GRAPHICAL LANGUAGE FOR

THE AED SYSTEM: A PROGRESS REPORT

INTRODUCTION

Since 1959 the Computer Applications Group of the Electronic

Systems Laboratory and members of the Design Division of the Mechanical

Engineering Department have been working on the Computer-Aided Design

Project sponsored by the U.S. Air Force. The objective is to create a

man-machine system in which a group of designers and a computer can

work together as a team on fresh design problems which require creative

solutions. Since the concepts of time-sharing and dynamic man-machine

interaction are inherent in the concept of Computer-Aided Design, this work

is also being supported by Project MAC as an integral part of its general

goals as well.

The Computer-Aided Design System is not intended to solve any

particular class of problems, but instead should be applicable to essentially

any area of design and problem-solving. In order to achieve this generality

with a single comprehensive system requires careful attention to the

fundamentals of solving problems with computers. Since the system is to

be applicable to essentially any kind of problem, a single unified approach

to handling the data and information about problems is required. Thus

one of the early developments of the Project was the concept of a technique

for not only containing all of the data about a problem, but also showing all

of the requisite interrelationships among the individual items of data in

what is called a plex structure.

"Flex" is derived from the word "plexus" which has a dictionary

meaning "an interwoven combination of parts in a structure; a network".

A plex is considered to be composed of elements of various types, each

type of element having a number of components appropriate to the object

or relationship which the element represents. Components of elements

may contain data in numerical or coded form, or pointers to other

elements. In application, the objective is to model all of the pertinent

information about a problem in an elaborate plex structure so that all of

the data and relationships are explicitly shown. If this can be accomplished,

-1 -

-2-

then any processing algorithm can obtain any information it requires by

suitable referencing of the elements in the plex structure. Figure 1

shows the modelling plex for a line in two-dimensional cartesian co­

ordinate space. The elements contain type and name components, as.

well as pointers to show the end-point relationships, and places for

storing the coordinate values. Any property of the line which is required,

such as its length or its slope, may be computed by referencing the

appropriate components in the elements of the modelling plex.

n
x
y

e

~

POINT
pi
1

l

t

n

1
r

~

LINE

l1

y
4 p2

3

l ~
2

t POINT
n p2

x 2

y 4

e

Fig. 1 Modelling Plex for 2-D Line

The concept of plex structures is well suited to the requirements

for providing a firm foundation for development of the Computer-Aided

Design System, since it is general, powerful, and may be mechanized in

a great many ways on computers, but for any actual problem, the plex

structures which arise are so elaborate and complex as to be essentially

incomprehensible to humans. Thus a mechanism is needed for automatically

transforming the ideas which a human designer may have about problems

into the intricacies of the modelling plex.

The concept of plex actually involves more than mere structure or

form." There is no unique modelling plex for an object or a piece of

problem in general. Instead the structuring and choice of components is

determined by the~ which is to be made of the model. In other words

an inherent part of the concept of plex is the idea that processing algorithms

will interpret the contents of the components and thereby ascribe meaning

or purpose to them. What the components represent depends very closely

upon the algorithms which reference them.

-3-

Of great importance are the algorithms which describe the process

whereby individual elements are assembled to form a complicated plex.

The vast complexity of a modelling plex never arises all at once, but

instead is built up step-by-step by a process of accretion. The viewpoint

is that special meta-properties are ascribed to the elements and these

meta-properties control the behavior of algorithms which establish the

step-by-step interconnection of elements to cause the growth of a large

structure. The effect of individual elements being assembled by an

algorithm into a large structure is as though the combination of the meta­

properties and the algorithm gave behavioral properties to the elements

themselves, so that the elements interact to form large structures in

much the same way that chemical elements interact to form large molecules.

In this short progress report we try to demonstrate how this abstract

concept of plex as a mixture of structure and behavior can be applied to

yield efficient and powerful mechanisms for solving the numerous problems

involved in research on the Computer-Aided Design System. The technique

has been applied within the Project in a great many places, but here we

consider only the problems of verbal and graphical language and the

compilation of efficient computer programs.

LANGUAGE

It was mentioned above that in order to make use of the plex

concept within the Computer -Aided Design System it was necessary to

achieve a mechanism for going automatically from the way in which it

is natural for a human to think of a problem into the modelling plex form.

What is desired is a language which will seem very natural to the human

and yet which "Can automatically be processed so that the meaning of the

statements made in the language can efficiently be transformed into the

modelling plex.

There is a vast difference between a statement about something

and the something itself. This truism shows clearly in the over-all

scheme for the Computer-Aided Design System. The idea that meta­

properties may be ascribed to objects which then will control the

behavior of algorithms to build large structures out of those objects has

been applied to the problem of language, and has led to what we call the

Algorithmic Theory of Language. Given a vocabulary consisting of any

number of words, meta-properties are assigned to each word, such that

-4-

the "First-Pass Algorithm" will automatically construct, for any gram -

matical statement using those words, a modelling plex for the statement.

This plex explicitly exhibits the syntactic and semantic structure of the

statement and is called the first-pass structure for the statement. It

shows the right and left context for each vocabulary word in the statement,

in the form of a parsed tree structure, and in addition by means of a

chain of pointers called the precedence string, shows the precise order

in which the words should be considered in order to build up the meaning

of the entire statement from the meaning of its subparts, step-by-step.

As is shown in Figure 2 the meaning of the statement is then transformed

into changes in the modelling plex proper by means of "operators" which

follow the precedence string and transform the information contained in

the first-pass structure into changes in the modelling plex. Thus the

first-pass structure models the statement about something while the

modelling plex models the something itself.

LANGUAGE FIRST PASS FIRST PASS MODELLING
USER

_.
OPERATORS

_....
(ANY FORM)~

ALGORITHM STRUCTLRE PLEX

Fig. 2 The Role of Language and Operators

The language theory has been described elsewhere (see references)

and is still in a state of flux and further development, and will not be

considered further in detail here. Instead the remaining portions of this

paper are concerned with applications of the theory in the over-all

Computer-Aided Design framework.

THE AED-0 COMPILER

It was found that no existing compiler could provide an efficient

mechanization of the plex concept so that in the Spring of 1963 the Project

undertook to construct a compiler incorporating the techniques proposed

for the Computer-Aided Design System itself as the first major step toward

accomplishing the goals of the Project. Prior to that time plex program­

ming had been carried out using an experimental compiler called the

Bootstrap Compiler, which also was written by the Project, both for

educational experience and as an experimental tool. The AED-0 Compiler

-5-

was originally written in the Bootstrap Compiler language, but recently

the resulting system has been disassembled from binary machine code

back into FAP assembly language and a great many changes and improve­

ments to the AED-0 Compiler have been made so that now it is available

as a public command in the Project MAC Time -Sharing System.

AED-0 language at present consists of Algol-60, with some

features omitted, and othersfor plex programmip.g added. The compiler

is very efficient and flexible and compiles very good machine code in most

cases. The compiler is based directly on the plex concepts described

above. The following illustration pictures the AED-0 compilation

process:

LABEL : A :

/:"'-. ~
I •-\

LABEL/ • ") /A/ :+-\
(/""'-)
\ B /*
\ c ""'° Precedence 1

String----" 00700 0 50000
0 20000
0 40000
0 60100

Fig. 3 AED-0 Data Flow

LABEL CLA C
MPY D
ADO B
STO A

0 01002,
0 01003
0 OIOOI
0 01000

Programmer statements are read by AED-0, and transformed

into the first-pass structure which represents the machine's understanding

of the statements. Note in the illustration the tree structure which gives

the syntactic structure of the words in the input string, and the "precedence

string" which threads through the tree structure, indicating the semantic

structure of the words by specifying the exact order in which the words

must be considered in order for the proper meaning to be obtained.

Operators may be written to follow the precedence string and perform

desired operations.

-6-

One such operator is a machine-language compilation operator

which is used by AED-0 to produce a binary object program which may

be executed by the computer. Because of the convenient plex form of

the statement, this operator is extremely efficient, and in a single pass,

produces the object code from the precedence string.

The method used by this compilation operator follows the-AED

philosophy that large, complex problems do not arise all at once, but

are built up step-by-step out of small, simpler pieces. The basic

building blocks are the individual vocabulary words, and in AED-0 these

comprise the (approximately) 100-word Algol-60 vocabulary plus

additional words needed to define and manipulate plex structures

conveniently.

The function of the compilation operator is therefore to follow

the precedence string, and as each node in the tree structure is reached,

to merge an additional segment with the object deck. These segments

are known as "merbes" (~ge bead~) since they are thought of as beads

on a string which are designed to be merged with other such beads.

The individual vocabulary merbes and the object deck are of

identical construction, so that the compilation process is to merge small

merbes into a single large merbe of the same form. Therefore, at any

time during the compilation the object deck may be packaged, given a

name in the vocabulary table, and merged with other compilation merbes.

Thus AED-0 has no "object code generator'' as such, but instead constructs

the object program by the uniform process of "merging".

The following is a diagram of a merbe. The merbe illustrated

does not correspond to any Algol vocabulary word, but illustrates several

features of the merbe structure.

Note that the merbe is divided into a "head" which contains the

required information about the merbe 1 s dummy arguments, and a "tail"

which contains the actual machine code operations corresponding to the

related vocabulary word. Corresponding to the vocabulary words, AED-0

contains merbes which, if merged with the object merbe, will perform

the desired operations when executed by the computer. At merging time,

the specific variable names used by the programmer are ''substituted"

for the merbe 1 s dummy arguments by linking together the chains of

pointers shown.

- 7-

Head

nAn

l 5A

5

CLA A

TXl B,l,A

Toil TMl B

C LA 'f 1-

J

TXH B,I,A

A HTR A

TXl 2D

TMl

TXH IA
1

~ HTR l

11
A

11
STRING

Fig. 4 MERBE Structure

In the illustration, the dummy argument is labelled "A". We see

that this dummy is used in the four places illustrated in the merbe tail,

and is assigned to the fifth tail location. The head component for the

dummy A tells the first and last usage of A in the tail, and the assigned

location (if any} of A, relative to the start of the tail. The tail contains

the usage string showing, at each position, where the next usage of the

symbol occurs. This usage string is divided into the computer's machine­

code word divisions, as illustrated. Each such usage pointer is relative

to its own location, and contains a code telling the subdivision of the

computer word in which to find the next usage.

The process of merging a vocabulary merbe with the object code

merbe is illustrated on the next page.

-8-

Head

HAU IA 2A

1:1 I I 'i I
HEAD IA 6A

,.--------..J
I
I

CLA I 2D
I
I

TMI I IA
TAIL I

I
TXL I ID IT 0

I
I

TXI + IA 0

ADD IA

STO 0

fig. 5 MERGE Process

However large the merbe, the operation is the same. A copy of the

tail of the vocabulary merbe is appended to the object merbe. Then for

each dummy argument the operations required (heavy black arrows) are

to reset two pointers, the last-usage pointer and the final pointer in the

tail string for the symbol used. The previous last-usage pointer is

illustrated by the dotted arrow.

When the entire compilation is completed, the object merbe is

in a convenient form for allocating memory locations for all variables

and constants used in any way. Once values are selected, it is only

necessary to follow the tail strings, plugging in the assigned values at

e~ch point on the string.

The allocatable (merbe) form of object program is more general

than the standard BSS format used with current IBM machines, and is

more easily adapted to splitting binary object decks and re -distributing

---------------- -- -- -- ----

-9-

program pieces in a time-shared core memory environment. However,

in order to be compatible with other existing compilers at Project MAC,

AED-0 transforms the object merbe into the standard BSS binary format

for output.

In summary, the AED-0 Compiler applies the basic plex concepts

in many places and in many forms. In particular the first-pass of the

compiler is the First-Pass Algorithm of the language theory, and the

final merging operation of the compiler is a direct application of step­

by-step construction of an appropriate mechanization of a modelling plex

by operators following the precedence string.

EXAMPLE OF AN AED-0 PROGRAM USING CTSS

Introduction

The following is an example of an AED-0 program. The program

illustrated does not attempt to show the full power of the AED-0 language

or forecast any of the advanced features planned for AED-1. It is an

attempt to show that AED-0 is a functioning compiler which may be used

now as a tool in CTSS.

Input Disk File

The following is the printout of a CTSS input file of a subroutine

to calculate and print out the solutions to a quadratic equation of the form

Ax
2 + Bx + C = O. Tests are made for A= 0, B

2
- 4AC negative, B = 0,

and B
2

- 4AC = O. In each case, the proper alternate solution and

corresponding printout are performed.

printf quadr aleol
>I 1425.1
00010 BEGIN

-10-

00020 DEFINE PROCEDURE QUADRATIC(A,B,C) WHERE
00030 REAL A,R,C TOqE BEGIN
00040 REAL X,TEMP $,
00050 IF A EQL 0 THEN BEGIN X=-C/q $, PRINT ONEVAL,X
00060 $, GOTO RETURN ENO $,
00070 IF B•R-4.0 * A•C LES 0 THEN BEGIN
00080 PRINT NEGATIVE $, GOTO RETURN ENn $,
00090 LISTI NG $,
00100 X=C-R+(TEMP=(SQRT(TEMP=R•B-4.0 •A•C))))/(2.0 *A) $,
00110 LISTING$,
00120 IF B EQL 0 THEN BEGIN X= A~S X $, PRINT ONLY,X ENn
00130 ELSE IF TEMP EQL 0 THEN PRINT ONEVAL,X ELSE REGIN
00140 TE'v1P=(-f1-TP,1P)/(2.0 *A)$, PRINT ROTH,X,TE~'1P $,
00150 END $, END $,
00160 ONLY $ FORMATC20H SOLUTION X= + OR - ,FS.2) $,
00170 ROTH $ FORMAT(13H SOLUTION X= ,F5.2,2X,5H ANn ,FS.2) $,
00180 NEGATIVE $ FORMAT(13H NO SOLUTION.) $,
00190 ONEVAL $ FORMATC20H SINGLE SOLUTION X= ,FS.2) $,
00200 END FINI
R .600+.800

Compilation and PRALG Listing

The following illustrates the compilation of the QUADR file,

using AED. The commands (PRLG) and (SYMB) instruct AED-0 to create

printed output files for the Print Algorithm version of the input data and

resulting symbol table, respectively.

The later printout of the PRALG file is also illustrated. Note that

the PRALG program has re-arranged the page layout to correspond to the

BEGIN -END block structuring of Algol, and has placed statement labels

at the left margin for easy reference. This print is produced by an operator

which prints directly from the tree structured machine version of the input

statements, and thus mirrors the machine understanding of what was said,

not merely a re-play of the input file. Its readable format is of great

assistance in making clear the structure of the program.

--· -· ----------

-11-

aed quadr (prlr,) (sy~b)

·' 14 3 2. 9
LENGTH = 00247 ENTRY 00003

R 2.516+2.000

ctest8 quadr pralg 14
w 1435.6
lPAGE 1

ONLY $
BOTH $
NEGATIVE $
ONEVAL $

R 1. 200+1. 616

BEGIN
DEFINE PROCEDURE QUADRATIC (A , B , C) WHERE REAL A , B , C TOBE

BEGIN
REAL X , TEMP $,
IF A EQL 0 THEN

BEGIN
X = - C I B $,
PRINT ONEVAL , X $,
GOTO RETURN
END $,

IF B * B - 203400000000 *A * C LES 0 THEN
BEGIN
PRINT NEGATIVE $,
GOTO RETURN
END $,

LISTING $,
X = (- R + (TEMP = (SQRT (TEMP = B * B - 203400000000 * A
• C > > > > I C 202400000000 • A > $,
LISTING $,
IF B EQL 0 THEN

BEGIN
X = ABS X $,
PRINT ONLY , X
END

ELSE IF TEMP EQL 0 THEN PRINT ONEVAL , X ELSE
BEGIN
TEMP = (- B - TEMP) I (202400000000 * A) $,
PRINT BOTH , X , TEMP$,
END $,

END $,
FORMAT(20H SOLUTION X= +OR - ,F5.2) $,
FORMATC13H SOLUTION X= ,F5.2,2X,5H AND ,F5.2) $,
FORMAT(l3H NO SOLUTION.) $,
FORMATC20H SINGLE SOLUTION X= ,F5.2) $,
END FINI

-12-

Symbol Print

The following is a printout of the QUADR file symbol table,

generated by the (SYMB) command above. This printout is primarily

useful in machine language debugging, when necessary.

ctest8 quadr symbol 14
w 1439.4
lPAGE 1 SYMBOL TABLE

SYMBOL TABLE NAME = REALS
202400000000 = 00237 203400000000 = 00240

SYMBOL TARLE NAME = INTS
0 = 00241

SYMBOL TABLE NAME = TEMPS
CL007 = 00161 CL006 = 00140 CLOOS = 00161 CL004 = 00123 CL003 = OOOS3
CC007 = 00242 (C006 = 00243 CL002 • 0002S CLOOl = 00004 CLOOO = 00163
(COOS "' 00244

SYMBOL TABLE NAME = SYSTEM
SQRT • 00000
C SPH) = 00002

SYMBOL TABLE NAME = STOOl
BOTH • 00222
ONEVAL = 00210
QUADRATIC = 00003

SYMBOL TARLE NAME = QUADRATIC
A = C ARG)
C ,. CARG)
TEMP = 00246

LENGTH = 00247 ENTRY = 00003

TRANSFER VECTOR
SQRT • 00000

ENTRY PO I NTS
QUADRA = 00003

R 1.000+.800

(FIL) = 00001

(FIL)= 00001

ONLY = 00231
NEGATIVE • 00216

B = (ARG)
x = 0024S

(S PH) = 0 0 0 0 2

-13-

Compilation Listing

The following is a compilation listing of the object code

produced by the single statement in line 100 of the input QUADR file.

The statement LISTING$, in lines 90 and 110 caused the listing of line

100 to be produced (see input file print, above).

ctest8 quadr list 14
w 1441.8
!PAGE 1 COMPILATION LISTING

00053
00054
00055
00056
00057
00060
00061
00062
00063
00064
00065
00066
00067
00070
00071
00072
00073
00074
0007S
00076
00077
00100
00101
00102

R 1.000+2.200

CLA
CHS
STO
LDQ
FMP
STO
LDQ
FMP
XCA
FMP
STO
CLA
FSB
STO
TSX
STO
FAD
STO
LDQ
FMP
STO
CLA
FOP
STQ

B
2
(C006
B
B
(C007
203400000000
A

c
(COOS
(C007
(COOS
TEMP
SQRT,4
TEMP
CC006
CC006
202400000000
A
(COOS
CC006
(COOS
x

-14-

Object Deck Execution

The following illustrates the execution of the QUADR subroutine,

along with a main program which feeds values of A, B, and C from the

teleprinter. Each of the four special cases tested for in the input deck

are illustrated.

loadr,o ~ain quadr
l·J 14 2 6. 8
EXFCUTION.

QUAD RA Tl C SOLUTION PROGRM~

PLEASE TYPE VALUES OF A,B, AND C
A =

1.
B =

1.
c =

1.
NO SOLUTION.

PLEASE TYPE VALUES OF A,B, AND C
A =

1. 2
q =

3. 9
c =

-7.4
SOLUTION X= 1.34 AND -4.59

PLEASE TYPE VALUES OF A,~, AND C
A =

2.0
B =

c =
-2.0

SOLUTION X= + OR - 1.00

PLEASE TYPE VALUES OF A,B, AND C
A =

o.o
B =

7.9
c =

7.9
SINGLE SOLUTION X= -1.00

-15-

GRAPHICAL LANGUAGE

It is of vital importance that the language facility for the Computer­

Aided Design System include not only flexible descriptive and programming

languages in word form, but a generalized capability for graphical com­

munication as well. There are many aspects of design in almost any field,

for which the natural means of expression is in terms of pictures or

diagrams, and any attempt to convey equivalent information in verbal form

would be extremely unnatural and awkward, and would defeat the basic

principle that the designer-user be able to operate in a manner which is

natural to him.

The ESL Computer Applications Group has been active in the field

of on-line man-machine systems for over 10 years (the first tracking

program was written in late 1954 for the Whirlwind Computer), but the

first complete subsystem for graphical communication was the Sketchpad

program of Dr. I. E. Sutherland, written for the TX-2 Computer at

Lincoln Laboratory, with NSF and Lincoln Laboratory support, in 1962.

This program is one of the outstanding success stories in the field of

computer applications, for it made the concept of graphical communication

with a machine come alive in a very meaningful way to many thousands of

people.
Sketchpad and the plex concept which underlies the AED System

share a common heritage. In late 1961 Sutherland had completed his

first attempt at a light-pen drafting language, based upon the use of

tables of points and lines, and push-button commands corresponding to

standard drafting tools for drawing horizontal and vertical lines, slanted

lines, circles, etc. At the same time the Project was independently

beginning to apply the concepts of the Bootstrap Compiler to the con­

sideration of graphical language and was beginning a study of a "Bootstrap

picture language." At that time, the plex concept was thought of as

almost purely structural, and although a preliminary version of the

First-Pass Algorithm for programming languages of the Algol type had

been devised in the preceding months, the strong relationship between

interaction algorithms and structure was not then apparent. Still earlier,

in 1960, the Project had carried out a "point-line diagram study" in order

to gain experience with list processing techniques. This problem concerned

techniques for constructing diagrams composed of points, lines, and

angles, and imposing geometric constraints on the elements of the diagram

-16-

in successive stages, as an example both of graphical language and as

a model for the design process itself. The problem was carried out in

the LISP system then being constructed by the MIT Artificial Intelligence

Group and no attempt was made to drive the resulting programs with

light-pen inputs. Instead the study provided impetus to the developments

of the more general plex concepts, since it was felt that the storage and

time expenditures inherent in attempting to model things entirely in terms

of lists and trees wotlld be impractical for a commercially feasible

Computer-Aided Design System.

In early 1962, then, the interaction between the beginning First­

Pass Algorithm and the Bootstrap Picture Language led the Project to

the generalizations which evolved into the Algorithmic Theory of Language

itself, while Sutherland, influenced by the structural aspects of the plex

concept of that time, pursued Sketchpad proper. The Bootstrap Picture

Language study as such was discontinued in view of the success of

Sutherland's efforts.

With the successful on-line operation of the ESL Display Console

on the Project MAC Computer, attention has now returned to the problem

of providing graphical language capabilities on commercial equipment as

a part of the Computer-Aided Design System. As a beginning the highly

successful Sketchpad capability will be duplicated externally. The internal

processing of the programs, however, will be almost entirely different

from those used by Sutherland. Whereas Sketchpad was created on the

TX-2 Computer through the considerable programming artistry of

Sutherland using the TX-2 macro assembly system, graphical language

for the AED System will be mechanized as a special application of the

Algorithmic Theory of Language and plex concepts. Therefore, the

original objective that there should be no distinction between verbal and

pictorial language for the Computer-Aided Design System will be achieved.

In order not to interfere with the compiler developments of the

Project, and in order to obtain a simpler base of programs to work from,

while at the same time providing an experiment in dynamic man-machine

interaction in a time -sharing environment, a simplified miniaturized

version of the over-all Computer-Aided Design System has been written.

Although not yet officially christened, this little system will be referred

-17-

to as AED Jr. in the following description of how it has been used to

prepare a preliminary demonstration of Sketchpad capabilities within the

over-all AED framework.

AED Jr. consists of a master control program and a number of

sub-programs for setting up the meta-properties of new vocabulary words,

examining the vocabulary table entries, making corrections, running

statements through the First-Pass Algorithm, and examining the syntactic

structure in the form of the parsed tree, and checking the correctness of

the precedence string which models the semantic structure of statements.

All of these features are directly under the control of a simple command

language which may be typed on the teletype, and included among these

commands are commands to accept input statements from the light pen

and push buttons of the ESL Display Console and to plot graphical state­

ments on the console. In the following description characters printed

by the system are in upper case and characters typed by the user are in

lower case. We describe the features of the system by illustrating how

a trivial language consisting of the words begin, end, and fini may

be inserted and tested, and then give some illustrations of the results of

the more elaborate graphical language used for the May 6th demonstration.

AED Jr. is called in for execution just as any other program in

the time-sharing system. After a few preliminaries the program types

out

MASTER
TYPE.

This indicates that AED Jr. is now at the master control level and is

awaiting instructions. The word TYPE. is not followed by a carriage

return so that any typing which we do will appear on the same line and

will be commands to the system. If we type "vio", calling for the

vocabulary in-out subsystem, AED Jr. responds

MASTER
TYPE. v io
WHAT
TYPE.

-18-

The word what indicates that we are now in a master control for the via

routine and may perform any of its functions. In general when the system

is operated on-line from the teletype, words such as master and what are

printed out by AED Jr. to inform the user of the status of the system, and

to prompt him as to what he may do next. In order to save console response

time, any number of user words may be typed on a single line, separated

by spaces, in which case the system words are typed out down the page as

actions are taken. The system also may be operated off-line from user

commands prepared through the CTSS Input and Edit facility, in which

case the system comment words such as what do not appear.

To check that the system contains no preliminary vocabulary let

us ask it to show us all of the initial vocabulary table:

WHAT
TYPE.
WORD
Nil
WHAT
TYPE.

show all

COD 0 LT 000 RT 000 VR 000 GN 000

AED Jr. shows us that the vocabulary at present consists of only the

empty type nil with zeroes uniformly for all of its meta-properties.

Continuing with our check that the system is starting with nothing we add

some more commands.

WHAT
TYPE. out state
MASTER
N IS NI l
X IS NI l ... T OF X IS NIL
P EMPTY
MASTER
TYPE.

which shows that we have gone out of the via subsystem back to the

master system and have asked for the state of the First-Pass Algorithm.

AED Jr. reports to us that the state variables of the First-Pass Algorithm,

n, x, and .I>• all contain nil and at the stack of uncompleted things is empty,

and furthermore, that the type of the thing in ~ (nil) is nil. Thus we start

with a clean slate.

-19-

To insert our trivial three-word vocabulary we return to the vio

routine and insert our three words,

MASTER
TYPE. vio vin x 000001 ni 1 ni 1 ni 1 ni 1 ni 1
WHAT
VIN
VIN
TYPE. begin 000002 x x x x x
VIN
TYPE. end 000003 x x x x x
VIN
TYPE. f ini 000004 x xx x x out
VIN
WHAT
TYPE.

The word vin in the vio system says that we wish to put in a vocabulary

word. Note that we have defined a dummy word x to save typing as we

provide the meta-properties for the words of our trivial vocabulary. With

the words now entered into the vocabulary table we need to complete the

specification of the meta-properties by specifying for each vocabulary word

what kinds of things does it like to have on its left and right sides, i.e. , in

what kinds of contexts can these words be used. We continue

WHAT
TYPE. 1 ike begin nil right end out
WORD
LEFT SET
WORD
TYPE.

Note that vio responds to the command like by asking us what word to

refer to. When we reply begin, it informs us that it is set to establish

what that word likes on its left. We specify nil and then say we would like

to set the right likes and that on the right begin is to like the word end.

Then we wish to go out from the setting of likes for that word. The like

routine responds by asking us what is the next word that we would like to

treat? We continue

----------------·---------- -

-20-

WORD
TYPE. end nil right nil out fini begin out out
LEFT SET
WORD
LEFT SET
WORD
w-IAT
TYPE.

Note that fini likes the word begin on its left, but we specify no right likes

for fini. Now we may check that our vocabulary is properly set.

WHAT
TYPE. show a 11 out
WORD
x coo 1 LT NIL RT NIL VR NIL GN NIL
NIL con 0 LT 000 RT 000 VR 000 GN 000
BEGIN COD 2 LT x RT x VR x GN x

LEFT NIL
RIGHT ENO

END coo 3 LT x RT x VR x GN x
LEFT NIL
RIGHT NIL

FINI con 4 LT x RT x VR x GN x
LEFT BEGIN

WHAT
MASTER
TYPE.

Actually there is only one grammatical statement which can be

made out of our little vocabulary so we try it:

MASTER
TYPE. fresh run begin end f ini state sim
FRESH SET
MASTER
MASTER
N IS FINI
X I S ••• T OF X I S X
BEGIN ENO NIL
NIL NIL

P EMPTY
MASTER

1
END 3
BEGIN 2
MASTER
TYPE.

-21-

which says that we wish to have a fr~sh state of the algorithm, to try a

~consisting of the statement "begin end fini" and we wish to see the

state of the First-Pass Algorithm and simulate a run along the precedence

string in the first-pass structure. For each word there is a possibility

of a "left execute" using only the left context and a possibility of a "right

execute" action using the right context. In the simulation the code 1 means

"do the left only", 2 means "do the right only", and 3 means "do both left

and right". The teletype information provided by AED Jr. is equivalent

to the following first-pass structure.

~FINI

BEGIN'?::
',NI~ ~

.........
-........._ /END

----;? "
NIL NIL

If we had encountered any difficulties we could recall the vio routine,

change the meta-properties or the vocabulary words themselves, return

to master and request a "fresh run". In this way without ever leaving

the system we can establish and immediately check out essentially any

programming language of our choosing.

To apply AED Jr. to the problem of writing graphical language

requires some additional machinery. The ESL Display Console is con­

nected directly to the direct data channel of the MAC 7094 Computer and

a real time program to control the console, called the A-core Program is

incorporated into the time-sharing supervisor. The A-core Program in

turn communicates with the "B-core Program" which shuttles in and out

in time-sharing with the user's program (in this case AED Jr., etc.). It

is necessary to replace the~ subroutine by a draw subroutine so that

the input string statement may be obtained from button-pushings and light­

pen motions in the display console via the A-core-B-core route. Similarly,

the sim function is replaced by a subroutine called plot which replaces the

printing function of sim by using the left and right executes for the

vocabulary words to transform the words encountered in the first-pass

structure into the appropriate display commands for transmittal to the

display console via the B-core-A-core route.

r- ------~-- ---------- -

-22-

In the case of graphical language, whenever a button at the console

is pushed, it stands for a word, such as point or line, and the draw

routine is set so that when a button is pushed, not only is the associated

word transmitted to the First-Pass Algorithm of AED Jr. , but also the

appropriate light-pen information, as indicated by the VR component of

the meta-properties of the word. Thus if the button standing for line is

pushed, the draw routine will send along to the First-Pass Algorithm the

current light-pen location as an atomic variable, followed by the word line.

If the same button is pushed again after the pen has been moved, the new

pen location and new word line are passed along. Finally pushing a

terminate ($,) button sends along a final pen location with the terminate

word so that the following first-pass structure results.

s,

LINE/

', #"" '---LINE P3

/ "" Pl P2
The plot function can then make up display commands for a line

from pl to p2 and another line from p2 to p3.

Although only a very limited vocabulary is incorporated into the

May 6th Demonstration Program, some of the available functions are

indicated in the accompanying illustrations.. Many additions to the system

will be made in the next few months, including facilities for generalized

constraint satisfaction.

It is interesting to note that several features, such as the fact

that the topology of a picture is maintained as the atomic points are moved

around, which were handled by the generalized constraint satisfaction

facility in Sketchpad are here only an aspect of the phrase-structuring of

the graphical language. The use of subpictures as elements of bigger

pictures, which was the principle feature of the Bootstrap Picture Language

and which also appears in Sketchpad, is closely related to the ideas of

subroutines which can be called with variable arguments in compiler

language. Many similar relationships can be seen between the verbal

-23-

MASTER
TYPE. run begin aa line bb arc cc point dd to ee line
TY PE • f f $, g g move h h po i n t i i $,
TYPE. jj erase kk arc 11 to mm arc nn to oo $,
TYPE. pp end fini state sim
MASTER
N IS FINI
X I S ••• T OF X I S X
BEGIN END NIL
NIL I

I
$, pp
I
$,
I
I
I
I
I
I
I
I
$,
I
I
I
I
LI NE
I

A RC
I
I
I
I
LINE
AA

ARC TO
I NN
I
ARC TO
I LL
I
ERASE KK
JJ

POINT I I
I
MOVE HH
GG

FF

TO EE
I
POINT DD
cc

BB

00

MM

Fig. 6 Example of Parsed Tree of Graphical Language in AED Jr.

-24-

MASTER
TYPE. fresh run begin aa arc bb point cc line dd arc
FRESH SET
MASTER
TYPE. ee point ff arc gg to hh point Ii to jj point
TYPE. kk to 11 $, nm end flnl state sim
MASTER
N IS FINI
X IS ••• T OF X IS X
BEGIN ENO NIL
NIL I

I
$,
I
ARC
AA

Mt.1

TO
I
I
POINT
I
ARC
I
I
I
I
I
I
I
I
I
LINE
I
POINT
BB

LL

KK

TO
I
POINT
I
ARC
I
I
PO.I NT
EE

DO

cc

JJ

II

TO HH
GG

FF

Fig. 7 Example of Parsed Tree of Graphical Language in AED Jr.

-25-

and graphical mechanizations of language, and we expect many further

developments to arise from the consideration of the two in the same

framework. That the two forms of language are just different repre­

sentations of the same thing may easily be seen by observing that as is

shown in the May 6th demonstration the sequence "symbol word symbol word

•••
11 is indistinguishable from the sequence "pen-position button pen­

position ••. ". Thus for Computer-Aided Design there can in fact be a

single language facility which can be molded to take whatever form is

suitable to the design process itself.

CONCLUSION

The compiler, language, and system-building activities of the

Computer-Aided Design part of Project MAC are continuing at a rapid

pace. Since March 1, 1964, experienced system programmers from six

companies (North American, Lockheed-Georgia, Grumman Aircraft,

Sandia Corporation, United Aircraft, and Boeing Aircraft) have joined the

Project for a year to participate in the construction of the AED-1 System,

using AED-0. An additional programmer from IBM is expected in a few

weeks. AED-1 will be a very efficient compiler for further extensions to

the AED language for plex programming, and is being designed (using

extensions to the merge process described above) to incorporate an

"Algorithmic Second Pass" which will enable the system to generate very

efficient machine code for essentially arbitrary computers. It is hoped

that the first version of AED-1 will be operational within a year.

In parallel with the AED-1 Project, further developments of the

graphical language, and extensions to the AED Jr. type of system operations

will continue. Thesis activities are planned in the areas of algebraic

formula manipulation, and generalized symbolic computation, as well as

in many areas of design itself, both mechanical, electrical and in naval

architecture.

It is hoped that this brief presentation of some of the fundamental

concepts underlying the activities of the Computer-Aided Design work will

engender confidence that the grandiose-sounding goals of the Project will

begin to be achieved in a substantial way in the very near future. Taken

in concert with the many other successful developments taking place in

other parts of Project MAC, it is clear that the computer may shortly be

viewed as a highly capable helper in problem-solving, rather than merely

a tool for the specialists.

-26-

REFERENCES

1. Stotz, R., "Specialized Computer Equipment for Generation and
Display of Three-Dimensional Curvilinear Figures, 11 M. I. T.
Report ESL-TM-167, March, 1963. (SM Thesis in Department
of Electrical Engineering, M. I. T.; also published in condensed
form in the Proceedings of the 1963 Spring Joint Computer Con­
ference in Detroit.)

2. Ross, D. T., and Rodrigues, J.E., 11Theoretical Foundations for
the Computer-Aided Design System, 11 M. I. T. Report ESL­
TM-170, March, 1963. {Also published in the Proceedings of
the 1963 Spring Joint Computer Conference in Detroit.)

3. Coons, S. A., "An Outline of the Requirements for a Computer-Aided
Design System, 11 M. I. T. Report ESL-TM-169, March, 1963.
(Also published in the Proceedings of the 1963 Spring Joint Com­
puter Conference in Detroit.)

4. Sutherland, I. E. , "Sketchpad, A Man-Machine Communication
System, 11 Lincoln Report TR-396, January, 1963. {Ph.D. Thesis
in Department of Electrical Engineering, M. I. T.; also published
in condensed form in the Proceedings of the 1963 Spring Joint
Computer Conference in Detroit.)

5. Johnson, T. E., "Sketchpad III, Three-Dimensional Graphical Com­
munication with a Digital Computer, " M. I. T. Report ESL-R-173,
May, 1963. {SM Thesis in Department of Mechanical Engineer­
ing, M. I. T.; also published in condensed form in the Proceedings
of the 1963 Spring Joint Computer Conference in Detroit.)

6. Ross, D. T., and Coons, S. A., "Investigations in Computer-Aided
Design for Numerically Controlled Production. 11 Interim Technical
Progress Report No. 6, M. I. T. Report ESL-IR-180. Covers
period 1 September 1962 through 31 May 1963, August, 1963.

7. Feldmann, C. G., "AED-0 Programmer's Guide, 11 MAC Memorandum
MAC-M-146, April 21, 1964.

8. Feldmann, C. G., ''Warnings and Restrictions in AED-0, 11 MAC
Memorandum MAC-M-154, April 21, 1964~

